
PHYSICAL REVIEW C 103, 065204 (2021)

Jülich-Bonn-Washington model for pion electroproduction multipoles
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Pion electroproduction off the proton is analyzed in a new framework based on a general parametrization of
transition amplitudes, including constraints from gauge invariance and threshold behavior. Data with energies
1.13 GeV < W < 1.6 GeV and Q2 below 6 GeV2 are included. The model is an extension of the latest Jülich-
Bonn solution incorporating constraints from pion-induced and photoproduction data. Performing large-scale fits
(≈105 data) we find a set of solutions with χ 2

dof = 1.69–1.81 which allows us to assess the systematic uncertainty
of the approach.
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I. INTRODUCTION

Our knowledge of the baryon spectrum, as determined
from analyses of data, has advanced rapidly [1] over the past
decade. The progress has been most significant for nonstrange
baryons, largely due to the wealth of new and more precise
measurements made at electron accelerators worldwide. A
substantial number of these new measurements have been per-
formed at Jefferson Lab (JLab) [2] using the CLAS and Hall
A detectors, at MAMI [3], at ELSA [4] with the Crystal Barrel
detector, and also at the BESIII [5] and LEPS [6] experiments.
Further investigations of the baryon spectrum are planned or
realized, e.g., at J-PARC [7], BGO-OD at ELSA [8], and at
the 12 GeV upgrade at JLab allowing studies of the elec-
troproduction of baryon resonances to large four-momentum
transfer [9,10].

Partial-wave analysis provides the link between large-
scale experimental programs and theory approaches that focus
on the intermediate-energy region, where quark confinement
manifests itself in a rich spectrum of resonances. Improved
and extended techniques are necessary to further our un-
derstanding of baryon structure and, in particular, to help
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resolve the missing-resonance problem [11]. More generally,
the baryon resonance spectrum is tightly related to the open
issue of structure formation in QCD, which is arguably the
least understood part of the so successful standard model
of particle physics. Furthermore, partial-wave analysis pro-
vides the bridge to compare experiment with theories and
models such as quark models [12–23], Dyson-Schwinger and
related approaches [24–39], Roy-Steiner equations [40], chi-
ral perturbation theory (ChPT) with � resonance [41–44]
or perturbative calculations using the complex-mass scheme
[45,46], and chiral unitary calculations [47–62]. For example,
in Refs. [47–51] a gauge-invariant implementation of the full
Bethe-Salpeter equation was used to fit and predict light S-
wave baryons. Specifically for pion electroproduction, ChPT
has been successfully applied in the analysis of the threshold
region [63–66]. Furthermore, the spectrum of excited baryons
has become accessible in lattice QCD calculations [67–78].
The use of meson and baryon-type operators has also enabled
the calculation of baryonic scattering amplitudes [79–83] us-
ing Lüscher’s method [84], see also Ref. [85]. However, so
far, little is known about the decay properties of baryons from
such first-principles calculations.

While most of the early progress [86–90] in baryon
spectroscopy was based on the analysis of meson-nucleon
scattering data, particularly pion-nucleon scattering (πN →
πN , πN → ππN), photon-nucleon interactions offer the pos-
sibility of detecting unstable intermediate states with small
branchings to the πN channel [91]. Many groups have per-
formed either single-channel or multichannel analyses of
these photo-induced reactions. In the more recent single-
channel analyses, fits have typically used isobar models
[92–95] with unitarity constraints at lower energies, K-
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matrix-based formalisms, having built-in cuts associated with
opening inelastic channels [96], and dispersion-relation con-
straints [94,97]. Multichannel fits have analyzed data (or,
in some cases, amplitudes) from hadronic scattering data
together with the photon-induced channels [98]. These ap-
proaches have utilized unitarity more directly. The most active
programs are being carried out by the Bonn-Gatchina [99],
Jülich-Bonn JüBo [100], ANL-Osaka [101], Kent State [90],
JPAC [102], and Gießen [103] groups. At low energies, the
chiral MAID analysis provides a comprehensive description of
photo- and electroproduction data [104].

With the refinement of dynamical and phenomenological
coupled-channel approaches for the analysis of pseudoscalar-
meson photoproduction reactions, many new states and their
properties could be discovered [1]. In this context, one should
emphasize that the only model-independent definition of a
resonance is by its properties in the complex energy plane.
While the Q2 variation of resonance couplings is expected
to provide a link between perturbative QCD and the region
where quark confinement sets in, so far, no unified coupled-
channel analysis of photo- and electroproduction experiments
exists that simultaneously studies the πN , ηN , and �K final
states. This study provides a first step in this direction in the
form of an analysis of pion electroproduction data.

Going from photo- to electroproduction of pseudoscalar
meson, the number of helicity amplitudes increases from four
to six, requiring more measurements for the analogous “com-
plete experiment” [105,106], with a multipole decomposition
adding longitudinal components to the transverse elements
anchored by photoproduction analyses at Q2 = 0. Variations
of resonance couplings with Q2 are expected to provide links
between perturbative QCD and regions where quark con-
finement requires the use of lattice QCD, ChPT, or more
phenomenological approaches. Exactly where this transition
occurs is not precisely known. The well-known prediction
[107] of an E2/M1 ratio, for the �(1232) state, approaching
unity shows no sign of occurring, remaining essentially flat
at a small negative value. See also Ref. [108] for a review. In
contrast, other clear resonances, such as the N (1520), do show
rapid behavior in the low-Q2 region, followed by a smooth
transition to higher values of Q2. The reliable determination
of helicity amplitudes for Q2 > 0 is also relevant for neutrino
physics [109,110]. See Ref. [111] for recent progress in this
direction by the ANL/Osaka group.

Electroproduction experiments, e.g., by the CLAS Collab-
oration at JLab, are producing a wealth of data that, in many
cases, still await a detailed analysis in pion electroproduc-
tion [112–115] (JLab), [116] (A1 Collaboration at MAMI),
η electroproduction [117] (JLab), [118] (A1 Collaboration at
MAMI), and kaon electroproduction [3] (A2 Collaboration),
[119] (JLab). It should also be stressed that pion and kaon
electroproduction experiments with the new CLAS12 detector
at the 12 GeV upgrade of Jefferson Lab [10,120] will provide
many data that require a timely analysis.

The ANL-Osaka group extended its dynamical coupled-
channel analysis of pion electroproduction [121] to higher
Q2 values [122]. Plots of the �(1232) amplitudes at the
resonance pole position (yielding a complex amplitude) also
seem to qualitatively reproduce results found for the MAID

and SAID analyses [123]. However, results have generally been
restricted to the low-energy �(1232) and N (1440) states.

The most widely used single-pion electroproduction anal-
yses, covering the resonance region, have been performed by
the Mainz (MAID) [92,124–127] and Jefferson Lab [2,128–
130] groups. An extensive single-pion electroproduction
database and a K-matrix-based SAID fit is also available [131].
Eta electroproduction has been analyzed in the Eta MAID

framework [95], and kaon electroproduction by the Ghent
group [132]. These fits have generally utilized a Regge [133]
or Regge-plus-resonance approach [134] at high to medium
energies. (We mention here parenthetically that the Ghent
Regge approach can be improved by correctly implementing
the local gauge-invariance constraints [135].) Effective La-
grangian and isobar models have also been used [136,137],
with some of these available via the MAID website [138] for
both kaon and eta electroproduction [95].

These are all single-channel analyses with approaches sim-
ilar to the associated real-photon fits, but generally with the
exception of the MAID and SAID analyses, not including the
real-photon data as a constraint at Q2 = 0. Both the MAID and
Jefferson Lab groups have made fits using Breit-Wigner (BW)
plus background models with resonance couplings extended
to include a Q2 dependence. We note that not all resonances
can be well described by the BW form, especially if a reso-
nance is located very close to a multiparticle threshold. In the
Jefferson Lab analyses [2], a further fit was again based on
satisfying fixed-t dispersion relation. It should be mentioned
that two-pion electroproduction fits have also been performed
and compared with the single-pion results, at Jefferson Lab
[139–143]. See Ref. [140] for a review. Remarkably, a new
baryon resonance has been claimed in an analysis of combined
ππN photo and electroproduction [144].

In this study we perform a first step towards a truly
coupled-channel analysis of electroproduction data. For this,
we analyze pion electroproduction data off proton targets in
both charge channels for energies 1.13 GeV < W < 1.6 GeV.
In this work, we do not analyze the threshold region. Mass
differences within pion and nucleon multiplets, and necessary
checks with ChPT [63–66] require a modified parametrization
that has been developed in photoproduction [145] but will be
included for electroproduction at a later stage. The upper limit
in photon virtuality for data included in the fits varies from
Q2 = 4 GeV2 to 6 GeV2 to assess the stability of the solutions.

Special emphasis is put on gauge invariance and Siegert’s
condition [146,147], which is manifestly included in the
parametrization. The electroproduction amplitude is con-
structed such that, at the photon point Q2 = 0 GeV2, it
describes pion, η, and K� photoproduction data in the form
of the most recent solution of the Jülich-Bonn analysis effort,
the “JüBo2017” solution [148]. The hadronic part of that
amplitude describes also various pion-induced reactions. Ex-
tensions including η and kaon electroproduction data, as well
as the simultaneous fit of photo- and electroproduction data,
are left to future research. In this context it will be relevant to
revise kaon polarization observables due to recent updates of
the fundamental � decay parameter α− [149,150].

This study is organized as follows. Section II contains
formal aspects of electroproduction (kinematics, Siegert’s
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FIG. 1. Kinematics of an electroproduction experiment. The
scattering plane is defined by the respective ingoing (outgoing)
electron momenta ke (k′

e) with the electron-scattering angle θe. The
reaction plane is spanned by the virtual photon and the outgoing
meson scattered by an angle θ .

condition, observables, and multipoles), while the
parametrization of electroproduction multipoles as an
extension of the Jülich-Bonn amplitude is discussed in
Sec. III. Results are presented and discussed in Sec. IV, and
the conclusions can be found in Sec. V.

II. PRELIMINARIES

A. Kinematics

The pion electroproduction process in question occurs via
the following reaction (bold symbols denote three-momenta
throughout the paper)

γ ∗(q) + p(pi ) → π (k) + N (pf ),

with the virtual photon γ ∗(q) being produced via ein(ke) →
eout (k

′
e) + γ ∗(q). Thus, the momentum transfer Q2 = −ω2 +

q2 is non-negative for spacelike processes and acts as an in-
dependent kinematical variable in addition to the total energy
in the center-of-mass frame W . In this frame, the magnitude
of the three-momentum of the photon (q = |q|) and produced
pion (k = |k|) read

q =
√

λ(W 2, m2,−Q2)

2W
, k =

√
λ(W 2, m2, M2)

2W
, (2.1)

where λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx denotes
the usual Källén triangle function. The pion and nucleon
masses are denoted throughout this paper by M and m, re-
spectively. From this, the photon energy is ω = (W 2 − m2 −
Q2)/(2W ). The angular structure of the above process is
depicted in Fig. 1, where θe is the angle of the ingoing or
outgoing electron in the scattering plane, φ is the angle of the
reaction plane with respect to the scattering plane, and θ is the
center-of-mass meson scattering angle in the latter plane. The
world data on electroproduction is represented with respect to
the five variables

O(Q2,W, φ, θ, ε),

where ε is the transverse photon polarization,

ε = 1 + 2
q2

L

Q2
tan2 θe

2
, (2.2)

where qL is the photon three-momentum in the laboratory
frame. The resulting observables O will be discussed in the
next section.

There are several important limits and thresholds of this
kinematics which will be discussed later and thus require an
introduction.

(1) Photon point. This corresponds to Q2 ≡ 0, reducing
the process to pion photoproduction. In this limiting
case, denoted by a subscript γ , the amplitudes are
independent of the angle φ and

ωγ = qγ = W 2 − m2

2W
. (2.3)

The electroproduction amplitudes are constrained by
photoproduction data via the multipoles of the JüBo
model, see Sec. III A.

(2) Production threshold. This refers to the lowest phys-
ical energy of the final meson-baryon pair, i.e., W =
(m + M ) ⇔ k ≡ 0.

(3) Pseudo-threshold. This denotes an unphysical point
q = 0 or correspondingly

Q2
PT± = −(W ± m)2. (2.4)

The particular importance of this kinematic point
arises from Siegert’s condition, which will serve as
a boundary condition for our parametrization of the
multipoles, see Sec. III.

B. Transition amplitudes: Multipoles and Siegert’s condition

For a general photon-induced photo- or electroproduction
of a meson off a nucleon, the transition amplitude in the
standard one-photon approximation reads

Tfi =〈f|
(

−i
∫

d4rAμJμ

)
|i〉, (2.5)

with Jμ denoting the electromagnetic current, see, e.g., the
seminal papers [151–153] for more details. The components
of the vector potential Aμ are solutions of the Laplace equa-
tion. For instance, for the time component (scalar potential),

(∇2 + q2)A0 = 0. (2.6)

Then, A0 can be decomposed into contributions with given
angular-momentum values,

A0 =
∑
jγ mγ

∫
dq

2π

q2

√
ω

(
a jγ mγ

uC
jγ mγ

+ a†
jγ mγ

uC∗
jγ mγ

)
, (2.7)

where jγ is the angular momentum of the photon and ajγ mγ
≡

a jγ mγ
(q) [a†

jγ mγ
≡ a†

jγ mγ
(q)] are annihilation [creation] opera-

tors. Furthermore,

uC
jγ mγ

≡ uC
jγ mγ

(q, r) = j jγ (qr)Yjγ mγ
(θ, φ). (2.8)

Everywhere, j jγ (qr) and Ylm(θ, φ) denote the spherical Bessel
functions and spherical harmonics, respectively.

Similarly, the three-vector potential can be expanded in
elementary vectors ux with a given angular momentum as in
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the scalar case,

A =
∑
jγ mγ

∑
x

∫
dq

2π

q2

√
ω

[
ax

jγ mγ
(q)ux

jγ mγ
(q, r)

+ ax†
jγ mγ

(q)ux∗
jγ mγ

(q, r)
]
, (2.9)

where ω is the photon energy, while x ∈ {E , M, L} labels
electric, magnetic, and longitudinal components, respectively.
The vectors ux can be constructed from the scalar uC using
differential operators,

uL
jγ mγ

(q, r) = i

q
∇uC

jγ mγ
(q, r),

uM
jγ mγ

(q, r) = r × ∇√
jγ ( jγ − 1)

uC
jγ mγ

(q, r),

uE
jγ mγ

(q, r) = ∇ × L

q
√

jγ ( jγ + 1)
uC

jγ mγ
(q, r). (2.10)

Because ∇, L = −ir × ∇, and ∇ × L commute with the
Laplacian, uL, uM , and uE are also solutions of the Laplace
equation and are orthogonal to each other. The corresponding
Coulomb (C), longitudinal (L), magnetic (M), and electric (E )
multipoles then read for a given photon angular-momentum
state

Cjγ mγ
(q) = 〈f|

∫
d3ruC

jγ mγ
(q, r)ρ(r)|i〉,

Ljγ mγ
(q) = 〈f|

∫
d3ruL

jγ mγ
(q, r) · J(r)|i〉,

Ejγ mγ
(q) = 〈f|

∫
d3ruE

jγ mγ
(q, r) · J(r)|i〉,

Mjγ mγ
(q) = 〈f|

∫
d3ruM

jγ mγ
(q, r) · J(r)|i〉, (2.11)

respectively. Only three multipoles here are independent be-
cause of the continuity equation for the current, thus relating
scalar and longitudinal multipoles according to

ωCjγ (q) = qLjγ (q), (2.12)

where the mγ dependence of the multipoles cancels out by the
Wigner-Eckart theorem, see, e.g., Ref. [153].

Finally, and following Ref. [153], we note that in
the long-wavelength limit (q → 0) (pseudothreshold)
j jγ (qr) → (qr) jγ /(2 jγ + 1)!!. Using then Eq. (2.8)
and ∇ × L(r jγ Yjγ mγ

) = i( jγ + 1)∇(r jγ Yjγ mγ
) yields

straightforwardly

uE
jγ (k, r) → i

q

√
jγ + 1

jγ
∇uC

jγ (q, r). (2.13)

Then, substituting this into Eqs. (2.10) and (2.11) results in an
exact relation between electric and longitudinal multipole at
the pseudothreshold,

Ejγ =
√

jγ + 1

jγ
Ljγ , at q = 0, (2.14)

called Siegert’s theorem and that provides an important
constraint on our parametrization of the electroproduction

multipoles. The practical implementation of it will be dis-
cussed in the next section.

C. Transition amplitudes: Chew, Goldberger, Low, and Nambu
(CGLN) and helicity amplitudes

To find a practical access to the (ELM) multipoles (2.11),
introduced above, we follow the seminal works [151,154]
utilizing the nomenclature of Ref. [152]. Taking the z axis as
the quantization axis and working in the center of mass of the
final pion-nucleon system yields the general Lorentz covariant
transition matrix element

Tfi = 8πW χ
†
f

6∑
a=1

(FaGa)χi. (2.15)

Note that charge conservation is already implemented here
thus reducing the number of independent structures to six.
Here, χ denotes the two-component spinor, and Fa are the
CGLN amplitudes,1 being coefficients of

G = {i(σ · a), (σ · k̂)(σ · (q̂ × a)),

× i(σ · q̂)(k̂ · a), i(σ · k̂)(k̂ · a),

× i(σ · q̂)(q̂ · a), i(σ · k̂)(q̂ · a)} (2.16)

with aμ = εμ − (ε0/ω)qμ (ε0 being the zero-component of the
polarization vector εμ [151]), and hat denoting the normaliza-
tion of the respective three-vector.

The six types of transitions (2.15) can be related to the
eigenamplitudes of definite parity and relative angular mo-
mentum of the pion-nucleon pair (�) [155]. These amplitudes
are identified with electric E�±, magnetic M�±, and scalar or
Coulomb multipoles (2.12), see Eqs. (2.11). Expanding with
respect to the Legendre polynomials P�(cos θ ) yields

F1 =
∑
��0

{(�M�+ + E�+)P′
�+1

+ [(� + 1)M�− + E�−]P′
�−1},

F2 =
∑
��1

[(� + 1)M�+ + �M�−]P′
�,

F3 =
∑
��1

[(E�+ − M�+)P′′
�+1 + (E�− + M�−)P′′

�−1],

F4 =
∑
��2

(M�+ − E�+ − M�− − E�−)P′′
� ,

F5 =
∑
��0

[(� + 1)L�+P′
�+1 − � L�−P′

�−1],

F6 =
∑
��1

[�L�− − (� + 1)L�+]P′
�. (2.17)

Here we have suppressed the dependence of the multipoles
on W and Q2 for simplicity. The total angular momentum

1Referring to the authors of Ref. [154] (Chew, Goldberger, Low,
Nambu), those amplitudes were originally derived for the pho-
toproduction amplitudes but extended later by Dennery [151] to
electroproduction.
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is given by J = � ± 1/2 = �±. The multipole decomposition
yields a certain behavior of the multipoles at the physical and
pseudothreshold,

k → 0 q → 0

E�+ and L�+ for � � 0 k� q�

L�− for � = 1 k q
M�+ and M�− for � � 1 k� q�

E�− and L�− for � � 2 k� q�−2

(2.18)

Finally, coming back to Siegert’s theorem (2.14), we note
that the multipoles in the previous section are labeled with the
incident-photon angular momentum jγ , while in the current
section they are indexed by the final-state orbital angular mo-
mentum �. Transforming to the latter basis Siegert’s theorem
takes the form [147]

E�+
L�+

= 1 and
E�−
L�−

= �

1 − �
, at q = 0, (2.19)

which is also the form employed in this work at Q2 = Q2
PT−,

referring to it as Siegert’s condition.2 This is crucial, since
the current parametrization relies on the continuation of the
available photoproduction solution to Q2 > 0, see Sec. III.
The latter, however, do not restrict the longitudinal multi-
poles. Equating the latter to the electric multipole at the
pseudothreshold provides a solution to this problem and is
employed in this work.

D. Response functions and observables

Free parameters for the various multipoles will be de-
termined by fits to data of differential cross sections and
other observables. These observables are written in terms
of response functions, R(W, Q2, θ ) which can be related to
the transition amplitudes, conveniently employing the helicity
formalism [156]. In particular, the differential cross section is
a function of five kinematic variables discussed in Sec. II A
(W, Q2, θ, φ, ε) defined as

dσ

d�f dEf d�
=

(
α

2π2

Ef

Ei

qL

Q2

1

1 − ε

)
dσ v

d�
, (2.20)

where � refers to the angles of the final meson baryon system
(θ , φ) and �f are the angles of the final electron at energy Ef .
The differential cross section dσ v/d� for the virtual photon
subprocess is commonly further decomposed as

dσ v

d�
=σT + εσL +

√
2ε(1 + ε)σLT cos φ

+ εσT T cos 2φ + h
√

2ε(1 − ε)σLT ′ sin φ, (2.21)

where h is the helicity of the incoming electron. The quanti-
ties {σx|x = (T, T T, LT, L, LT ′)} are referred to as structure
functions. Data involving polarized quantities are included
from Jefferson Lab experiments: (1) From Refs. [157,158]
via longitudinal-transverse structure functions σLT ′ and (2) the

2We do not employ the same condition at the second pseudothresh-
old, since it is located much further away from the physical region.

K1D = {KX
1D|X = A, B, . . . , T } observables from Ref. [159]

related to the response functions as shown in Table II in
Appendix 2. In general, and following the convention of
Ref. [105], the structure functions in Eq. (2.21) are obtained
from the response functions R. The latter denote the coef-
ficients that expand the azimuthal angle dependence of the
general differential cross section of an electroproduction re-
action when all polarizations are taking into account, see,
e.g., Ref. [105]. In our case, and using qγ ≡ q(Q2 = 0) from
Eq. (2.3), the required connection reduces to

σT = k

qγ

R00
T , σL = k

qγ

Q2

ω2
R00

L , σT T = k

qγ

R00
T T ,

σLT = k

qγ

√
Q2

ω
R00

LT , σLT ′ = k

qγ

√
Q2

ω
R00

LT ′ . (2.22)

The response functions can be expressed in terms of helicity
amplitudes (H),

R00
T = (|H1|2 + |H2|2 + |H3|2 + |H4|2)/2,

R00
L = (|H5|2 + |H6|2),

R00
LT = [(H1 − H4)H∗

5 + (H2 + H3)H∗
6 ]/

√
2,

R00
T T = Re(H3H∗

2 − H4H∗
1 ),

R00
LT ′ = Im[(H4 − H1)H∗

5 − (H2 + H3)H∗
6 ]/

√
2,

R0Y
LT = −Re[(H2 + H3)H∗

5 + (H4 − H1)H∗
6 ]/

√
2, (2.23)

where where the connection to CGLN F amplitudes is given
by

H1 = sin θ cos
θ

2
(−F3 − F4)/

√
2,

H2 =
√

2 cos
θ

2

[
F2 − F1 + (F3 − F4) sin2 θ

2

]
,

H3 = sin θ sin
θ

2
(F3 − F4)/

√
2,

H4 =
√

2 sin
θ

2

[
F1 + F2 + (F3 + F4) cos2 θ

2

]
,

H5 = cos
θ

2
(F5 + F6),

H6 = sin
θ

2
(F6 − F5), (2.24)

following again the phase convention of Refs. [156,160]. Sev-
eral other observables are included in the fits, as described in
Sec. IV A:

PY = −
√

2ε(1 + ε)
ω√
Q2

R0Y
LT

R00
T + εω2/Q2R00

L

,

ρLT =
√

2ε(1 + ε)
R00

LT

R00
T + ε

(
R00

L + R00
T T

) ,

ρLT ′ =
√

2ε(1 − ε) sin φ
σLT ′

dσ v/d�
, (2.25)

while the KD1 observables are given explicitly in Appendix 2.
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III. MULTIPOLE PARAMETRIZATION

A. The Jülich-Bonn dynamical coupled-channel approach

The input at the photon point is provided by the Jülich-
Bonn (JüBo) framework, a dynamical coupled-channel ap-
proach that aims at the extraction of the nucleon resonance
spectrum in a combined analysis of pion- and photon-induced
hadronic reactions. In this approach, two-body unitarity and
analyticity are respected and the baryon resonance spec-
trum is determined in terms of poles in the complex energy
plane on the second Riemann sheet. A detailed description
of the model can be found in Refs. [145,161] and references
therein.

The purely hadronic scattering process of a meson-baryon
pair ν is described in a field-theoretical framework by po-
tentials Vμν , which are derived from a chiral Lagrangian and
iterated in a Lippmann-Schwinger equation

Tμν (k, p′,W ) = Vμν (k, p′,W ) +
∑

κ

∫ ∞

0
d pp2Vμκ (k, p,W )

× Gκ (p,W )Tκν (p, p′,W ), (3.1)

where the indices μ, ν, and κ denote the outgoing, incoming,
and intermediate meson-baryon channels, respectively. The
model incorporates the two-body channels πN , ηN , K�, and
K� and the channels ρN , σN , and π�, which effectively
parametrize the ππN channel. In Eq. (3.1), k (p′) indicates
the modulus of the outgoing (incoming) three-momentum in
the center-of-mass system, which can be on- or off-shell. The
propagator Gκ is given by

Gκ (p,W ) = 1

W − Ea(p) − Eb(p) + iε
, (3.2)

with the on-mass-shell energies Ea = (m2
a + p2)1/2 and Eb =

(m2
b + p2)1/2 of the intermediate particles a and b in channel

κ with masses ma and mb. While Eq. (3.2) applies to the
channels κ = πN , ηN , K�, or K�, the propagator is of a
more complex form for channels with unstable particles, i.e.,
ρN , σN , and π� [162,163]. The scattering potential Vμν is
constructed from s-channel processes that account for gen-
uine resonances, t- and u-channel exchanges of mesons and
baryons, and contact diagrams that are included to absorb
physics beyond the explicitly included processes.

The photoproduction process is described in the semiphe-
nomenological approach of Ref. [145], where the elec-
tric or magnetic photoproduction multipole amplitude [see
Eq. (2.11)] is given by

Mμγ (k,W ) = Vμγ (k,W ) +
∑

κ

∫ ∞

0
d pp2Tμκ (k, p,W )

× Gκ (p,W )Vκγ (p,W ). (3.3)

Here, the index γ denotes the initial γ N channel and μ (κ)
the final (intermediate) meson-baryon pair, while Tμκ is the
hadronic half-off-shell matrix of Eq. (3.1) and k denotes,
again, the momentum of the outgoing meson.

The photoproduction kernel Vμγ is constructed as

Vμγ (p,W ) = αNP
μγ (p,W ) +

∑
i

γ a
μ;i(p)γ c

γ ;i(W )

W − mb
i

, (3.4)

where γ c
γ ;i describes the interaction of the photon with the

resonance state i with bare mass mb
i and αNP

μγ accounts for the
coupling of the photon to the so-called background or non-
pole part of the amplitude. Both quantities are parametrized by
energy-dependent polynomials. See Appendix 3 for details. In
particular, we note that the hadronic resonance vertex function
γ a

μ;i in Eq. (3.4) is the same as in the hadronic scattering
potential to ensure the cancellation of the poles in Eq. (3.4).
Explicit expressions for γ a

μ;i can be found in Ref. [164].
The hadronic scattering potential Vμν and the polynomials

in γ c
γ ;i and αNP

μγ contain free parameters that are fit to the data
in a χ2 minimization using MINUIT on the JURECA super-
computer at the Jülich Supercomputing Centre [165]. In its
most recent form [148] the JüBo model describes the reactions
πN → πN , ηN , K�, and K� in addition to pion, eta, and
K+� photoproduction off the proton. More than 48 000 data
points were analyzed in simultaneous fits and the N and �

spectrum was determined.

B. Extension of the JüBo formalism to electroproduction

To include electroproduction reactions in the JüBo formal-
ism, the photoproduction formalism outlined in the previous
section is extended to handle virtual photons with Q2 > 0.
Following Eq. (3.3) we first introduce a generic function (M̄)
for each electromagnetic multipole (Mμγ ∗ ∈ {Eμ, Lμ, Mμ})
as

M̄μγ ∗ (k,W, Q2)

= Vμγ ∗ (k,W, Q2)+
∑

κ

∫ ∞

0
d pp2Tμκ (k, p,W )

× Gκ (p,W )Vκγ ∗ (p,W, Q2), (3.5)

with κ ∈ {πN, ηN, K�, K�,π�, ρN} and γ ∗ denoting the
ingoing γ ∗N state. The electroproduction kernel Vμγ ∗ in
Eq. (3.5) is parametrized as

Vμγ ∗ (p,W, Q2) = αNP
μγ ∗ (p,W, Q2)

+
imax∑
i=1

γ a
μ;i(p)γ c

γ ∗;i(W, Q2)

W − mb
i

, (3.6)

introducing the Q2 dependence via a separable ansatz,

αNP
μγ ∗ (p,W, Q2) = F̃μ(Q2)αNP

μγ (p,W ),

γ c
γ ∗;i(W, Q2) = F̃i(Q

2)γ c
γ ;i(W ), (3.7)

with a channel-dependent form factor F̃μ(Q2) and another
channel-independent form factor F̃i(Q2) that depends on the
resonance number i. Note that the channel dependence is
inherited from the structure of the photoproduction ansatz
of Eq. (3.4), which separates the photon-induced vertex (γ c)
from the decay vertex of a resonance to the final meson-
baryon pair (γ a

μ).
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FIG. 2. Overview of the experimental data [157–159,170–212] used in the main fits (0 < Q2 < 4 GeV2, 1.13 < W < 1.6 GeV) for
aggregated values of θ, φ, ε. Symbol shapes differentiate between different observable types, while the total number of data is 82 968.
See Sec. II D and Appendix 2 for the definition of the observables.

Both F̃μ(Q2) and F̃i(Q2) are chosen as

F̃ (Q2) = F̃D(Q2)e−β0Q2/m2
PN (Q2/m2), (3.8)

where

F̃D(Q2) = 1

(1 + Q2/b2)2

1 + e−Q2
r /Q2

w

1 + e(Q2−Q2
r )/Q2

w

(3.9)

is a combination of the empirical dipole form factor with
b2 = 0.71 GeV2, usually implemented in such problems,
see, e.g., Ref. [166], as well as a Woods-Saxon form factor
with Q2

w = 0.5 GeV2 and Q2
r = 4.0 GeV2, which is intro-

duced to ensure that, at large Q2, the multipoles vanish
sufficiently rapidly. Furthermore, the polynomial PN (x) =
1 + β1x + β2x2 + · · · + βN xN is to be fit to data, along with
the parameter β0. A similar parametrization is chosen in
Refs. [122,167].

For electric and magnetic multipoles, the quantities γ a
μ;i,

αNP
μγ , γ c

γ ;i, and mb
i in the electroproduction amplitude of

Eqs. (3.6) and (3.7), as well as Tμκ in Eq. (3.5), represent the
input at the photon point in the current analysis. Numerical
values are taken from the JüBo2017 solution of Ref. [148].

For longitudinal multipoles there is no information on αNP
μγ ∗

or γ c
γ ∗;i at the photon point. To overcome this we employ the

following strategy:

(1) Following Siegert’s condition (2.19), we apply

αNP
L�± (Q2) = ω(Q2)

ω
(
Q2

PT−
) αNP

E�±

(
Q2

PT−
)

F̃D
(
Q2

PT−
) F̃D(Q2)D�±(Q2),

(3.10)

and similarly for γγ ∗;i. The photon energy ω was de-
fined below Eq. (2.1). The new functions D�±(Q2)
incorporate Siegert’s condition exactly, ensuring at the

same time a Q2 falloff behavior. Explicitly they read

D�+(Q2) = e−β0q/qγ PN (q/qγ ),

D�−(Q2) = −� − 1

�
e−β0q/qγ PN (q/qγ ), (3.11)

where qγ = q|Q2=0 from Eq. (2.1).
(2) For the two cases with vanishing electric multipole,

i.e., (�±, I ) = (1−, 1/2) and (�±, I ) = (1−, 3/2), the
longitudinal multipole is obtained from the magnetic
one via

αNP
L�± (Q2) = ζ NP ω(Q2)

ω
(
Q2

PT−
) F̃μ(Q2)αNP

M�± (p,W ),

(3.12)

and similarly for γγ ∗;i. The new real-valued normaliza-
tion constants ζ NP will be determined from the fit.

Imposing the pseudothreshold constraints of Table (2.18), a
q- and �-dependent factor is introduced in the parametrization
of Mμγ ∗ ,

Mμγ ∗ (k,W, Q2) = R�′ (λ, q/qγ )M̄μγ ∗ (k,W, Q2), (3.13)

with qγ of Eq. (2.3); λ is a parameter to be fit, and

R�′ (λ, x) = B�′ (λx)

B�′ (λ)
, (3.14)

with the Blatt-Weisskopf barrier-penetration factors B�′ (r)
[168,169] with the limits

B�′ (r) ≈ O(r�′
) and B�′ (r) ≈ O(r0) (3.15)

for small and large arguments of B�′ (r), respectively. The
index �′ relates to J = �± as

�′ =
{
� for (E�+, L�+, L1−, M�+, M�−)
� − 2 for (E�−, L�− and � � 2), (3.16)
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which ensures that the pseudothreshold constraints tabulated
in (2.18) are satisfied. Explicit forms of B�(r) for values of
� from zero to five are given in Appendix 1. Note that the
transition from small to large arguments in Eq. (3.15) should
happen on a natural scale, i.e., λ, which is unitless, should
be of order one. The threshold behavior M ∼ k� tabulated
in (2.18) is automatically satisfied by electroproduction mul-
tipoles because it is already built into the photoproduction
amplitude, and this carries over to the virtual-photon case.

To summarize the structure of the fit, each multipole Eμγ ∗

and Mμγ ∗ carries (1 + N ) fit parameters β0, . . . , βN for the
non-pole part F̃μ, plus (1 + N ) parameters for each F̃i of the
imax resonances in the pertinent partial wave. The channel
dependence of the non-pole form factor F̃μ(Q2) is not fully
used in the current fits, because only pion electroproduction
data are analyzed. In F̃μ we therefore set those βi to zero that
couple to the photon but do not correspond to the πN channel,
i.e., (μ ∈ {ηN, K�,π�} [148]).

Furthermore, one could also fit the parameters Qw and
Qr of Eq. (3.9) to data, but we chose to fix them to the
quoted values to avoid over-parametrization. In addition, there
is one Blatt-Weisskopf range factor λ per multipole. The
longitudinal multipoles exhibit the exact same structure of
fit parameters as the E and M multipoles, through the func-
tions D�± of Eq. (3.11). For the two exceptions [(�±, I ) ∈
{(1−, 1/2), (1−, 3/2)}], there are (1 + imax) additional fit pa-
rameters ζ NP for each longitudinal multipole, as indicated in
Eq. (3.12) for the non-pole part and, similarly, for each of the
imax resonances. In total, we allow for 209 fit parameters in
the parametrization, but we have also explored variants, as
discussed in Sec. IV B.

IV. FITS TO DATA

A. Database

The data used in this study were taken from the extensive
SAID database [213], containing on the order of 105 data for
the electroproduction of charged and neutral pions off proton
targets. See Fig. 2 for an overview of the coverage of the Q2-W
plane as well as the number of data points for each observable.
More measurements, both in number and type, are available
for neutral-pion than for charged-pion electroproduction. For
both final states, the SAID database is dominated by unpolar-
ized differential cross sections.

Statistically, it is better to fit differential cross sections
instead of their components according to Eq. (2.20) because,
on the one hand, it avoids potential bias in the extraction
of the components, and, on the other hand, the data of the
components are necessarily correlated but those correlations
are typically not quoted in experimental papers. Therefore,
we have generally fit differential cross sections directly, if
available, rather than the separated components σT , σL, σT T ,
σLT , and σLT ′ . However, to have simpler comparisons with
previous analyses, we have included plots of predicted struc-
ture function data as well, see Sec. IV C.

The largest sets of polarized data included in this fit involve
ratios of structure functions (2.25) and the recoil-polarization
measurements of Kelly. The Kelly data [159] give substantial

FIG. 3. Values of 62 β0 parameters with respect to different fit
scenarios (Fi) and partial wave (�±, I ), where I denotes isospin.

constraints on neutral-pion production at Q2 = 1 GeV2. In
a recent study [105] of the data types required for model-
independent complete-experiment or partial-wave analyses,
a subset of the Kelly data was shown to be sufficient for a
partial-wave analysis up to P waves. It should be noted, how-
ever, that this study of experimental completeness assumed
error-free measurements. In the Kelly paper [214], fits with
different angular-momentum cutoffs were attempted, showing
sensitivity to approximations made in their multipole analysis.

Substantial use of SAID and the MAID electroproduction
websites [138,213] and codes allowed checks for consis-
tency of conventions, definitions, and naming schemes within
the SAID database. As described below, a website is being
constructed to compare fits by MAID, SAID, and the present
analysis to plotted data [215].

B. Fit scenarios

The parametrization of the multipoles introduced in
Sec. III B is subject to a large set of free parameters. In partic-
ular, considering S, P, and D waves and both isospin channels
I = (1/2, 3/2) leads to 62 new parameters for each new order
in the expansion of PN used to parametrize E , M, and L
multipoles. In this context, our preliminary fits have shown
that N = 2 [see Eqs. (3.8) and (3.11)] yields a sufficiently
flexible parametrization, without clear over-fitting of data. See
discussion at the end of Sec. III B for additional details. More
extensive statistical studies are beyond the scope of the present
paper and will be discussed in a future work.

In addition to the β-type parameters, pseudothreshold reg-
ulating parameters λ and normalization factors ζ for two
longitudinal multipoles (L1−,1/2 and L1−,3/2) not fixed by
Siegert’s conditions add 18 and 5 new parameters, respec-
tively. Thus, the total number of parameters sums up to 209.
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TABLE I. Fit quality for various fit scenarios described in the main text. All numbers represent χ2 contributions with respect to different
channels and observable types as defined in Eq. (4.1). Total number of data is 82 968 and 91 896 for scenarios 1, 3, 4, 5 and 2, 6, respectively.
Cases with no data are marked by “–.” Rightmost column shows the aggregated χ2

dof .

σL dσ/d� σT + εσL σT σLT σLT ′ σT T KD1 PY ρLT ρLT ′

Fit π0 p π+n π0 p π+n π0 p π+n π0 p π+n π0 p π+n π0 p π+n π0 p π+n π0 p π+n π0 p π+n π0 p π+n π0 p π+n χ2
dof

F1 – 9 65 355 53 229 870 418 87 88 1212 133 862 762 4400 251 4493 – 234 – 525 – 3300 10 294 1.77
F2 – 4 69 472 55 889 1081 619 65 78 1780 150 1225 822 4274 237 4518 – 325 – 590 – 3545 10 629 1.69
F3 – 8 66 981 54 979 568 388 84 95 1863 181 1201 437 3934 339 4296 – 686 – 687 – 3556 9377 1.81
F4 – 22 63 113 52 616 562 378 153 107 1270 146 1198 1015 4385 218 5929 – 699 – 604 – 3548 11 028 1.78
F5 – 20 65 724 53 340 536 528 125 81 1507 219 1075 756 4134 230 5236 – 692 – 554 – 3580 11 254 1.81
F6 – 18 71 982 58 434 1075 501 29 68 1353 135 1600 1810 3935 291 5364 – 421 – 587 – 3932 11 475 1.78

The free parameters are fit to reproduce the database de-
scribed in Sec. IV A by minimizing the χ2 function

χ2 =
Ndata∑
i=1

( Oexp
i − Oi

�stat
i + �

syst
i

)2

. (4.1)

To report the results we also define χ2
dof = χ2/(Ndata − 209).

We note that inclusion of systematic errors can be done at
different levels of rigor. For example, the SAID group allows
data to be “floated” with a χ2 penalty determined by the
overall systematic error [216]. The JüBo/GW group used
similar normalization freedom in some of the more recently
included data sets [217,218]. In this study, we add the sys-
tematic error to the statistical one as indicated in Eq. (4.1)
following a procedure widely used in the field; effectively,
one neglects the correlations between data due to systematic
effects. As there is no reason to believe that systematic ef-
fects should be Gaussian, we simply add the uncertainties
linearly. In some baryon resonance analyses data are weighted
with factors enhancing the influence of sparsely measured
observables. In the present study, we did not follow this
procedure.

Given the high dimensionality of the minimization prob-
lem, an obvious question arises about the statistical signifi-
cance of the present solution. To our knowledge, a systematic
way to answer this question does not exist. Thus, to get
an understanding of the χ2 landscape we have performed
a series of fits—denoted by Fi with respect to kinematic
ranges, and strategy of a minimization. For example, in
F1 vs F3 vs F4, we have studied the importance of the
choice of starting values by performing preliminary fits
to various subsets of data, i.e., a 1/32 random sample, a
1/128 random sample, and the complete set, respectively. In
{F1, . . . ,F4} vs {F5,F6} we have changed the fitting strat-
egy from sequential fits (increasing stepwise the number of
free parameters from 32 to 209 by including higher and
higher partial waves) to simultaneous fits with 209 parame-
ters, all of them set to zero initially. Finally, we have also
checked in F1 vs F2 and in F5 vs F6 the stability of the
results when adding more data by increasing the limit Q2 <

4 GeV → Q2 < 6 GeV corresponding to Ndata = 82968 →
Ndata = 91 896. We expect that systematic effects associ-
ated with these strategies significantly exceed the statistical
uncertainties.

C. Fit results

The quality of the obtained best fits Fi is recorded in Ta-
ble I. There we also record contributions from each observable
type to the total χ2. We note that the best χ2 is found to
be consistent among all fit strategies, which indicates the
overall flexibility of the parametrization. As to the question
whether the found minima are identical, the 209-dimensional
parameter space is unwieldy to use in addressing this ques-
tion. Instead, a cut through the 62 dimensions of the crucial
β0 parameters, shown in Fig. 3, suggests no clear similarity
between the best-fit parameters of individual fits. While any
conclusion drawn from this observation is prone to possibly
large correlations between different parameters, it seems that
the solutions shown in Table I represent different local minima
of the χ2 landscape. This strengthens our previous assumption
that including various fit scenarios is indeed a fair representa-
tion of the uncertainties.

The fit results suggest that the approach is sufficiently
flexible to provide a good overall fit to the data. Going beyond
arguments based on the overall χ2, we display the fit quality
for selected observables. In particular, a large set of differen-
tial cross section and recoil polarization data is provided by
Kelly [159], see Sec. IV A. Figure 4 shows the quality of fit to
the Kelly data for a representative kinematical configuration.
Except for a few points, the data are described very well.
While the Kelly set has a higher χ2 per datum than displayed
in Table I for the full database, i.e., a χ2 ≈ 3 per data point,
approximately 1/3 of the χ2 comes from 1% outliers. Similar
characteristics are found in other observables. In cases where
the outliers could be attributed to simple errors in digitizing
older data sets, they were not included in our fits.

Another large set of data, taken in a dedicated Jefferson
Lab experiment [157,180], was analyzed by EBAC (Excited
Baryon Analysis Center) in Ref. [121]. The data considered
in the EBAC analysis were composed of structure functions
{σT + εσL, σT T , σLT , σLT ′ }, in contrast with the present fit,
where we included the data of Refs. [157,180] via dσ/d�,
A0Y ′ , and σLT ′ observables. Note also that Ref. [121] covered a
smaller kinematical range, but the model used there had fewer
free parameters. The present fits versus structure functions
are shown in Fig. 5 for Q2 = 0.4 GeV2 and 0.9 GeV2. We
note that the description of the structure functions does indeed
agree with the results of Refs. [157,180] in nearly all cases,
apart from a discrepancy in σLT at W = 1.14 GeV. This energy
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FIG. 4. Comparison of the best fits to the Kelly data [159] (open circles with error bars) at Q2 = 1 GeV2, W = 1.23 GeV, φ = 15◦ in
the π 0 p channel. Different curves correspond to various fit strategies, representing systematic uncertainty of our approach. Note that ρLT ′ is
unitless, while others are given in [μb/sr]. In this and subsequent figures, the shading between the curves is included to guide the eye.

lies only 10 MeV above the lower limit of data considered
in this study and structure functions were not used in the fits
directly.

With the sets of model parameters determined, we are now
able to plot the E , L, and M multipoles as a function of
Q2 and W . This is demonstrated in a set of plots for some
fixed typical values of Q2 and W . In particular, in Figs. 8,
9, and 10 of Appendix 4 we have evaluated the obtained
multipoles at fixed energies corresponding to either the Breit-
Wigner mass or real part of the pole position associated with
the �(1232), N (1440), and N (1535); W = 1230, 1380, and
1535 MeV, respectively. We observe that, in many cases, the
otherwise very weakly constrained longitudinal multipoles are
indeed restricted by coupling them to the electric ones at the
pseudothreshold point. Then, for two values Q2 = 0.2 GeV2

and 1.0 GeV2, we demonstrate the full set of multipoles, up
to J = 2+, in Figs. 11 and 12, respectively. Results of the
MAID2007 analysis [92] are displayed there for comparison
(open circles refer to the MAID2007 energy-dependent solu-
tion evaluated at a discrete set of W and Q2). Note that also
near the photon point the MAID2007 [92] and JüBo [148],
analyses show sizable differences in some photoproduction
multipoles.

Examples of multipoles dominated by nucleon resonances
are depicted in Fig. 6. The �(1232) and N (1520) display
canonical resonance behavior while the η threshold cusp is
evident for the N (1535). While the �(1232) shape disappears
at higher Q2, the N (1535) disappears slower. The “profile” of
the enigmatic Roper resonance, N (1440), shows a nontrivial

Q2 behavior, including zeros for real and imaginary parts.
A better quantitative understanding of the Q2 dependence
of resonance will be facilitated by an upcoming analysis at
the resonance poles. But it is already reassuring that, e.g.,
the multipole of the Roper resonance exhibits zeros similar
to the pertinent resonance helicity coupling from experiment
[2,34,128,219,220] that is predicted by theoretical approaches
[31].

An extended plot of the M3/2
1+ multipole is given in Fig. 7

with a comparison to the MAID values. All fits agree with
rather small uncertainties. Note that the first vertical line cor-
responds to a pseudothreshold point, QPT−, at which condition
(2.18) and Siegert’s condition (2.19) are implemented by con-
struction, whereas the results of MAID2007 [92] are restricted
to Q2 � 0. While we expect the very large imaginary part of
the multipole to be similar in all fits, including MAID, we also
observe close agreement for the real part.

A direct comparison with the EBAC fit [121] is not possible
but the variations in their single-Q2 fits emphasize the lack of
sufficient data constraints in the low-Q2 region, and a benefit
from including the Q2 = 0 values obtained in photoproduc-
tion analyses.

V. CONCLUSIONS AND OUTLOOK

In the current paper, we have introduced a phenomeno-
logical parametrization of the meson electroproduction multi-
poles. This parametrization builds upon the latest Jülich-Bonn
solution which includes information from a large database
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FIG. 5. Best fits to π 0 p electroproduction data for Q2 = 0.4 GeV2 (top) and Q2 = 0.9 GeV2 (bottom) compared with the structure
functions from Refs. [157,180], shown by open circles with statistical and sum of statistical and systematic error bars, respectively. All units
are [μb/sr]. Different curves correspond to various fit strategies, representing systematic uncertainty of our approach.

on meson-baryon scattering and meson photoproduction and
takes into account constraints from unitarity, analyticity, and
chiral symmetry. This approach is extended to the electropro-
duction sector by parametrizing the Q2 dependence with a
general analytic form incorporating constraints from Siegert’s

theorem and (pseudo)threshold behavior of production ampli-
tudes. Additionally, form factors are included to ensure the
falloff of multipoles at large Q2.

Overall, multipoles of up to D waves are fit with respect
to 209 parameters to reproduce world pion electroproduction
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FIG. 6. Selected results (representative fit F1) for multipoles associated with �(1232), N (1440), N (1520), and N (1535), respectively. At
Q2 = 0 GeV2 the solution is constrained by pion-induced and photoproduction data via the Jülich-Bonn model (red line), while the extension
into Q2 > 0 is facilitated by the current parametrization. All in units of mfm.

data over a large range of 1.13 GeV < W < 1.6 GeV and
Q2 < 6 GeV2. This range is similar to that of Ref. [122]
but we include more polarization observables. We found a
good description (χ2

dof = 1.69–1.81) of an extensive database
(≈105 data) including observables of polarized and unpo-
larized types. Additionally, we have provided an uncertainty
estimate on obtained multipoles by exploring several fit-
ting scenarios. Taking these uncertainties into account, the
predicted multipoles agree qualitatively with those of the
previous MAID2007 analysis [92]. This is a nontrivial result
keeping in mind the large variety of fit strategies employed in
our study, with substantially different initial parameter sets.

In parallel to the present study, a website has been devel-
oped [215] utilizing a SQL database, a more modern web
framework (Django), and an interactive graphics front end
(Plotly), serving as a platform to compare different analyses
against the existing data. Presently included models are from
the Jülich-Bonn fits (JüBo2017), describing photoproduction

FIG. 7. M3/2
1+ multipole at W = 1230 MeV for six best fits (color

coding as in Fig. 4). Results of MAID2007 analysis [92] are given
by open circles for comparison only. Dashed vertical lines show
pseudothreshold, photon point, and Q2(ω = 0), respectively.

of pions, kaons, and etas, as well as MAID2007 [92], ETA-MAID

[93,95], and KAON-MAID [221] for photo- and electropro-
duction of pions, etas, and kaons. A present version of our
electroproduction fits is currently being incorporated.

We plan to extend the formalism to include ηN and K�

final states. While technically straightforward, the further ex-
pansion of the parameter space may need to be reassessed
using, e.g., model selection techniques as done in Ref. [222].
Furthermore, a combined fit of pion-induced photo- and elec-
troproduction data is planned, which will allow for a more
reliable extraction of the helicity couplings of resonances.
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TABLE II. Conversion of Kelly observables [159] to the SAID [213] notation. The last column shows the implementation in terms of the
helicity amplitudes as employed in this work, while ξ = ω/(Q2)1/2.

SAID/current notation Kelly notation Expression in helicity amplitudes (Hi)

1 KA
D1 RL (H2

5 + H 2
6 )/ξ 2

2 KB
D1 RL(n) Im(−H6H∗

5 )2/(ξ 2 sin θ )
3 KC

D1 RT (H 2
1 + H 2

2 + H 2
3 + H 2

4 )/2
4 KD

D1 RT(n) Im(+H3H∗
1 + H4H∗

2 )/ sin θ

5 KE
D1 RLT Re(+H5H∗

1 − H5H∗
4 + H6H∗

2 + H6H∗
3 )/(

√
2ξ sin θ )

6 KF
D1 RLT(n) Im(−H2H∗

5 − H3H∗
5 + H1H∗

6 − H4H∗
6 )/(

√
2ξ )

7 KG
D1 RLT(l) Im(+H1H∗

5 + H4H∗
5 + H2H∗

6 − H3H∗
6 )/(

√
2ξ sin θ )

8 KH
D1 RLT(t) Im(+H2H∗

5 − H3H∗
5 − H1H∗

6 − H4H∗
6 )/(

√
2ξ )

9 KI
D1 RLT(h) Im(−H1H∗

5 + H4H∗
5 − H2H∗

6 − H3H∗
6 )/(

√
2ξ sin θ )

10 KJ
D1 RLT(hn) Re(−H5H∗

2 − H5H∗
3 + H6H∗

1 − H6H∗
4 )/(

√
2ξ )

11 KK
D1 RLT(hl) Re(−H5H∗

1 − H5H∗
4 − H6H∗

2 + H6H∗
3 )/(

√
2ξ sin θ )

12 KL
D1 RLT(ht) Re(−H5H∗

2 + H5H∗
3 + H6H∗

1 + H6H∗
4 )/(

√
2ξ )

13 KM
D1 RTT Re(−H1H∗

4 + H2H∗
3 )/(sin θ )2

14 KN
D1 RTT(n) Im(−H2H∗

1 − H4H∗
3 )/ sin θ

15 KO
D1 RTT(l) Im(+H4H∗

1 − H3H∗
2 )/(sin θ )2

16 KP
D1 RTT(t) Im(+H2H∗

1 − H4H∗
3 )/ sin θ

17 KQ
D1 RTT(hl) Re(−H1H∗

1 − H2H∗
2 + H3H∗

3 + H4H∗
4 )/2

18 KR
D1 RTT(ht) Re(+H1H∗

3 + H2H∗
4 )/ sin θ

19 KS
D1 RL+RT(n) (H2

5 + H 2
6 )/ξ 2 − Im(H∗

3 H1 + H∗
4 H2)/ sin(θ )

20 KT
D1 RL+RT (H2

1 + H 2
2 + H 2

3 + H 2
4 )/2 + (H2

5 + H 2
6 )/ξ 2

APPENDIX

1. Blatt-Weisskopf barrier-penetration factors

For � = 0, . . . , 5, the Blatt-Weisskopf barrier-penetration factors [168,169] are explicitly given by

B0(r) = 1,

B1(r) = r/
√

1 + r2,

B2(r) = r2/
√

9 + 3r2 + r4,

B3(r) = r3/
√

225 + 45r2 + 6r4 + r6,

B4(r) = r4/
√

11025 + 1575r2 + 135r4 + 10r6 + r8,

B5(r) = r5/
√

893025 + 99225r2 + 6300r4 + 315r6 + 15r8 + r10. (A1)

2. Definition of K1D observables

Table II shows the connection of the helicity amplitudes to the Kelly observables.

3. Photoproduction kernel in the JüBo model

In the JüBo approach the photoproduction kernel Vμγ in Eq. (3.4) is parametrized by the quantities γ c
γ ;i and αNP which are

constructed with energy-dependent polynomials PP and PNP [145],

αNP
μγ (p,W ) = γ̃ a

μ (p)√
m

PNP
μ (W ) and γ c

γ ;i(W ) = √
mPP

i (W ). (A2)

The vertex function γ̃ a
μ is equal to γ a

μ;i but independent of the resonance number i. The polynomials P are explicitly given by

PP
i (W ) =

li∑
j=1

gP
i, j

(W − Es

m

) j

e−λP
i (W −Es ), (A3)

PNP
μ (W ) =

lμ∑
j=0

gNP
μ, j

(W − Ws

m

) j

e−λNP
μ (W −Ws ). (A4)

Here, gP(NP) and λP(NP) > 0 are multipole-dependent free parameters that are fit to data. The upper limits of the summation
li and lμ are chosen as demanded by the data. In Ref. [148], which is used as input for the present study, li, lμ � 3 is
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sufficient to achieve a good fit result. The expansion point Es is chosen as Ws = 1077 MeV in order to be close to the πN
threshold.

4. Multipoles for fixed W and Q2

Figures 8 to 10 show the all relevant multipoles for the fixed total energy W , whereas Figs. 11 to 12 show those for the fixed
virtuality Q2.

FIG. 8. Fit results for multipoles in [mfm] at W = 1.230 GeV as a function of Q2. Different curves correspond to various fit strategies,
representing systematic uncertainty of our approach—shading between the curves is included to guide the eye. Results of MAID2007 analysis
[92] are shown by open circles for comparison. Dashed vertical lines show virtualities corresponding to q = 0 and ω = 0, respectively.
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FIG. 9. Fit results for multipoles in [mfm] at W = 1.380 GeV as a function of Q2. Different curves correspond to various fit strategies,
representing systematic uncertainty of our approach—shading between the curves is included to guide the eye. Results of MAID2007 analysis
[92] are shown by open circles for comparison. Dashed vertical lines show virtualities corresponding to q = 0 and ω = 0, respectively.
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FIG. 10. Fit results for multipoles in [mfm] at W = 1.535 GeV as a function of Q2. Different curves correspond to various fit strategies,
representing systematic uncertainty of our approach—shading between the curves is included to guide the eye. Results of MAID2007 analysis
[92] are shown by open circles for comparison. Dashed vertical lines show virtualities corresponding to q = 0 and ω = 0, respectively.
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FIG. 11. Fit results for multipoles in [mfm] at Q2 = 0.2 GeV2 as a function of W . Different curves correspond to various fit strategies,
representing systematic uncertainty of our approach—shading between the curves is included to guide the eye. Results of MAID2007 analysis
[92] are shown by open circles for comparison.
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FIG. 12. Fit results for multipoles in [mfm] at Q2 = 1.0 GeV2 as a function of W . Different curves correspond to various fit strategies,
representing systematic uncertainty of our approach—shading between the curves is included to guide the eye. Results of MAID2007 analysis
[92] are shown by open circles for comparison.
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