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Effect of deuteron breakup on the deuteron-� correlation function
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Background: The hadron-deuteron correlation function has attracted much interest as a potential method to
access three-hadron interactions. However, the weakly bound nature of deuterons has not been considered in the
preceding studies.
Purpose: The breakup effect of deuterons in the deuteron-�− (d-�−) correlation function Cd�− is investigated.
Methods: The d-�− scattering is described by a nucleon-nucleon-� three-body reaction model. The continuum-
discretized coupled-channels method, which is a fully quantum-mechanical and nonperturbative reaction model,
is adopted.
Results: Cd�− turns out to be sensitive to the strong interaction and enhanced by the deuteron breakup effect by
6%–8% for a d-�− relative momentum below about 70 MeV/c. Low-lying neutron-neutron continuum states
are responsible for this enhancement.
Conclusions: Within the adopted model, the deuteron breakup effect on Cd�− is found to be appreciable but not
very significant. Except for the enhancement by several percent, studies on Cd�− without the deuteron breakup
effect can be justified.
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I. INTRODUCTION

Hadron-hadron (hh) interactions are the basic inputs in
describing hadronic many-body systems such as nuclei,
hadronic molecules, and nuclear matter. The nucleon-nucleon
(NN) interaction has been determined by using NN scattering
data and used in calculating various properties of nuclei and
nuclear matter. For other hh pairs, by comparison, scattering
data are not enough to precisely determine the interactions
or not available, so hypernuclear or mesic nuclear data have
been invoked to constrain hh interactions such as the �-
hypernucleus [1] for the �N interaction.

In the past 10 years, new techniques have been advanced
to elucidate the interactions of various hh pairs. Ab ini-
tio calculations of hh interactions based on lattice quantum
chromodynamics (LQCD) [2–4] and the chiral effective field
theory [5] have become available and some of the predictions
have been examined and found to be reliable. From an obser-
vational point of view, femtoscopic studies of hh interactions
have been developed and advanced recently [6–26]. The mo-
mentum correlation function of a particle pair is defined as the
two-particle production probability normalized by the product
of the single-particle production probabilities and is given
by the convolution of the source function and the squared
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relative wave function [27]. The correlation functions have
been used to extract the source size of stars and high-energy
nuclear reactions by assuming that the interaction between the
particles are weak or well known [28]. By comparison, when
the source size is known, one can use the correlation func-
tion to constrain the interaction between the particles [6,7].
Actually, correlation functions have been measured recently
in high-energy nuclear collisions for various hh pairs such as
p� [8–10], �� [10,11], p�− [12,13], p� [13,14], pK− [15],
and p�0 [16], and these data have been used to constrain the
hh interactions [6,7,17–25].

As the next step in the femtoscopic studies of hh inter-
actions, the hadron-deuteron (hd) correlation functions are
promising as discussed in Refs. [29–31]. The hd correlation
function has several merits to study. First, it is sensitive to the
hd scattering length, which can be compared with the precise
few-body calculation results. Second, there is a possibility
that one can access the hadron-nucleon-nucleon three-body
interaction, which would be important for evaluating the dense
matter equation of state [32] and the three-body bound state if
it exists. Third, by using the hadron-nucleus correlation func-
tion, different spin-isospin components in the hadron-nucleon
interaction may be resolved. In the �d correlation function,
for example, the s-wave function contains doublet (2S1/2) and
quartet (4S3/2) components. Since the scattering length of
the former (doublet channel) is strongly constrained by the
binding energy of the hypertriton (3

�H ), the �d correlation
function data will tell us the quartet channel scattering length
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[30]. The scattering lengths in both channels are helpful to
resolve the �N interactions in the spin-singlet and -triplet
channels and to deduce the strength of the �NN three-body
force. In order to extract these interesting ingredients from
the hd correlation functions, precise theoretical estimates are
necessary. One of the important issues in the hd correlation
function is the large size and the small binding energy of the
deuteron. In previous exploratory theoretical studies of the pd
[29] and hd correlation functions, K−d [29], �d [30], and
�−d [31], the hd interaction is evaluated using the intrin-
sic deuteron wave function, but the deuteron breakup effects
are ignored; in Ref. [29], it has been conjectured that the
deuteron breakup effect can be effectively taken into account
by increasing the source size of the deuteron source function.
Besides, the asymptotic wave function is assumed even in the
interaction range by using the analytical Lednicky-Lyuboshitz
formula [6] in Refs. [29] and [30]. In order to take account of
the deuteron compositeness and the wave function inside the
interaction range, it is necessary to obtain the three-body wave
function with the deuteron breakup effects under the boundary
condition of h and d in the asymptotic region.

The purpose of this study is to predict the d-�− correla-
tion function with an N + N + � three-body model including
the effects of the breakup states of deuteron. To achieve
this, we adopt the continuum-discretized coupled-channels
(CDCC) method [33–35]. The CDCC method is one of the
most accurate and flexible reaction models for describing
processes in which a weakly bound particle is involved.
The theoretical foundation of the CDCC method is given in
Refs. [36] and [37] in connection with the distorted-wave
Faddeev theory [38]. This has been confirmed also numeri-
cally in Refs. [39–41] on d-nucleus reactions. Validation of
the CDCC method in a similar manner for d-N scatterings
has not been done, mainly because of the difficulty in treating
the antisymmetrization between each nucleon inside d and the
other nucleon outside d . Fortunately, however, such a compli-
cated antisymmetrization of two nucleons is not needed for
the d-�− scattering. One can, therefore, expect the validation
of the CDCC method confirmed so far also for the d-�−
scattering. Note that the antisymmetrization between two nu-
cleons inside d is included as shown in Sec. II. In the CDCC
method, the wave function of the reaction system is described
in terms of a finite number of channels. The Argonne V4′
(AV4′) nucleon-nucleon (NN) interaction [42] and the N-�
interaction obtained by LQCD [4] are employed. Through the
spin and isospin dependence of the N-� interaction, the total
isospin (T ) and spin (S) of the NN system are not conserved.
We include both of the s-wave channels, the (T, S) = (0, 1)
and (T, S) = (1, 0) states, in the present CDCC calculation.

As the first step in the three-body study on the d-�−
correlation function with the CDCC method, we make the
following approximations. First, the Coulomb interaction be-
tween charges +e and −e is assumed to be present in all
channels. Second, the orbital angular momentum between
the two nucleons and that between � and the center-of-mass
(c.m.) of the NN system are both limited to 0. Third, a source
function of d-�− is considered rather than that of the NN�.
Fourth, we ignore the isospin dependence of the masses of N
and � baryons. We discuss the properties of the N + N + �

three-body system relevant to the d-�− scattering under these
conditions and clarify the NN breakup effect on the d-�−
correlation function.

The construction of this paper is as follows. In Sec. II,
we describe the formulation of the d-�− correlation function
based on the CDCC method. The numerical inputs are given
in Sec. III A. The calculated d-�− correlation function and its
convergence feature regarding the model space of the CDCC
method are shown in Sec. III B. The dependence of the corre-
lation function on the source size of the source function is also
discussed. In Sec. III C, properties of the NN breakup states
included in the CDCC calculation are shown, and those of the
coupling potentials of the NN-� system are investigated in
Sec. III D. The resulting NN-� scattering wave functions are
discussed in Sec. III E. Finally, a summary is given in Sec. IV.

II. FORMALISM

The discretized continuum states of the NN system in the
CDCC method are given by

ϕiT S (r) = 1√
�iT S

∫ kiT S+�iT S

kiT S

ϕT S (k, r)dk, (1)

where i, T , and S are the energy index, the total isospin, and
the total spin of the NN system, respectively. r is the distance
between the two nucleons, and k is their relative wave number.
The NN orbital angular momentum is restricted to 0 in this
study; because of the antisymmetrization condition of the NN
system, we only include states with S + T = 1. ϕT S is the NN
scattering wave function satisfying[

− h̄2

2μr

d2

dr2
+ V (NN )

T S (r)

]
ϕT S (k, r) = εϕT S (k, r), (2)

where μr is the NN reduced mass, V (NN )
T S is the NN interaction

of the central type, and ε = h̄2k2/(2μr ). ϕT S is solved under
the boundary condition

ϕT S (k, r) →
√

2

π
sin

[
kr + δ

(NN )
T S (k)

]
(r → ∞), (3)

with δ
(NN )
T S being the NN scattering phase shift in the s wave.

As shown in Eq. (1), ϕT S is averaged over k within the bin
of k characterized by the lower limit kiT S and the width �iT S ,
which is called a “momentum bin” or “bin state” by conven-
tion. The eigenenergy εiT S of ϕiT S is defined by

εiT S = 1

�iT S

∫ kiT S+�iT S

kiT S

h̄2k2

2μr
dk

= h̄2

2μr

(
k2

iT S + kiT S�iT S + �2
iT S

3

)
. (4)

In what follows, for the simple notation, we use the chan-
nel index c, which represents (i, T, S) altogether; c = 0
corresponds to the deuteron ground state. The discretized
continuum states ϕc are orthonormal,∫

ϕ∗
c′ (r)ϕc(r)dr = δc′c, (5)
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and satisfy

[
− h̄2

2μr

d2

dr2
+ V (NN )

T S (r)

]
ϕc(r) = εcϕc(r). (6)

The s-wave component of the total (NN�) wave function
that satisfies the outgoing boundary condition is given by

�
(+)
M0μ0

(r, R) =
√

4π
∑
σmσ

(
1M0

1

2
μ0

∣∣∣σmσ

)
eiσ0

×
∑

c′

ϕc′ (r)

r

χ
(σ )
c′ (Kc′ , R)

K0R

1

4π

×ϒ
(σmσ )
S′ �

( 1
2 ,− 1

2 )
T ′ , (7)

where R is the distance between � and the c.m. of the NN
system, (abcd|e f ) is the Clebsh-Gordan coefficient, and σ0

is the s-wave Coulomb phase shift. M0 and μ0 represent the
third component of the spin of d and that of �−, respec-
tively, in the incident channel. σ is the channel spin and mσ

is its third component. Note that the channel isospin and
its third component are fixed at 1/2 and −1/2, respectively,
in the d-�− scattering; isospin 3/2 channels do not couple
with the d-�− channel. The channel-spin wave function is
defined by

ϒ
(σmσ )
S = [

η
(NN )
S ⊗ η

(�)
1
2

]
σmσ

, (8)

with η
(NN )
S (η(�)

1/2) being the spin wave function of the NN
system (�). Similarly, the channel-isospin wave function is
given by

�
( 1

2 ,− 1
2 )

T = [
ζ

(NN )
T ⊗ ζ

(�)
1/2

]
1
2 ,− 1

2

, (9)

where ζ
(NN )
T and ζ

(�)
1/2 are the isospin wave functions of the NN

system and �, respectively.
The wave number of � relative to the c.m. of the NN

system in channel c, denoted Kc, is determined by the con-
servation of the total energy Etot,

h̄2K2
c

2μR
+ εc = Etot, (10)

where μR is the reduced mass between � and the NN system.
χ (σ )

c is the radial part of the NN-� scattering wave function in
channel c multiplied by K0R. Its boundary condition outside
the strong interaction range is given by

χ (σ )
c (Kc, R) → i

2

[
U (−)

0,ηc
(KcR)δc0 −

√
K0

Kc
S(σ )

c U (+)
0,ηc

(KcR)

]

(11)

for K2
c > 0 (open channels) and by

χ (σ )
c (Kc, R) → − i

2
S(σ )

c W−ηc,1/2(−2iKcR) (12)

for K2
c < 0 (closed channels). Here, S(σ )

c is the scattering ma-
trix (S matrix), U (+)

0,ηc
(U (−)

0,ηc
) is the s-wave outgoing (incoming)

Coulomb wave function, and W−ηc,1/2 is the s-wave Whittaker
function, with ηc being the Sommerfeld parameter

ηc = −μRe2

h̄2Kc
. (13)

The S matrix has the following unitarity condition:∑
c ∈ open channels

∣∣S(σ )
c

∣∣2 = 1. (14)

�M0μ0 satisfies the Schödinger equation

[H − Etot]�
(+)
M0μ0

(r, R) = 0 (15)

with

H ≡ − h̄2

2μR
∇2

R +
∑
i=1,2

V (N�)(Ri ) + V C(R) + hNN , (16)

where R1 = |R − r/2| and R2 = |R + r/2| are the distances
between � and one of the nucleons, V C is the Coulomb
interaction between the charges +e and −e at a distance of
R, and hNN is the NN internal Hamiltonian defined by

hNN = − h̄2

2μr
∇2

r +
∑
T S

V (NN )
T S (r)P (NN )

T S . (17)

Here and in what follows, PNX
αβ represents the projection op-

erator onto the isospin α and spin β state of the NX system.
The N� interaction is given by

V (N�)(Ri) =
∑

ts

V (N�)
ts (Ri )P (N�)

ts . (18)

One obtains the following coupled-channel (CC) equations
by inserting Eqs. (7) and (16) into Eq. (15), multiplying the
equation by

ϕ∗
c (r)

r

1

4π
ϒ

(σmσ )∗
S �

( 1
2 ,− 1

2 )∗
T (19)

from the left, and making integration over coordinates other
than R: the NN relative coordinate r, the internal coordinates
associated with the spin and isospin, and the solid angle �R of
R, [

− h̄2

2μR

d2

dR2
+ V C(R) − Ec

]
χ (σ )

c (Kc, R)

= −
∑

c′
U (σ )

cc′ (R)χ (σ )
c′ (Kc′ , R) (20)

with

Ec = Etot − εc. (21)

The coupling potentials U (σ )
cc′ are given by

U (σ )
cc′ (R) = 2

∑
ts

w
(1/2)
tT T ′ w

(σ )
sSS′ f (ts)

cc′ (R), (22)
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where

f (ts)
cc′ (R) ≡

∫
ϕ∗

c (r)V (N�)
ts;0 (R, r)ϕc′ (r)dr, (23)

w
(α)
aBC ≡ (2a + 1)

√
2B + 1

√
2C + 1

×W (1/2, 1/2, 1/2, α; aB)

×W (1/2, 1/2, 1/2, α; aC), (24)

with W ( j1 j2 j3 j4; j5 j6) being the Racah coefficient, and the
monopole component of the N� potential is given by

V (N�)
ts;0 (R, r) = 1

2

∫ 1

−1
V (N�)

ts (
√

R2 + r2/4 − Rrx)dx. (25)

By setting explicit values of the Racah coefficient, one finds

U (1/2)
i01,i′01(R) = 1

8

[
3 f (00)

i01,i′01(R) + 9 f (10)
i01,i′01(R)

+ f (01)
i01,i′01(R) + 3 f (11)

i01,i′01(R)
]
, (26)

U (1/2)
i01,i′10(R) = 1

8

[
f (00)
i01,i′10(R) − 3 f (10)

i01,i′10(R)

− 3 f (01)
i01,i′10(R) + 3 f (11)

i01,i′10(R)
]

= U (1/2)
i10,i′01(R), (27)

U (1/2)
i10,i′10(R) = 1

8

[
3 f (00)

i10,i′10(R) + f (10)
i10,i′10(R)

+ 9 f (01)
i10,i′10(R) + 3 f (11)

i10,i′10(R)
]
, (28)

U (3/2)
i01,i′01(R) = 1

2

[
f (01)
i01,i′01(R) + 3 f (11)

i01,i′01(R)
]
, (29)

U (3/2)
i01,i′10(R) = U (3/2)

i10,i′01(R) = U (3/2)
i11,i′11(R) = 0. (30)

Under the assumption that only the s-wave component is
affected by the strong interaction, the total wave function of
the reaction system having the incoming boundary condition
is expressed by

�
(−)tot
M0μ0

(r, R) = �
(−)
M0μ0

(r, R) + ψ
C(−)
M0μ0

(r, R). (31)

Here, �
(−)
M0μ0

is the time reversal of �
(+)
M0μ0

, the explicit form of
which is given in Appendix A, and

ψ
C(−)
M0μ0

(r, R) ≡ ϕ0(r)

r

1√
4π

[
φ

C(−)
K (R) − e−iσ0 F0(K0R)

K0R

]

× η
(NN )
1M0

η
(�)
1
2 μ0

ζ
(NN )
00 ζ

(�)
1
2 ,− 1

2

, (32)

with φC(−) being the Coulomb scattering wave function with
the incoming boundary condition and F0 the s-wave Coulomb
wave function that is regular at the origin.

We follow Ref. [27] for the calculation of the d-�− corre-
lation function Cd�− . To implement the three-body scattering
wave function �

(−)tot
M0μ0

of Eq. (31) into Cd�− , we first take its
overlap with

�cMμνT ν (r) = ϕc(r)

r

1√
4π

η
(NN )
SM η

(�)
1
2 μ

ζ
(NN )
T νT

ζ
(�)
1
2 ν

. (33)

We then take a summation over c and obtain

Cd�− (K0) = 4π

∫
R2dRS (R)

∑
L=1

(2L + 1)

[
FL(K0R)

K0R

]2

+ 2π

3

∫
R2dRS (R)

∑
cσ

(2σ +1)

∣∣∣∣χ (σ )
c (Kc, R)

K0R

∣∣∣∣
2

,

(34)

where S is the source function of the d-�− pair. We have
assumed that S does not depend on r; the channel dependence
of S is also disregarded for simplicity. FL is the same as F0 in
Eq. (32) but for an orbital angular momentum L.

It should be noted that, because we deal with the three-
body wave function having the incoming boundary condition,
c 
= 0 channels correspond to the processes in which initially
three particles (N + N + �) exist and through the propagation
the transition to the c = 0 channel occurs. Then, eventually,
the d-�− two-particle state with the relative momentum h̄cK0

is observed.
While we consider the d-�− source function, it is, in

principle, possible to start from the NN� source function and
to evaluate the deuteron formation dynamically by using the
NN relative wave function ϕc(r). This process is discussed
in detail in Ref. [29]. When the three-body source function
for the NN� → d�− process is considered and the c.m. and
deuteron intrinsic coordinates are integrated out, the source
function in the relative coordinate of d-�− is found to be
D3r (R) ∝ exp[−R2/(3R2

s )], with Rs being the single-hadron
source size [29]. By comparing it with the d-�− source func-
tion adopted in the present work, S (R) ∝ exp[−R2/(4b2)],
it is found that the size parameter needs to be taken as
b � √

3/4Rs. Thus, we need to take care of the difference
between b and the single-hadron source size Rs. The com-
bined treatment of the preformed deuteron source function
and the three-body source function is a theoretical challenge,
beyond the scope of this paper, and left for a future work.
Results with this extension will be reported elsewhere.

III. RESULTS AND DISCUSSION

A. Numerical inputs

We adopt the Argonne V4′ parameter [42] for the NN
interaction. The triplet-even 13S1 and the singlet-even 31S0

states are taken into account. The continua of these states
are truncated at kmax = 2.0 fm−1 (∼400 MeV/c); the size �c

of the bin state is set to 0.2 fm−1 (∼40 MeV/c) and 0.005
fm−1 (∼1 MeV/c) for the 13S1 and 31S0 states, respectively.1

rmax = 20 fm is taken for evaluating the folded potentials.
As for the N-� strong interaction, we employ the

parametrization by the LQCD work at a/t = 11 [4]. In the
original parametrization, the N-� interaction V (N�)

ts for each
spin (s) and isospin (t) channel was expressed by the sum

1Because the breakup states are characterized by wave numbers,
not momenta, in the CDCC code employed, we represent kmax and
�c in units of fm−1.
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2

3

30 60 90 120

1.5

2
CDCC
13S1 only

1ch

Pure Coul

q (MeV/c)

C
d�

FIG. 1. The d-�− correlation function as a function of the rel-
ative momentum q. The solid red, dashed green, dotted blue, and
dash-dotted purple lines represent the result of the CDCC method,
that with the 13S1 breakup states only, the result of the single-channel
calculation (without breakup states), and the result with the strong
interactions switched off, respectively. Inset: Enlarged result for
30 MeV/c � q � 120 MeV/c.

of one Yukawa function (with a form factor), one squared
Yukawa, and three Gaussians. In this study, we expand each
of the former two by 30 Gaussians; the range parameters are
chosen in a geometric progression and the minimum and max-
imum ranges are optimized for each st channel. It is found that
V (N�)

ts thus obtained gives an N-� phase shift that agrees with
the result with the original V (N�)

ts for six digits. By expressing
all the terms of V (N�)

ts by Gaussians, one can use the simple
analytic form of Eq. (B2) (Appendix B) for the monopole
component of the N-� interaction.

The CC equations, (20), are integrated up to R = 10 fm.
The Coulomb interaction V C is taken to be

V C(R) =
{−e2

2R0

(
3 − R2

R2
0

)
(R � R0),

−e2

R (R > R0),
(35)

with R0 = 1.5 fm. The dependence of the numerical results
on R0 shown below is found to be negligibly small (less than
1%).

The source function S is assumed to have a Gaussian form,

S (R) = 1

(4πb2)3/2
e−R2/(4b2 ). (36)

The source size b of the source function is taken to be 1.2 fm;
in Fig. 4, results with b = 1.6 and 3.0 fm are shown for
comparison. In the evaluation of the correlation function, the
integration over R is carried out up to Rmax = 10 fm (15 fm)
when b = 1.2 fm and 1.6 fm (3.0 fm), and the maximum L is
taken to be a larger of K0Rmax and 5.

B. Correlation function

We show in Fig. 1 Cd�− as a function of q ≡ h̄cK0. The
inset is an enlarged figure in the region of 30 MeV/c � q �
120 MeV/c. The solid red line represents the result calculated
with the present CDCC framework. The dotted blue line is

30 60 90 120
1

1.5

2
0.2 fm�1

0.5 fm�1

1.0 fm�1

2.0 fm�1

q (MeV/c)

C
d�

FIG. 2. Convergence of the d-� correlation function regarding
kmax. The horizontal axis is the d-�− relative momentum. The solid
red, dashed green, dotted blue, and dash-dotted purple lines corre-
spond to kmax = 0.2, 0.5, 1.0, and 2.0 fm−1, respectively.

the result of the single-channel calculation, that is, only the
ground state of the deuteron is considered. If we take only
the 13S1 channels in NN into account, the dashed green line
is obtained. The dash-dotted purple line shows the result ob-
tained with all the strong interactions turned off. For simple
notation, below we designate the 13S1 (31S0) channel the pn
(nn) channel.

The solid red line shows a clear enhancement relative to
the dash-dotted purple line for q � 100 MeV/c, which in-
dicates that the correlation due to the strong interaction can
be deduced from Cd�− . The difference between the solid red
line and the dotted blue line represents an increase in Cd�−

caused by the deuteron breakup effect, which is about 6%–8%
for 30 MeV/c � q � 70 MeV/c. At larger q, the enhance-
ment due to deuteron breakup decreases monotonically and
becomes less than 1% for q > 100 MeV/c. We discuss the
deuteron breakup effect in more detail in Sec. III E. The small
difference between the dashed green and the dotted blue lines
indicates that the nn breakup states are more significant than
the pn breakup states. This can be understood by the behavior
of the CC potentials as discussed in Sec. III D. With a closer
look, a shoulder structure is found in the solid red line at
around 60 MeV/c. This corresponds to the strong coupling to
low-lying nn breakup states located just below the scattering
threshold; the channel energy Ec is negative and close to 0. We
return to this point below and in Sec. III E. Compared with
the net effect of the strong interaction (difference between
the solid red and the dash-dotted purple lines), the deuteron
breakup effect is found not to be very significant. In other
words, including only the deuteron ground state in the calcu-
lation of Cd�− will be useful except that it will miss a further
increase in the correlation function by several percent below
about 70 MeV/c.

Figure 2 displays the convergence of Cd�− regarding kmax.
In all the calculations, we take the size �c of the bin state to be
0.2 fm−1 (0.005 fm−1) for the pn (nn) continuum. The solid
red, dashed green, dotted blue, and dash-dotted purple lines
correspond to kmax = 0.2, 0.5, 1.0, and 2.0 fm−1, respectively.
The dash-dotted purple line is the same as the solid red line in
Fig. 1. The result with kmax = 2.5 fm−1 is found to agree with
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FIG. 3. Convergence of the d-� correlation function regarding
�c for the nn continuum; �c for the pn continuum is taken to be
0.2 fm−1. The horizontal axis is the d-�− relative momentum. The
solid red, dashed green, dotted blue, and dash-dotted purple lines
correspond to �c = 1.0, 0.5, 0.2, and 0.005 fm−1, respectively.

the dash-dotted purple line within the width of the line (not
shown). It should be noted that almost all of the NN states
included in the converged CDCC calculation serve as a closed
channel. For instance, at q = 100 MeV/c (E0 ∼ 4.22 MeV),
NN states having kκ0.32 fm−1 are all closed, whereas we
need the NN states up to 2.0 fm−1 (ε ∼ 166 MeV) to achieve
a convergence of Cd�− .

The convergence of the CDCC result regarding �c for the
nn continuum is shown in Fig. 3; �c = 0.2 fm−1 is used for
the pn continuum and kmax is set to 2.0 fm−1 for both pn
and nn continua. The solid red, dashed green, dotted blue,
and dash-dotted purple lines correspond to �c = 1.0, 0.5, 0.2,
and 0.005 fm−1, respectively. The dash-dotted purple line is
the same as the solid red line in Fig. 1. The dashed green
line turns out to have a rather sharp peak around 93 MeV/c.
This happens when the lowest (pseudo) nn state is located
just below the threshold energy; note that the eigenenergy
of a discretized continuum state is defined by Eq. (4) and
depends on �c. When �c = 0.2 fm−1, the eigenenergy of
the lowest nn state becomes 0.55 MeV and the peak appears
at q ∼ 65 MeV/c. At the same time, another peak is found
around 97 MeV/c, which corresponds to the second-lowest nn
state. As �c becomes smaller, a larger number of peaks appear
and the characteristics of each peak become less emphasized.
It is found that with �c = 0.005 fm−1, a reasonably smooth
Cd�− is obtained. The shoulder structure of the dash-dotted
purple line around 60 MeV/c is due to many tiny peaks
corresponding to low-lying nn breakup states. It should be
noted that for breakup states that do not strongly couple to the
deuteron ground state, the above-mentioned threshold effect
is negligibly small. This is why we can use a rather large bin
size, �c = 0.2 fm−1, for the pn breakup states. The properties
of the CC potentials for the pn and nn breakup states are
discussed in Sec. III D.

We show in Fig. 4 the dependence of Cd�− on the
source size b of the source function; Figs. 4(a) and 4(b)
correspond to b = 1.6 and 3.0 fm, respectively. The meaning
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b = 1.6 (fm)

(a)
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FIG. 4. Same as Fig. 1 but with different values of the source size
b of the source function. (a) b = 1.6 fm and (b) b = 3.0 fm.

of each line is the same as in Fig. 1. As b increases, the
correlation due to the strong interaction becomes weak, as
well as the deuteron breakup effect. This is simply because the
non-s-wave contribution of the d-� scattering wave function
is large in the outer region of R. Notwithstanding, the effect of
the strong interaction on Cd�− will remain at a small q.

C. Discretized continuum states of the NN system

In this subsection, we discuss the properties of the
NN states included in the current study. For transparent
discussion, the results below are evaluated with �c =
0.2 fm−1 (∼40 MeV/c) for both the pn and the nn channels.
As shown in Fig. 3, apart from the threshold effect of the low-
lying nn breakup states, Cd�− calculated with �c = 0.2 fm−1

reproduces well that with �c = 0.005 fm−1 (∼1 MeV/c).
Therefore, discussion of ϕc generated with �c = 0.2 fm−1

will be meaningful to understand the role of the NN contin-
uum in this study.

The s-wave phase shift δ
(NN )
T S of the NN system is shown

in Fig. 5(a) as a function of the NN c.m. energy ε. The
solid red and dashed green lines represent δ

(NN )
01 (pn channel)

and δ
(NN )
10 (nn channel), respectively. As is well known, δ

(NN )
10

shows a rapid increase near ε = 0, which is due to the virtual
state (pole) of the nn system. Although it is different from
a resonance, the nn wave function near zero energy has a
compact form as shown below. In Figs. 5(b) and 5(c), re-
spectively, we show ϕi01 and ϕi10; in each panel, the dashed
green, dotted blue, and dash-dotted purple lines correspond
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FIG. 5. (a) NN s-wave scattering phase shift as a function of the
c.m. scattering energy in the 13S1 (solid red line) and 31S0 (dashed
green line) channels. (b) NN discretized continuum states in the 13S1

channel as a function of the distance of the two nucleons. The dashed
green, dotted blue, and dash-dotted purple lines correspond to the
first, third, and sixth bin states, respectively, with the bin size of
0.2 fm−1. The solid red line represents the bound-state wave function
of the deuteron. (c) Same as (b) but in the 31S0 channel; there is no
bound state in this channel.

to the first bin (k = 0.0–0.2 fm−1, εc = 0.55 MeV), the third
bin (k = 0.4–0.6 fm−1, εc = 10.5 MeV), and the sixth bin
(k = 1.0–1.2 fm−1, εc = 50.3 MeV) states, respectively. For
comparison, the deuteron wave function is shown by the solid
red line in Fig. 5(b). As mentioned, the first bin state of the
nn channel behaves like a bound state. On the other hand, for
the pn channel, the amplitude of the first bin state in the inner
region is very small, which makes this state almost decoupled
from the deuteron ground state and other NN states. As for the
third bin state, the pn wave function is slightly more shrunk
than the nn one, reflecting the difference in the phase shift
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FIG. 6. (a) N-� interaction as a function of their distance. The
solid red, dashed green, dotted blue, and dash-dotted purple lines
correspond to the 11S0, 31S0, 13S1, and 33S1 channels, respectively.
(b) Same as (a) but folded by the deuteron ground-state density.

shown in Fig. 5(a). The dependence of the sixth bin state on
the spin-isospin is found to be very small, which is the case
also for higher bin states.

D. NN-� coupled-channel potentials

The N-� interactions in individual spin-isospin channels
as a function of the N-� distance are shown in Fig. 6(a)
and the corresponding folded potentials for the ground-ground
channel, f (ts)

00 , are shown in Fig. 6(b) as functions of R. In
each panel, the potentials for 11S0, 31S0, 13S1, and 33S1 are
represented by the solid red, dashed green, dotted blue, and
dash-dotted purple lines, respectively. Through the folding
procedure, the characteristics of the potential for each channel
become very clear. The potential in the 11S0 channel is attrac-
tive, while that in 31S0 repulsive. The feature of the potential
in the 13S1 (33S1) channel is similar to that in the 11S0 (31S0)
channel but with the absolute value weakened considerably.
Note, however, that the attractive nature of the N-� potential
in the 33S1 channel is found to remain when folded by the
deuteron density; the d-�− scattering length evaluated by
taking only the 33S1 channel in the single-channel calculation
is negative. Here, we use the nuclear physics convention for
the scattering length, that is,

κ cot δ = − 1

as
+ rs

2
κ2 + O(κ4), (37)
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FIG. 7. Coupling potentials U (1/2)
cc′ (R). (a) Diagonal components

for the deuteron ground state (d), the third bin state in the 13S1

channel (pn), the first bin state in the 31S0 channel (2n), and the third
bin state in the 31S0 channel (nn) are represented by the solid red,
dashed green, dotted blue, and dash-dotted purple lines, respectively.
(b) Potentials for the d-pn (solid red line), d-2n (dashed green line),
and d-nn couplings.

where κ is the relative wave number of the two particles,
δ is the s-wave scattering phase shift, as is the scattering
length, and rs is the effective range. The negative scattering
length thus means that there is no bound state. The qualitative
features of f (ts)

00 mentioned above are found to remain for other
components of the folded potential.

Henceforth, we discuss the properties of the CC potentials
U (σ )

cc′ . For simplicity, we take only four states of the NN
system, that is, the deuteron ground state (d), the third bin
state in the pn channel (pn), the first bin state in the nn
channel (2n), and the third bin state in the nn channel (nn);
we abbreviate these four states as noted in the parentheses.
Here, as in Sec. III C, we take �c = 0.2 fm−1 (∼40 MeV/c)
for both channels.

In Fig. 7(a), we show the diagonal part of the CC potentials
for the four states; the total channel spin σ is taken to be
1/2. The solid red, dashed green, dotted blue, and dash-dotted
purple lines correspond to the d , pn, 2n, and nn states, re-
spectively. The former two are repulsive in the interior region
(R � 1 fm) and weakly attractive at larger R, whereas the latter
two are attractive in the entire region. This is due to the spin-
isospin selection given by Eqs. (26) and (28) combined with
the spin-isospin dependence of the folded potential shown in
Fig. 6(b). The result shown in Fig. 7(a) indicates that an nn
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cc

’   
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)
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pn-pn

(3
/2

)

FIG. 8. The d-d diagonal, d-pn coupling, and pn-pn diagonal
potentials with σ = 3/2 are shown by the solid red, dashed green,
and dotted blue lines, respectively.

pair can be closer to the � particle than a pn pair including
a deuteron. This is one of the main reasons for the significant
breakup effect from the nn channel.

Figure 7(b) represents the coupling potential between the
deuteron channel and each of the other three; the solid red,
dashed green, and dotted blue lines correspond to the d-pn,
d-2n, and d-nn couplings, respectively. It should be noted
that the sign of the nondiagonal coupling potentials has no
meaning. As mentioned above, the folded potential f (ts)

cc′ does
not strongly depend on the combination of the channels, c and
c′. Consequently, the qualitative feature of the d-pn coupling
potential is similar to that of the d-d diagonal potential. The
behavior of the d-2n and d-nn couplings can be understood
through Eq. (27) and Fig. 6(b). An important remark is that
the magnitude of the d-2n coupling potential is comparable to
that of the d-nn and d-pn ones because of the compactness
of the 2n wave function as shown in Fig. 5(c) (dashed green
line). This feature is also crucial for making the breakup
effect of the nn channel important. Note that the coupling
between the deuteron ground state and a low-lying pn state
is significantly weaker than the results shown in Fig. 7(b).

To complete the discussion of the breakup effect, we need
to consider the scattering threshold effect as well. When the
d-�− c.m. scattering energy E0 is low, the channel energy Ec

for the 2n channel becomes negative. In this case, even though
the d-2n coupling is strong and the 2n-2n diagonal potential
is attractive, the scattering wave χ (σ )

c has to be consider-
ably quenched because of the damping boundary condition
of Eq. (12). An exception occurs when Ec is very close to the
threshold, that is, Ec ∼ 0. This is how the shoulder structure
of Cd�− is developed (see also Sec. III E).

We show in Fig. 8 the coupling potentials with σ = 3/2,
for which nn states are not allowed. The solid red, dashed
green, and dotted blue lines show the d-d diagonal, d-pn
coupling, and pn-pn diagonal potentials, respectively. The
features of the results can be understood through Eq. (29) and
Fig. 6(b). It is found that the absence of the nn channel makes
the breakup effect negligibly small when σ = 3/2, as shown
in Sec. III E.

Figure 9 displays the nuclear scattering phase shift δ(NN-�)
τσ

of the NN-� system as a function of the c.m. scattering
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FIG. 9. The s-wave phase shift of the NN-� scattering as a
function of the c.m. scattering energy. The solid red and dashed
green lines correspond to the d-�− scattering in the 22S1/2 and 24S3/2

channels, respectively. The nn-� scattering phase shift in the 22S1/2

(22S1/2) channel is shown by the dotted blue (dash-dotted purple) line;
the discretized nn continuum state corresponding to the wave number
between 0.0 and 0.2 fm−1 is adopted as an internal nn wave function.
All results are obtained by the single-channel calculation.

energy. The solid red and dashed green lines show δ
(NN-�)
1/2,1/2

and δ
(NN-�)
1/2,3/2 , respectively. In the calculation, a single-channel

scattering problem with U (σ )
00 (R) is solved for σ = 1/2 and

3/2. As shown in Fig. 9, the net effect of U (σ )
00 (R) is found to

be attractive, and the attraction of U (3/2)
00 (R) is stronger than

that of U (1/2)
00 (R). In Table I, we list the s-wave scattering

length as and the effective range rs for the NN-� scattering.
In Fig. 9, we also show the results of the phase shift

by the 2n-2n diagonal potential for (τ, σ ) = (1/2, 1/2) and
(3/2, 1/2) by the dotted blue and dash-dotted purple lines,
respectively. The behavior of the dotted blue line is similar to
that of the dashed green line, indicating a rather strong attrac-
tion of the 2n-2n potential for the (τ, σ ) = (1/2, 1/2) channel
as U (3/2)

00 (R). In the (τ, σ ) = (3/2, 1/2) channel, which is
irrelevant to the d-�− scattering, the attraction of the 2n-2n
diagonal potential is found to be weak. The values of as and rs

by the 2n-2n potential are also listed in Table I. One should be
careful to note, however, that the results shown in Fig 9 and
Table I regarding the 2n-2n diagonal potential depend on the
definition of the 2n state. In the current discussion, we regard
the discretized continuum state corresponding to k = 0.0–0.2
fm−1 as the 2n state. Because we here adopt a single-channel
calculation, these results will easily change if we adopt a
different bin size for the 2n state. Investigation of the 2n-�0

TABLE I. The s-wave scattering lengths as and effective ranges
rs for NN-� scattering obtained with the single-channel calculation.

T S εc (MeV) k (fm−1) τ σ as (fm) rs (fm)

0 1 −2.25 – 1/2 1/2 −0.7164 14.4
0 1 −2.25 – 1/2 3/2 −1.1073 9.21
1 0 0.553 0.0–0.2 1/2 1/2 −2.8629 4.02
1 0 0.553 0.0–0.2 3/2 1/2 −0.57851 16.1
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FIG. 10. Absolute square of the NN-� scattering wave function
for σ = 1/2 at q = 30 MeV/c. The solid red line represents the
elastic channel component, whereas the dotted blue line shows the
sum of the components for the nn closed channel; both are obtained
by the CDCC method. The dash-dot-dotted brown line shows the
total contributions of the channels included. The dash-dotted purple
line represents the result of the single-channel calculation.

scattering within the framework of the CDCC method will be
an interesting subject, but it is beyond the scope of this study.
Notwithstanding, the results obtained by the 2n-2n diagonal
potential in the current definition will be helpful to understand
the qualitative features of the breakup effects on Cd�− through
nn low-lying continuum states.

E. NN-� scattering wave functions

In this subsection, we see the NN-� scattering wave func-
tions χ (σ )

c as a result of the CC effect discussed so far.
We adopt the numerical setting in Sec. III A with which a
converged result of Cd�− is obtained. The source size of
the source function is taken to be 1.2 fm. We choose three
values of q: q = 30, 60, and 100 MeV/c. These values are
selected regarding the nn-�0 threshold momentum of about
60 MeV/c in this study. However, this is due to the neglect
of the isospin dependence of the particle masses. In reality,
the nn-�0 threshold lies 3 MeV below the d�− threshold and
the nn-�0 channel is open for all values of q discussed so
far. Notwithstanding, we discuss the behavior of χ (σ )

c below,
near, and above the nn-�0 threshold energy corresponding
to the model adopted in this study. In all the figures below,
contributions from the pn continuum states are not shown
because they are negligibly small. We also omit discussion
of the σ = 3/2 channel because of the negligibly small CC
effect.

We show in Fig. 10 the result with σ = 1/2 at q =
30 MeV/c, in which all the breakup states are closed. The
solid red line shows the contribution of the d-�− elastic-
channel component, that is, |χ (σ )

0 |2, whereas the dotted blue
line shows the sum of |χ (σ )

c |2 of the nn states in the closed
channels. The dash-dot-dotted brown line representsthe sum
of the contributions from all the channels. For comparison,
we show by the dash-dotted purple line |χ (σ )

0 |2 obtained
with the single-channel calculation; it is denoted |χ (σ )1ch

0 |2
below. One can see that the contribution of the nn breakup
states is very small, whereas |χ (σ )

0 |2 is somewhat larger than
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FIG. 11. Same as Fig. 10 but at q = 60 MeV/c. The dashed
green line shows the sum of the contributions from the nn open
breakup channels.

|χ (σ )1ch
0 |2. This is the source of the enhancement of Cd�− due

to the deuteron breakup. It indicates that the coupling through
the breakup states acts as an additional attractive potential
for the d-�− elastic channel. It is found that the pn breakup
states are also responsible for this back-coupling to the elastic
channel, though their importance is considerably less than that
of the nn states, as shown in Fig. 1.

The results at q = 60 MeV/c are shown in Fig. 11. The
meaning of the lines is the same as in Fig. 10 but the dashed
green line shows the contribution of the nn channels for which
Ec > 0 (open channels). One sees the back-coupling effect
on |χ (1/2)

0 |2 as at 30 MeV/c. On top of that, the contribution
of the closed nn channel is appreciable (dotted blue line).
As a result, the difference between |χ (σ )1ch

0 |2 and the sum of
|χ (1/2)

c |2 is more developed than at 30 MeV/c. The reason for
this enhancement is that the channel energies of the closed nn
channels are close to zero. One sees that the dotted blue line
in Fig. 11 decreases very slowly at large R.

At q = 100 MeV/c, a lot of channels become open. As
shown by the dashed green line in Fig. 12, the contribution of
the open nn breakup channels becomes important. However,
the magnitude of the sum of all the channels (dash-dot-dotted
brown line) is very similar to that of |χ (σ )1ch

0 |2 (dash-dotted
purple line). This is because of the unitarity of the scattering
matrix, that is, the conservation of the flux. This feature makes
the net breakup effect on Cd�− very small, though a slight
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FIG. 12. Same as Fig. 11 but at q = 100 MeV/c.

enhancement at a small R remains. It is worth pointing out
that the three-body wave functions for the nn open breakup
channels may contribute to Cd�− in a different manner if we
use a more sophisticated source function. This will be another
important subject in future.

IV. SUMMARY

We have evaluated for the first time the d-�− correlation
function Cd�− with a three-body reaction model including
the s-wave breakup states of the deuteron (both pn and nn
continua). The continuum-discretized coupled-channels
method is adopted to describe the N + N + � three-body
wave function for the d-�− scattering. The Argonne V4′ NN
force and a parametrization of the N-� interaction by the
lattice quantum chromodynamics method are employed in the
three-body model calculation. We have assumed that only the
s-wave scattering wave between the c.m. of the NN system
and � is affected by the strong interaction and the Coulomb
interaction between d and �− is approximated to be present
in all the isospin channels. A simplified source function
independent of the channels and NN relative coordinate is
employed, and the isospin dependence of the masses of N and
� are disregarded. A clear enhancement of Cd�− due to the
strong interaction is confirmed as in preceding studies.

We have found that Cd�− increases due to the deuteron
breakup effect by 6%–8% at the d-�− relative momentum q
below 70 MeV/c. This is mainly due to the back-coupling to
the elastic channel through the low-lying nn continuum, the
tail of the nn virtual state. The key mechanism of this en-
hancement is that the low-lying nn continuum wave function
is spatially compact and the spin-isospin selection makes the
nn-�0 potential attractive in the entire region. Besides, when
the c.m. scattering energy is close to the nn-�0 threshold,
the nn-�0 channel component in the total three-body wave
function itself becomes important. Consequently, a shoulder
structure of Cd�− is developed around q = 60 MeV/c, though
in reality, the nn-�0 threshold is located below q = 0. At
larger q, although the deuteron breakup probability becomes
larger, the unitarity condition on the scattering matrix makes
the net breakup effect on Cd�− very limited.

Because the deuteron breakup effect on Cd�− is not very
significant, the finding of this study may justify the studies on
Cd�− by including only the deuteron ground state, except for
the additional enhancement of Cd�− by several percent. It will
be important, however, to investigate the deuteron breakup
effect with a more realistic three-body source function. There
will be a possibility to access the n + n + �0 state in the
relativistic heavy-ion collision through Cd�− . Direct detection
of multineutrons as done in low-energy nuclear physics will
be even more interesting. On the theory side, modification of
the treatment of the Coulomb interaction in isospin-dependent
three-body scattering will be necessary. At the same time,
the mass difference between �− and �0 amounts to around
7 MeV and needs to be taken care of. Together with the mass
difference between p and n and the deuteron binding energy,
the nn-�0 threshold lies 3 MeV below the d-�− threshold and
the effects of the dineutron state 2n may be more important.
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APPENDIX A: THREE-BODY WAVE FUNCTION
WITH INCOMING BOUNDARY CONDITIONS

In the evaluation of the correlation function, we need
a scattering wave function corresponding to the incoming
boundary condition, that is, the time-reversed solution �

(−)
M0μ0

.
To obtain it, we first rewrite Eq. (7) as

�
(+)
M0μ0

(r, R) =
∑

T ′S′M ′μ′
�

( 1
2 ,− 1

2 )
T ′ η

(NN )
S′M ′ η

(�)
1
2 μ′�̄

(+)
S′M ′μ′;1M0μ0

(r, R), (A1)

with

�̄
(+)
S′M ′μ′;1M0μ0

(r, R) =
√

4π
∑
σmσ

(
1M0

1

2
μ0

∣∣∣∣σmσ

)
eiσ0

∑
i′

ϕc′ (r)

r

χ
(σ )
c′ (Kc′ , R)

K0R

1

4π

(
S′M ′ 1

2
μ′

∣∣∣∣σmσ

)
. (A2)

Then �
(−)
M0μ0

is given by

�
(−)
M0μ0

(r, R) =
∑

T ′S′M ′μ′
�

( 1
2 ,− 1

2 )
T ′ η

(NN )
S′M ′ η

(�)
1
2 μ′�̄

(−)
S′M ′μ′;1M0μ0

(r, R), (A3)

with

�̄
(−)
S′M ′μ′;1M0μ0

(r, R) = (−)1+M0+μ0−S′−M ′−μ′
�̄

(+)∗
S′,−M ′,−μ′;1,−M0,−μ0

(r, R)

= (−)M0+μ0−M ′−μ′
�̄

(+)∗
S′M ′μ′;1M0μ0

(r, R). (A4)

APPENDIX B: MONOPOLE COMPONENT OF THE GAUSSIAN

When V (N�)
ts has a Gaussian form,

V (N�)
ts (Ri ) =

∑
j

V̄ (N�)
ts, j e−αts, j R2

i , (B1)

its monopole component is given by

V (N�)
ts;0 (R, r) = V̄ (N�)

ts, j

e−αts, j (R−r/2)2 − e−αts, j (R+r/2)2

2αts, jRr
(B2)

for both i = 1 and i = 2.
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