
PHYSICAL REVIEW C 103, 065202 (2021)

Color dipole model bounds with the gluon-gluon recombination correction
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We present nonlinear (NL) and higher-twist (HT) corrections to the color dipole model bounds at low values
of x and Q2 using the parametrization method. Consistency between the bounds at this region describe that
a transition from the linear to the nonlinear behavior is dependence on the behavior of the gluon distribution
function. The parameters in the color dipole model are comparable with the color dipole bounds at low values
of Q2. Consequently, the obtained reduced cross sections at low- and moderate-Q2 values due to the NL + HT
effects show good agreement with the H1 Collaboration data.
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I. INTRODUCTION

The starting points on the color dipole model were given by
Sakurai and Schildknecht in 1972 [1] and has been expanded
so far by some authors in Refs. [2–4]. The modern picture
of the deep inelastic scattering (DIS) at low x is described
as the color dipole picture (CDP). In this picture the virtual
photon fluctuates into the qq pair which this pair interaction
with the gluon field in the nucleon as a gauge-invariant
color-dipole interaction. Due to the interaction of the gluon
fields with the qq dipole, the dipole cross section σ(qq)J=1

L,T p

is described at the color transparency and saturation limits.
The W 2-dependent scale �2

sat (W
2) separates the two regions.

The color transparency of the dipole cross section according
to the region of Q2 � �2

sat (W
2) and the saturation according

to the region of Q2 � �2
sat (W

2), respectively. Indeed
the (Q2,W 2) plane of the CDP indicates that the line
η(W 2, Q2) = 1 subdivides the (Q2,W 2) plane into the
saturation region of η(W 2, Q2) < 1 and the color transparency
region of η(W 2, Q2) > 1. η(W 2, Q2) denotes the low-x

scaling variable η(W 2, Q2) = Q2+m2
0

�2
sat (W

2 )
where �2

sat (W
2) is

the saturation scale and m2
0 � 0.15 GeV2. At low-x scaling,

the total photoabsorption cross-section σγ ∗ p(W 2, Q2) =
σγ ∗ p[η(W 2, Q2)] is described as ln[1/η(W 2, Q2)] for
η(W 2, Q2) < 1 and as 1/η(W 2, Q2) for η(W 2, Q2) � 1.
At large Q2 � �2

sat (W
2), the longitudinal-to-transverse ratio

of the photoabsorption cross-sections σγ ∗
L p(W 2, Q2) and

σγ ∗
T p(W 2, Q2) reads as

R(W 2, Q2) = σγ ∗
L p(W 2, Q2)

σγ ∗
T p(W 2, Q2)

= 1

2ρ
. (1)
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In terms of the proton structure functions, the ratio of the
structure functions becomes

FL(W 2, Q2)

F2(W 2, Q2)
= 1

1 + 2ρ
. (2)

The parameter ρ is associated with the enhanced transverse
size of qq fluctuations in the color dipole model (CDM). This
parameter is originating from transverse γ ∗

T →qq and longi-
tudinal γ ∗

L →qq photons. Indeed the ρ parameter describes

the ratio of the average transverse momenta ρ = 〈−→k 2
⊥〉L

〈−→k 2
⊥〉T

. It can

also be related to the ratio of the effective transverse sizes of
the (qq)J=1

L,T states as
〈−→r 2

⊥〉L

〈−→r 2
⊥〉T

= 1
ρ

. The ρ parameter is assumed to be proportional

to the singlet structure and gluon distribution functions in the
large-Q2 limit [5],

ρ(x, Q2) = 3π

8αs(Q2)

F s
2 (x, Q2)

G(x, Q2)
− 1

2
, (3)

where F s
2 (x, Q2) = x	(x, Q2) and G(x, Q2) = xg(x, Q2).

In this paper we want to show that the behavior of the CDM
bounds at low- and moderate-Q2 values are depends on the
gluon density behavior. In this case the bounds are obtained
via the nonlinear-Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution. Studies along this line not only confirm
HERA investigations, but also provide crucial benchmarks
for further investigations of the high-energy limit of QCD
at the Electron-Ion Collider (EIC) [6] and the large Hadron
Electron Collider (LHeC) [7,8]. The kinematic extension of
the LHeC will allow us to examine the nonlinear dynamics at
low x. The nonlinear region is approached when the reaction
is mediated by multigluon exchange. Indeed the growth of the
gluon density is slowed down at very small x by the gluon-
gluon recombination process. The kinematic coverage of the
neutral-current e− p-scattering pseudodata at the LHeC which
indicate the nonlinear dynamics are defined in the regions
x < 0.01 and Q2 < 700 GeV2 [9,10]. At small x the effect of
∝ ln(1/x) terms on the linear evolution equations increases.
So nonlinear interactions must be applied. Indeed we need
reliable LHeC predictions to understand the low-x physics
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[11]. Since nonlinear dynamics are known to become sizable
only at small x, so the nonlinear contribution to the evolution
equation [12] leads to an equation of the form

∂2xg(x, Q2)

∂ ln(1/x)∂ ln Q2
= αsxg(x, Q2) − 9

16
α2

s π
2 [xg(x, Q2)]2

R2Q2
, (4)

where αs ≡ αsCA/π and the parameter R controls the strength
of the nonlinearity. The second nonlinear term in (4) is re-
sponsible for gluon recombination. This term arises from
perturbative QCD diagrams which couple four gluons to two
gluons so that two gluon ladders recombine into a single
gluon ladder. It leads to saturation of the gluon density at
low Q2 with decreasing x [13]. The gluon recombination
is as important as gluon splitting which in analysis some
groups, such as Refs. [14,15], in next-to-leading-order (NLO)
analysis considered. This implies that towards small values
of x and Q2 the problem of negative gluon distribution in
these groups appears. Other nonlinear equations, such as mod-
ified DGLAP [16], Balitsky-Kovchegov [17], and Jalilian-
Marian-McLerran-Weigert-Leonidov-Kovner [18] equations
have been derived and considered in the past years. Some
another models, such as the impact-parameter-dependent satu-
ration model [9], developed a dipole model for DESY HERA
which incorporates the impact parameter distribution of the
proton. It is a simple dipole model that incorporates key fea-
tures of the physics of gluon saturation. This model for the
dipole amplitude contains an eikonalized gluon distribution
which satisfies DGLAP evolution whereas explicitly main-
taining unitarity [19]. In Ref. [20] the nonlinear evolution
equation for dipole density has been developed. The deeply
inelastic scattering at very high energies in the saturation
regime was considered.

The unitarity problem is discussed in Ref. [21] with re-
spect to photoabsorption cross sections. The unitarity relation
entails the nonlinearity of the observed DIS structure func-
tions in terms of the impulse approximation parton densities.
The expectation value of the interaction cross sections of the
multiparton Fock states of the virtual photon over the wave
functions is considered in Ref. [21]. The unitarized total cross-
sections σ (x, ρ) read

σ (x, ρ) � σ0(x, ρ) at η(x, ρ) � 1,

where the quantity η(x, ρ) controls the effect of the unitariza-
tion and ρ is the transverse size of the qq pair. At η(x, ρ) � 1
the unitarization suppresses the cross section as σ (x, ρ) �
σ0(x, ρ) where σ0(x, ρ) is the interaction cross section for
the qq-color dipole of size ρ. The effects of the qqg-Fock
state is the deriving term of the triple-pomeron mass spec-
trum. The shadowing term in the unitarized structure function
is dominated by the triple-pomeron term, which is approxi-
mately independent of the flavor and Q2 variables. Indeed the
unitarity (shadowing) correction is a nonlinear functional of
the DGLAP cross section. Also the unitarity correction can be
related to the cross section of the forward diffractive dissoci-
ation of the virtual photons (DDIS) γ ∗ + p → X + p where
X = qq. The conventional description of DDIS is based on
the leading twist DGLAP evolution equations which charac-
terize the QCD hard scale dependence of the diffractive parton
distribution functions [22]. The effects of pomeron loops

and running coupling on the cross sections for inclusive γ ∗h
and on diffractive deep inelastic scattering are investigated in
Ref. [23]. In Ref. [24] DDIS provides a basis for the definition
of the Weizsäcker-Williams nuclear gluon structure function.
Also the initial conditions at low-x DIS off nucleons and
nuclei for QCD evolution that satisfy unitarity are described.
The nonlinear effects can be tested at a superior statistical
accuracy attainable at the EIC.

This paper is organized as follows. In the next section the
theoretical formalism is presented, including the nonlinear
evolution and the color dipole parameters. In Sec. III, we
present a detailed numerical analysis and our main results. We
then confront these results with the CDM bounds at low values
of Q2. In the last section we summarize our main conclusions
and remarks.

II. THEORETICAL FORMALISM

In the CDM the ρ parameter is dependent on the proton
structure function F2(x, Q2) and the gluon distribution func-
tion G(x, Q2) as reads

ρ(x, Q2) = 27π

20αs(Q2)

F2(x, Q2)

G(x, Q2)
− 1

2
. (5)

An analytical expression for F2(x, Q2) has suggested which
describes fairly well the available experimental data on the
reduced cross section [25]. This parametrization provides re-
liable structure function F2(x, Q2) according to HERA data at
low x in a wide range of the momentum transfer (1 GeV2 <

Q2 < 3000 GeV2) as

F2(x, Q2) = D(Q2)(1 − x)n
2∑

m=0

Am(Q2)Lm, (6)

and can be applied as well in analyses of ultra-high-energy
processes with cosmic neutrinos. In a new method, the linear
behavior of the gluon density in the CDM parameters is inves-
tigated in Ref. [26]. Now we consider the nonlinear behavior
of the gluon density for the CDM bounds. The nonlinear
effects of the gluon-gluon fusion due to the high gluon density
at small x is considered in Gribov-Levin-Ryskin-Mueller-Qiu
(GLR-MQ) [12]. Some studies of the GLR-MQ equation in
the framework of the extracting the gluon distribution function
have been discussed considerably over the past years [27–33].
The GLR-MQ equation can be written in standard form [34]

∂G(x, Q2)

∂ ln Q2
= ∂G(x, Q2)

∂ ln Q2

∣∣∣∣
DGLAP

−81

16

αs(Q2)

R2Q2

∫ 1

χ

dz

z
G2

(
x

z
, Q2

)
, (7)

where χ = x
x0

and x0 is the boundary condition that the gluon
distribution joins smoothly onto the linear region. The corre-
lation length R determines the size of the nonlinear terms.
This value depends on how the gluon ladders are coupled to
the nucleon or on how the gluons are distributed within the
nucleon. R is approximately equal to �5 GeV−1 if the gluons
are populated across the proton, and it is equal to �2 GeV−1 if
the gluons have hot-spot-like structures. By solving GLR-MQ
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[Eq. (7)], we obtain an expression for the nonlinear gluon
distribution function [i.e., GNL(x, Q2)] as

GNL(x, Q2) = GNL
(
x, Q2

0

) + G(x, Q2) − G
(
x, Q2

0

)
−

∫ Q2

Q2
0

81

16

αs(Q2)

R2Q2

∫ 1

χ

dz

z
G2

(
x

z
, Q2

)
d ln Q2.

(8)

We note that at x � x0(=10−2) the linear and nonlinear gluon
distribution behaviors are equal. At Q2

0 the low-x behavior of
the nonlinear gluon distribution is assumed to be [35]

GNL(
x, Q2

0

) = G
(
x, Q2

0

){
1 + 27παs

(
Q2

0

)
16R2Q2

0

θ (x0 − x)

×[
G

(
x, Q2

0

) − G
(
x0, Q2

0

)]}−1

. (9)

Substituting Eqs. (6) and (8) in Eq. (5) the nonlinear behavior
of the ρ parameter becomes

ρNL(x, Q2) = 27π

20αs(Q2)

F2(x, Q2)[i.e., Eq. (6)]

GNL(x, Q2)[i.e., Eq. (8)]
− 1

2
. (10)

Next we define the nonlinear behavior of the longitudinal-to-
transverse cross sections and the structure functions by the
following forms, respectively:

RNL(W 2, Q2) = 1

2ρNL(W 2, Q2)
, (11)

and

F NL
L/2 (W 2, Q2) ≡ FL(W 2, Q2)

F2(W 2, Q2)
= 1

1 + 2ρNL(W 2, Q2)
. (12)

If we rewrite the reduced cross section in terms of the non-
linear behavior of the ratio of the structure functions, then,
the nonlinear behavior of the reduced cross section at low Q2

reads

σ NL
r (W 2, Q2)

= F2(W 2, Q2)

[
1 − y2

1 + (1 − y)2

1

1 + 2ρNL(W 2, Q2)

]
.

(13)

Here W 2 � sy which the inelasticity y is related to Q2, x, and
the center-of-mass energy squared s = 4EeEp by y = Q2/sx.

In the following we consider the deeply inelastic structure
functions at low Q2 using the higher-twist (HT) corrections in
QCD. Using this effect in the parametrization of the proton
structure function is expected to provide better results for the
reduced cross section than the experimental data. The higher-
twist corrections arise from the struck proton’s interaction
with target remnants where reflecting confinement [36–40].
The phenomenological power correction to the structure func-
tion from the HT corrections is considered by the following
form:

F HT
2 (x, Q2) = F parametrization

2 (x, Q2)

(
1 + CHT(x)

Q2

)
, (14)

which the coefficient function CHT(x) is determined from fit to
the data. In some references [37–41] this quantity is set to be

FIG. 1. The nonlinear gluon distribution function at R = 2 GeV−1 compared with the gluon distributions from the CDP model [5], the
parametrization model [25], and MSTW08 next-to-next-to-leading order (NNLO) [46].
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FIG. 2. Results of the parameters (a) ρ(x, Q2), (b) R(x, Q2), and (c) FL/2(x, Q2) obtained from the linear and nonlinear corrections at
fixed Q2 values (black-linear and orange-nonlinear: Q2 = 5 GeV2; red-linear and blue-nonlinear Q2 = 10 GeV2 ), respectively. The parameters
compared with the CDP bounds in (a) ρ = 1 and 4/3, in (b) R = 1/2 and 3/8, and in (c) FL/2 = 1/3 and 3/11, respectively.

a free parameter as CHT = 0.12 ± 0.07 GeV2 and in others
[42,43] it depends on x as

CHT(x) = h0[h2(x)xh1 + γ ].

In Refs. [42,43] this fit parametrization is obtained from the
QCD analysis with the HT corrections included.

Therefore, it is clear from Eqs. (13) and (14) that at low
Q2, we can add the HT corrections and our solution takes the
form

σ NL+HT
r (W 2, Q2)

= F HT
2 (W 2, Q2)

[
1− y2

1 + (1 − y)2

1

1 + 2ρNL+HT(W 2, Q2)

]
,

(15)

with

ρNL+HT(x, Q2) = 27π

20αs(Q2)

F HT
2 (x, Q2)

GNL(x, Q2)
− 1

2
. (16)

III. RESULTS AND DISCUSSIONS

In this paper, we obtain the nonlinear gluon distribution
function solving the GLR-MQ evolution equation for gluon
density. The analysis is performed in the ranges of 10−5 �
x � 10−2 and 1 � Q2 � 100 GeV2. The computed results of
the nonlinear gluon distribution function are compared with
the CDP model in Kuroda and Schildknecht [5] and the

parametrization model [25] in Fig. 1. According to Fig. 7
in Ref. [5], there is considerable agreement with the results
from the CETQ Collaboration [44] and Ref. [45]. The nonlin-
ear gluon distribution behavior is comparable with MSTW08
NNLO [46] at Q2 > 1 GeV2.

In the following, the parameters and bounds with respect
to the nonlinear gluon distribution behavior can be exam-
ined. With the obtained ρ parameter, we calculate the ratio
of structure functions and the reduced cross sections with
respect to the nonlinear and higher-twist corrections. These
functions are obtained at low-x and low-Q2 values by tak-
ing an appropriate input parton distribution. In Fig. 2, the
parameters ρ, R, and FL/2 are obtained with respect to the
nonlinear behavior of the gluon distribution function. In the
following we have investigated the effect of nonlinearity in
our results in the hot-spot point. The value of this parameter is
defined to be R = 2 GeV−1 in this paper. In Fig. 2 we show
that the nonlinear results are much closer to the color dipole
bounds than the linear ones. The comparison is for Q2 = 5
and Q2 = 10 GeV2. The fluctuations corresponding to the
parameters (i.e., ρ, R, and FL/2) in comparison with constant
CDM bounds are due to the parametrization of the PDFs. By
adding the effect of the HT corrections on the parameters,
we showed that the results have a behavior comparable to
the CDM bounds. In Fig. 3, a comparison for Q2 = 5 GeV2

has been performed between the nonlinear and the nonlinear
+ higher-twist (NL + HT) corrections to the parameters. In
the following we will apply these corrections (i.e., NL + HT)
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FIG. 3. Comparison of the nonlinear behavior of the parameters (a) ρ(x, Q2 ), (b) R(x, Q2), and (c) FL/2(x, Q2) with the higher-twist
corrections at Q2 = 5 GeV2. The parameters compared with the CDP bounds in (a) ρ = 1 and 4/3, in (b) R = 1/2 and 3/8, and in
(c) FL/2 = 1/3 and 3/11, respectively.

to all results. As can be observed in Fig. 4, the ratio of the
structure functions are comparable to the H1 Collaboration
data [47] and CDM bounds [3,4,48] not only at high-Q2, but

FIG. 4. The ratio of the longitudinal-to-transversal structure
functions calculated due to the nonlinear and higher-twist effects at
fixed value of the Bjorken variable x = 0.001. Experimental data are
from the H1 Collaboration as accompanied with total errors [47]. The
obtained values compared with the CDP bounds [3,4,48] FL/2 = 1/3
and 3/11. The error bands are due to the effective parameters in
the parametrization of F2(x, Q2) [25] and the HT coefficient errors
[36–43].

also at low-Q2 values. Indeed, the transition from the linear
to nonlinear is performed due to the nonlinear corrections to
the gluon distribution function. Compared to other results and

FIG. 5. Continue Fig. 4 in the low-Q2 values. The ratio of the
longitudinal-to-transversal structure functions calculated due to the
nonlinear and higher-twist effects at the fixed value of the Bjorken
variable x = 0.001. Data are from the H1 Collaboration [41] without
the total uncertainties at low Q2. The error bands are due to the
effective parameters in the parametrization of F2(x, Q2) [25] and the
HT coefficient errors [36–40,42,43].
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TABLE I. The reduced cross-section σr determined based on the nonlinear and higher-twist effects in Q2-values 2, 5, and 12 GeV2 at
x < 0.01. These results are accompanied with the uncertainties due to the coefficient functions errors [25] and compared with the H1 data [41]
as the uncertainties are quoted in percentages relative to σr .

Q2 (GeV2) x H1 Collaboration data σr±δ (%) σr±δ

2 2.470 × 10−5 NVX-S9 data 0.756 ± 9.23 0.833+0.165
−0.164

2 2.928 × 10−5 SVX data 0.822 ± 4.28 0.855+0.161
−0.161

2 2.928 × 10−5 NVX-BST data 0.788 ± 4.45 0.855+0.161
−0.161

2 5.000 × 10−5 SVX data 0.837 ± 3.10 0.847+0.152
−0.151

2 5.000 × 10−5 NVX-BST data 0.792 ± 5.31 0.847+0.152
−0.151

2 8.000 × 10−5 SVX data 0.791 ± 3.03 0.800+0.144
−0.143

2 1.300 × 10−4 SVX data 0.731 ± 3.28 0.742+0.136
−0.135

2 2.000 × 10−4 SVX data 0.700 ± 3.58 0.691+0.129
−0.129

2 3.200 × 10−4 SVX data 0.578 ± 4.39 0.637+0.121
−0.121

2 3.200 × 10−4 NVX-BST data 0.645 ± 12.2 0.637+0.121
−0.121

2 5.000 × 10−4 SVX data 0.528 ± 3.95 0.590+0.116
−0.115

2 1.000 × 10−3 SVX data 0.490 ± 3.79 0.523+0.104
−0.104

2 1.000 × 10−3 NVX-BST data 0.527 ± 5.93 0.523+0.104
−0.104

2 3.200 × 10−3 SVX data 0.424 ± 4.65 0.425+0.087
−0.087

2 3.200 × 10−3 NVX-BST data 0.426 ± 5.80 0.425+0.087
−0.087

5 6.176 × 10−5 NVX-S9 data 0.933 ± 7.70 1.002+0.233
−0.244

5 7.320 × 10−5 NVX-BST data 1.052 ± 3.26 1.055+0.228
−0.240

5 1.300 × 10−4 NVX-BST data 1.066 ± 2.72 1.062+0.212
−0.223

5 2.000 × 10−4 NVX-BST data 1.009 ± 2.62 0.997+0.201
−0.212

5 3.200 × 10−4 NVX-BST data 0.911 ± 2.79 0.913+0.190
−0.199

5 5.000 × 10−4 NVX-BST data 0.838 ± 3.11 0.834+0.178
−0.187

5 8.000 × 10−4 NVX-BST data 0.775 ± 3.50 0.754+0.166
−0.175

5 1.300 × 10−3 NVX-BST data 0.686 ± 2.91 0.677+0.154
−0.162

5 2.000 × 10−3 NVX-BST data 0.636 ± 2.84 0.615+0.143
−0.151

5 3.980 × 10−3 NVX-BST data 0.569 ± 3.18 0.523+0.125
−0.133

12 8.000 × 10−4 NVX-BST data 1.067 ± 3.05 1.014+0.263
−0.284

12 1.300 × 10−3 NVX-BST data 0.938 ± 3.31 0.898+0.243
−0.262

12 2.000 × 10−3 NVX-BST data 0.850 ± 3.00 0.802+0.224
−0.243

12 3.200 × 10−3 NVX-BST data 0.752 ± 2.98 0.705+0.205
−0.222

12 6.310 × 10−3 NVX-BST data 0.650 ± 2.89 0.578+0.174
−0.190

models, we see that the ratio FL/F2 is, in fact, comparable
to the results of others [10,49] and experimental data. This
comparison is very good at low- and high-Q2 values, even
compared to other models, such as Golec-Biernat-Wüsthoff
[10] and Iancu-Itakura-Munier [49] parametrizations. The
nonlinear behavior of the ratio of structure functions at low
Q2 in Fig. 5 is observable in comparison with the H1 Col-
laboration data [41]. In Fig. 5, data collected in the region
of low-momentum transfers 0.2 GeV2 � Q2 � 12 GeV2 and
low Bjorken x, 10−6 � x � 0.02 with center-of-mass energy√

s = 319 GeV. In Ref. [41] the structure functions of F2

and FL were collected without the total errors. Tables 17 and
18 in this reference show that Fth

L represents the structure
function FL used for the center-of-mass energy correction and
to calculate the structure function F2. Therefore, we compared
our results at x = 0.001 in a wide range of W 2 between 103

and 104 GeV2 with the ratio of structure functions (i.e., Ref.
[41]) without the total uncertainties in Fig. 5.

In the following we use the NL + HT behavior of the ratio
FL/F2 to calculate the reduced cross section. In Ref. [41] the
H1 Collaboration reported the DIS cross sections at low Q2.
The DIS data collected based on the shifted vertex (SVX),
nominal vertex-backward silicon tracker (NVX-BST), and
NVX-S9 analysis [41]. We use the SVX data at Q2 = 2 GeV2,
the NVX-BST data, the NVX-S9 data at Q2 = 5 GeV2, and
the NVX-BST data at Q2 = 12 GeV2. The cross-section data
due to the NL + HT effects at three values of Q2 are given
in Table I and compared with the H1 Collaboration data [41]
measured from the SVX and NVX data. Here we discuss the
χ2 method for comparison according to the number of points
at any Q2 value. χ2 can be defined as

χ2 =
Ndata∑

i

(Xdata,i − Xmethod,i )
2/(δXi )

2, (17)
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TABLE II. The values of χ 2/N for the computed σr to the H1
Collaboration data [41] in the small- and moderate-Q2 regions for
x < 0.01 are determined. Also the number of data points in each case
is mentioned.

Q2 (GeV2) H1 Collaboration data N χ 2/N

NVX-S9 data
2 NVX-BST data 15 1.696

SVX data
NVX-S9 data

5 NVX-BST data 10 1.021
12 NVX-BST data 5 5.315

where i runs all the data points δXi can be the total experi-
mental uncertainties. The χ2/Ndata can quantify the agreement
between the data and our predictions. The χ2/Ndata computed
at different values of Q2 is in Table II.

The results are plotted in Fig. 6. In this figure, together with
the H1 Collaboration data [41], we plot the x dependence of
the reduced cross-section σr (x, Q2) computed with respect to
the nonlinear and higher-twist effects for fixed values of Q2.
The error bands are in accordance with the statistical errors
of the parametrization of F2, and the errors bars are quoted
in percentages relative to σr . The agreement of these results

with the H1 Collaboration data are excellent for x < 0.01. We
also compare these results with the HERA data [50] (which
combines H1 Collaboration and ZEUS Collaboration data) in
Fig. 6 at Q2 values of 2 and 12 GeV2. This includes data taken
with proton beam energies of Ep = 920 GeV corresponding
to the center-of-mass energy

√
s = 318 GeV. Therefore, the

results of the current paper in the region of smallest x and Q2

studies can confirm the nonlinear corrections to the small-x
gluon distributions for transition.

IV. SUMMARY

In conclusion, we have studied the effects of adding the
nonlinear corrections to the gluon density for transition from
the linear to the nonlinear regions. We use the parametriza-
tion of F2(x, Q2) as a baseline. This analysis is also enriched
with the HT contributions to the proton structure function at
small values of Q2. The nonlinear and higher-twist correc-
tions to the ratio of structure functions and to the reduced
cross sections are considered. Comparing these parameters
with the CDM bounds indicate that the NL + HT effects
are enriched by the behavior at low Q2. The transition of
the ratio FL/2 from the linear to the nonlinear behavior is
considered and shows that it is in good agreement with the
CDM bounds not only at high-Q2, but also at low-Q2 values.
Comparison of the reduced cross sections with respect to the

FIG. 6. Reduced cross-section σ NL+HT
r from the nonlinear behavior of the gluon distribution and the higher-twist corrections to the proton

structure function at low x and low Q2 compared to the reduced cross-section σr from the combined low-Q2 data [41] and HERA combined data
[50]. H1 Collaboration data accompanied with total errors. H1 Collaboration data represented for Q2 = 2 GeV2 as the closed circles are SVX
data, and the open circles are NVX-BST data for Q2 = 5 GeV2, the closed circles are NVX-BST data, and the open circles are NVX-S9 data,
and for Q2 = 12 GeV2 the closed circles are NVX-BST data [41]. The error bands are due to the effective parameters in the parametrization
of F2(x, Q2) [25] and the HT coefficient errors [36–40,42,43]. This comparison with HERA combined data [50] at Q2 = 2 and 12 GeV2 is
defined.
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nonlinear and higher-twist corrections with HERA data at low
and moderate Q2 values shows that this transition has been
performed with good accuracy in comparison with the HERA
data.
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