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We study the momentum dependence of the production of light nuclei in high-energy collisions in the nucleon
coalescence mechanism. We derive formulas of the momentum distributions of deuterons d and helions 3He.
We obtain the analytic expressions of the coalescence factor BA (B2 for d and B3 for 3He) as functions of the
collision system size and the momentum. We apply the deduced results to p-p, p-Pb and Pb-Pb collisions to
explain naturally the interesting behavior of BA observed in experiments at the CERN Large Hadron Collider.
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I. INTRODUCTION

Light nuclei and antinuclei have provided a different win-
dow, compared with the electromagnetic and hadronic probes,
to study a series of fundamental problems in high-energy
physics [1–10]. The study of the production of light (anti-
)nuclei has attracted much attention in relativistic heavy-ion
collisions recently because they are considered to be effec-
tive tools to probe the properties of the deconfined quark
gluon plasma and the quantum chromodynamics phase di-
agram [5–7,9,10]. Two kinds of phenomenological models
have proved to be particularly successful in describing the
production of light nuclei. One kind is specific models based
on the coalescence mechanism [11–25], and the other is sta-
tistical models [26–31]. Transport models such as those in
Refs. [32–36] have also been used to describe different pro-
duction characteristics of light nuclei.

Experimental data on light nuclei production accumulated
recently at the BNL Relativistic Heavy Ion Collider (RHIC)
and the CERN Large Hadron Collider (LHC) exhibit a number
of fascinating features [37–51]. The most striking ones might
be the behavior of the coalescence factor BA as a function of
the size of the collision system and the transverse momentum
per nucleon pT /A [40–42,45–51]. The coalescence factor BA

is defined as

EA
d3NA

d p3
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= BA
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where EAd3NA/d p3
A is the Lorentz-invariant momentum dis-

tribution of the light nuclei with mass number A and charge
Z , and Ep,nd3Np,n/d p3

p,n are those of protons and neutrons at
momentum pp,n = pA/A.

From the viewpoint of the coalescence mechanism, BA is a
unique link between the light nuclei formed and the primordial
nucleons. It carries the key kinetic and dynamical information
of the process of nucleons coalescing into light nuclei. More-
over, BA can probe the freeze-out properties of the system
such as the effective freeze-out volume [20,52] and freeze-out
particle correlations [25] because nucleons recombining into
light nuclei is expected to happen at a later stage of the system
evolution [3]. Much effort has been put into the coalescence
factor BA in different coalescence models [20–25,53,54].

In the year 2020, the ALICE Collaboration published
more precise data on BA as a function of pT /A for both
p-p and p-Pb collisions in separate intervals of multiplic-
ity, which show nearly constant behavior [48,49,51]. In
Pb-Pb collisions, an obvious increasing trend is observed
for BA as a function of pT /A [46], which is usually at-
tributed to the position-momentum correlations or hard
scatterings [21,23]. A consistent and quantitative explanation
for the different behavior of the pT dependence of BA mea-
sured in different collision systems at the LHC is urgently
necessary.

In this article, we apply the coalescence mechanism
to hadronic systems created in p-p, p-nucleus (p-A) and
nucleus-nucleus (A-A) collisions with extremely high colli-
sion energies to study the momentum dependence of light
nuclei production in the low- and intermediate-pT regions. We
present simple formulas of momentum spectra and analytic
expressions for momentum dependencies of BA of different
light nuclei. We find that instantaneous coalescence or recom-
bination occurring in the nucleon rest frame rather than in the
laboratory frame can give natural explanations for the obvious
growth of BA against pT for all centralities in Pb-Pb collisions
and for the relatively weak pT dependence of BA in p-p and
p-Pb collisions at the LHC [46–51].
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The rest of the paper is organized as follows: In Sec. II,
we present the derivation of the momentum dependence of
the production of light nuclei in the framework of the nucleon
coalescence. We present in particular the analytic expressions
for the coalescence factors B2 and B3 measured by RHIC and
LHC experiments [40–42,45–51] and discuss their qualitative
properties. In Sec. III, we apply the deduced results to p-p,
p-Pb, and Pb-Pb collisions at the LHC. In Sec. IV, we give a
summary.

II. FORMULAS OF LIGHT NUCLEI PRODUCTION IN THE
COALESCENCE MECHANISM

In this section we start from the basic ideas of coalescence
and present general formulas of momentum dependence of
light nuclei. Then we present the results obtained with several
assumptions and/or approximations, such as the factorization
of coordinate and momentum, and those in modeling normal-
ized nucleon coordinate distribution. Finally, we give analytic
results of coalescence factors B2 and B3 as functions of the
system size and the momentum of light nuclei and discuss
their features.

A. The general formalism

We start with a hadronic system produced at the final
stage of the evolution of high-energy collision and sup-
pose light nuclei are formed via nucleon coalescence. The
three-dimensional momentum distribution of the produced
deuterons fd (p) and that of helions f3He(p) are given by

fd (p) =
∫

dx1dx2d p1d p2 fpn(x1, x2; p1, p2)

×Rd (x1, x2; p1, p2, p), (2)

f3He(p) =
∫

dx1dx2dx3d p1d p2d p3 fppn(x1, x2, x3; p1, p2, p3)

×R3He(x1, x2, x3; p1, p2, p3, p), (3)

where fpn(x1, x2; p1, p2) and fppn(x1, x2, x3; p1, p2, p3)
are two- and three-nucleon joint coordinate-momentum
distributions, respectively, and Rd (x1, x2; p1, p2, p)
and R3He(x1, x2, x3; p1, p2, p3, p) are kernel functions.
Here and from now on we use bold symbols to denote
three-dimensional coordinates and momenta.

The joint coordinate-momentum distributions fpn(x1, x2;
p1, p2) and fppn(x1, x2, x3; p1, p2, p3) are the nucleon number
densities. They satisfy∫

fpn(x1, x2; p1, p2)dx1dx2d p1d p2 = Npn,

(4)∫
fppn(x1, x2, x3; p1, p2, p3)dx1dx2dx3d p1d p2d p3 = Nppn,

(5)

where Npn = NpNn and Nppn = Np(Np − 1)Nn are the number
of all possible pn pairs and that of all possible ppn clusters,
respectively. Np is the number of protons and Nn is that of neu-
trons in the considered hadronic system. We can rewrite the

joint distributions in terms of the normalized forms denoted
by the superscript (n) as

fpn(x1, x2; p1, p2) = Npn f (n)
pn (x1, x2; p1, p2), (6)

fppn(x1, x2, x3; p1, p2, p3) = Nppn f (n)
ppn(x1, x2, x3; p1, p2, p3).

(7)

Kernel functions Rd (x1, x2; p1, p2, p) and R3He(x1, x2,

x3; p1, p2, p3, p) denote the probability density for p, n with
momenta p1 and p2 at x1 and x2 to recombine into a d of
momentum p, and that for p, p, n with momenta p1, p2, and
p3 at x1, x2, and x3 to recombine into a 3He of momentum p,
respectively. Just as discussed in Ref. [55], they carry the ki-
netic and dynamical information of the nucleons recombining
into light nuclei, and their precise expressions should be con-
strained by such as the momentum conservation, constraints
due to intrinsic quantum numbers, e.g., spin, and so on. To
take these constraints into account explicitly, we rewrite them
in the following forms:

Rd (x1, x2; p1, p2, p)

= gdR(x,p)
d (x1, x2; p1, p2)δ

(
2∑

i=1

pi − p

)
, (8)

R3He(x1, x2, x3; p1, p2, p3, p)

= g3HeR(x,p)
3He (x1, x2, x3; p1, p2, p3)δ

(
3∑

i=1

pi − p

)
, (9)

where the spin degeneracy factors gd = 3/4 and g3He = 1/4.
The Dirac δ functions guarantee momentum conservation
in the coalescence. The remaining R(x,p)

d (x1, x2; p1, p2) now
stands for the probability of a pn pair with momenta p1 and p2
at x1 and x2 to recombine into a composite d-like particle with
any momentum and any spin quantum number and similarly
for R(x,p)

3He (x1, x2, x3; p1, p2, p3). They depend on the positions
and momenta of the nucleons and should be determined by the
dynamics in the coalescence process.

In this way, we obtain the momentum distribution of d and
that of 3He as

fd (p) = gd Npn

∫
dx1dx2d p1d p2 f (n)

pn (x1, x2; p1, p2)

×R(x,p)
d (x1, x2; p1, p2)δ

(
2∑

i=1

pi − p

)
, (10)

f3He(p) = g3HeNppn

∫
dx1dx2dx3d p1d p2d p3

× f (n)
ppn(x1, x2, x3; p1, p2, p3)

×R(x,p)
3He (x1, x2, x3; p1, p2, p3)δ

(
3∑

i=1

pi − p

)
.

(11)

Equations (10) and (11) are the general formulas for studying
momentum distributions of light nuclei based on the basic
ideas of the coalescence mechanism. More specific results can
be obtained when special assumptions or approximations are
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made about the normalized nucleon joint distributions and/or
the coordinate-momentum-dependent kernel functions.

B. Factorization of coordinate and momentum dependencies

Generally, the coordinate and momentum dependencies of
kernel functions and nucleon joint distributions are coupled
to each other, especially in relativistic heavy-ion collisions
where the collective expansion exists. The coupling intensities
and its specific forms are probably different in different col-
lision systems and centralities. Such coupling effects on light
nuclei production have been studied in Refs. [21,22]. In this
article, we focus on common features for production mech-
anisms of light nuclei in p-p, p-A, and A-A collisions, and
in particular for a consistent understanding for the collision
system size and momentum dependencies of the coalescence
factor BA. We try our best to derive production formulas
analytically and present momentum and collision system de-

pendencies of light nuclei more intuitively, so we do not
include such coordinate-momentum coupling. We consider
only this case where the coordinate and momentum dependen-
cies of kernel functions are decoupled from each other, i.e.,

R(x,p)
d (x1, x2; p1, p2) = R(x)

d (x1, x2)R(p)
d (p1, p2), (12)

R(x,p)
3He (x1, x2, x3; p1, p2, p3) = R(x)

3He(x1, x2, x3)

×R(p)
3He(p1, p2, p3), (13)

and the normalized joint distributions of the nucleons are
coordinate and momentum factorized as follows:

f (n)
pn (x1, x2; p1, p2) = f (n)

pn (x1, x2) f (n)
pn (p1, p2), (14)

f (n)
ppn(x1, x2, x3; p1, p2, p3) = f (n)

ppn(x1, x2, x3) f (n)
ppn(p1, p2, p3).

(15)

Substituting Eqs. (12)–(15) into Eqs. (10) and (11), we have

fd (p) = gd Npn

∫
dx1dx2 f (n)

pn (x1, x2)R(x)
d (x1, x2)

∫
d p1d p2 f (n)

pn (p1, p2)R(p)
d (p1, p2)δ

(
2∑

i=1

pi − p

)
, (16)

f3He(p) = g3HeNppn

∫
dx1dx2dx3 f (n)

ppn(x1, x2, x3)R(x)
3He(x1, x2, x3)

∫
d p1d p2d p3 f (n)

ppn(p1, p2, p3)R(p)
3He(p1, p2, p3)δ

(
3∑

i=1

pi − p

)
.

(17)

Equations (16) and (17) show that we can calculate mo-
mentum distributions of different light nuclei by integrating
coordinates and momenta of nucleons, respectively.

We use Ad and A3He to denote the coordinate integral parts
in Eqs. (16) and (17) as

Ad =
∫

dx1dx2 f (n)
pn (x1, x2)R(x)

d (x1, x2), (18)

A3He =
∫

dx1dx2dx3 f (n)
ppn(x1, x2, x3)R(x)

3He(x1, x2, x3), (19)

and use Md (p) and M3He(p) to denote the momentum inte-
gral parts as

Md (p) =
∫

d p1d p2 f (n)
pn (p1, p2)R(p)

d (p1, p2)δ

(
2∑

i=1

pi − p

)
,

(20)

M3He(p) =
∫

d p1d p2d p3 f (n)
ppn(p1, p2, p3)R(p)

3He(p1, p2, p3)

× δ

(
3∑

i=1

pi − p

)
. (21)

So we get

fd (p) = gd NpnAdMd (p), (22)

f3He(p) = g3HeNppnA3HeM3He(p). (23)

Ad stands for the probability of a pn pair satisfying the
coordinate requirement to recombine into a deuteron-like

molecular state, and Md (p) stands for the probability of a
pn pair satisfying the momentum requirement to recombine
into a deuteron-like molecular state with momentum p. The
similar case holds for A3He and M3He(p). To evaluate these
Ad/3He and Md/3He(p), we need the coordinate and momen-
tum factorized kernel functions and nucleon distributions. In
the following, we model their precise forms and give the
corresponding analytic formulas for momentum distributions
of light nuclei.

C. Forms of kernel functions

With the instantaneous coalescence approximation, kernel
functions can be solved from the Wigner transformation
once the wave functions of the light nuclei are given. Just
as in coalescence models in Refs. [56,57], we adopt the
wave function of a spherical harmonic oscillator and get the
coordinate and momentum factorized Gaussian forms for our
kernel functions. Note that kernel functions should be directly
determined by the relative coordinates and relative momenta
of the primordial nucleons in the pn-pair (or ppn-cluster) rest
frame rather than those in the laboratory frame [3]. So we have

R(x)
d (x1, x2) = 8e

− (x′
1−x′

2 )2

σ2
d , (24)

R(p)
d (p1, p2) = e− σ2

d (p′1−p′2 )2

4h̄2c2 , (25)

R(x)
3He(x1, x2, x3) = 82e

− (x′
1−x′

2 )2

2σ2
3He e

− (x′
1+x′

2−2x′
3 )2

6σ2
3He , (26)

R(p)
3He(p1, p2, p3) = e− σ2

3He
(p′1−p′2 )2

2h̄2c2 e− σ2
3He

(p′1+p′2−2p′3 )2

6h̄2c2 . (27)
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Here, as well as in the rest of this article, the superscript ‘′’ in
the coordinate or momentum variable denotes the coordinate
or momentum of the nucleon in the rest frame of the pn-pair

or ppn-cluster. The width parameter σd =
√

8
3 Rd and σ3He =

R3He, where Rd and R3He are the root-mean-square radius of
the deuteron and that of the 3He, respectively. The factor h̄c
comes from the GeV fm unit used, and it is 0.197GeV fm.

D. Modeling the normalized coordinate distribution

In this section we calculate Ad and A3He. Changing co-
ordinate integral variables in Eq. (18) to be XC = x1+x2

2 and
r = x1 − x2, and those in Eq. (19) to be YC = (x1 + x2 +
x3)/

√
3, r1 = (x1 − x2)/

√
2, and r2 = (x1 + x2 − 2x3)/

√
6,

and recalling Eqs. (24) and (26), we have

Ad = 8
∫

dXCdr f (n)
pn (XC, r)e

− r′2
σ2

d , (28)

A3He = 82
∫

dYCdr1dr2 f (n)
ppn(YC, r1, r2)e

− (r′1 )2+(r′2 )2

σ2
3He . (29)

The normalization conditions become∫
f (n)

pn (XC, r)dXCdr = 1. (30)∫
f (n)

ppn(YC, r1, r2)dYCdr1dr2 = 1. (31)

We further assume the coordinate joint distributions are coor-
dinate variable factorized, i.e., f (n)

pn (XC, r) = f (n)
pn (XC ) f (n)

pn (r)
and f (n)

ppn(YC, r1, r2) = f (n)
ppn(YC ) f (n)

ppn(r1) f (n)
ppn(r2). Then we

have

Ad = 8
∫

dr f (n)
pn (r)e

− r′2
σ2

d , (32)

A3He = 82
∫

dr1dr2 f (n)
ppn(r1) f (n)

ppn(r2)e
− (r′1 )2+(r′2 )2

σ2
3He . (33)

As in Ref. [58], we adopt

f (n)
pn (r) = 1(

πCR2
f

)1.5 e
− r2

CR2
f ,

f (n)
ppn(r1) = 1(

πC1R2
f

)1.5 e
− r2

1
C1R2

f ,

f (n)
ppn(r2) = 1(

πC2R2
f

)1.5 e
− r2

2
C2R2

f ,

where R f is the effective radius of the source system at the
light nuclei freeze-out and C, C1, and C2 are distribution width
parameters. Considering relations between r, r1, and r2 with
x1, x2, and x3, C1 should be equal to C/2 and C2 should
be equal to 2C/3. So there is only one distribution width
parameter C to be determined. In this article we set it to be
four, the same as in Ref. [58].

The Lorentz transformation gives x = x′ + (γ − 1) x′ ·β
β2 β +

γ t ′β, where γ = 1/(1 − β2)1/2 and β is the velocity of the

center of mass of the pn pair or ppn cluster in the labora-
tory frame. Considering instantaneous coalescence in the rest
frame of the pn pair or ppn cluster, i.e., �t ′ = 0, we get

r = r′ + (γ − 1)
r′ · β

β2
β. (34)

Substituting the above equation into Eqs. (32) and (33) and
integrating from relative coordinate variables, we obtain

Ad = 8σ 3
d(

CR2
f + σ 2

d

)√
C(R f /γ )2 + σ 2

d

, (35)

A3He = 8σ 3
3He(

C
2 R2

f + σ 2
3He

)√
C
2 (R f /γ )2 + σ 2

3He

× 8σ 3
3He(

2C
3 R2

f + σ 2
3He

)√
2C
3 (R f /γ )2 + σ 2

3He

. (36)

The above two equations show that the coalescence prob-
ability in coordinate space becomes larger when applying
coalescence criteria in the rest frame of the forming light
nuclei compared with applying them in the laboratory frame
where γ = 1. This can be equivalently understood as that
the size of the fireball formed in the laboratory is Lorentz
contracted in the rest frame of the forming light nuclei, so
the mean relative distance between nucleons becomes smaller
and the coalescence becomes easier.

E. Evaluating the nucleon momentum integral

In this section, we evaluate Md (p) and M3He(p). Substi-
tuting Eqs. (25) and (27) into Eqs. (20) and (21), we have

Md (p) =
∫

d p1d p2 f (n)
pn (p1, p2)e− σ2

d (p′1−p′2 )2

4h̄2c2 δ

(
2∑

i=1

pi − p

)
,

(37)

M3He(p) =
∫

d p1d p2d p3 f (n)
ppn(p1, p2, p3)e− σ2

3He
(p′1−p′2 )2

2h̄2c2

×e− σ2
3He

(p′1+p′2−2p′3 )2

6h̄2c2 δ

(
3∑

i=1

pi − p

)
. (38)

Exact evaluations of Md and M3He need the precise forms
of nucleon joint momentum distributions, which depend on
collision environments such as collision system, collision en-
ergy, collision centrality, etc. In this situation, the accurately
analytic results for integrals in Eqs. (37) and (38) are usu-
ally difficult to obtain. To get intuitionistic expressions for
momentum dependence of light nuclei, in particular, those
for BA factors, here we adopt the following mathematical
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approximation. Recalling that σd =
√

8
3 Rd and σ3He = R3He,

where the root-mean-square charge radius of the deuteron
Rd = 2.1421 fm and that of the 3He R3He = 1.9661 fm [59],
we see that the Gaussian width values 2h̄c/σd ,

√
2h̄c/σ3He,

and
√

6h̄c/σ3He in Eqs. (37) and (38) are quite small. So we
can mathematically approximate the Gaussian form of the
kernel function e−(�p′ )2/ε2

as (
√

πε)3δ(�p′), where ε is a
small quantity. Then we immediately obtain

Md (p) =
(

2h̄c

σd

√
π

)3 ∫
d p1d p2 f (n)

pn (p1, p2)δ(p′
1 − p′

2)

×δ

(
2∑

i=1

pi − pd

)

=
(

2h̄c

σd

√
π

)3 ∫
d p1d p2 f (n)

pn (p1, p2)γ δ(p1 − p2)

×δ

(
2∑

i=1

pi − pd

)

=
(

h̄c

σd

√
π

)3

γ f (n)
pn

( p
2
,

p
2

)
, (39)

where γ comes from �p′ = 1
γ
�p. Similarly we get

M3He(p) =
(

π h̄2c2

√
3σ 2

3He

)3

γ 2 f (n)
ppn

( p
3
,

p
3
,

p
3

)
. (40)

Ignoring correlations between protons and neutrons, we fi-
nally have

Md (p) =
(

h̄c

σd

√
π

)3

γ f (n)
p

( p
2

)
f (n)
n

( p
2

)
, (41)

M3He(p) =
(

π h̄2c2

√
3σ 2

3He

)3

γ 2 f (n)
p

( p
3

)
f (n)

p

( p
3

)
f (n)
n

( p
3

)
. (42)

To check the robustness of the above δ-function approxima-
tion, we also take a classical Boltzmann distribution f (n)

p,n =
1

(2πmT )1.5 e−p2/(2mT ) for nucleons as an example to carry out
practical integrals in Eqs. (37) and (38). We can obtain the
exact results of momentum integrals. Considering the re-
lationship mT σ 2

d/3He � γ 2h̄2c2, we can express integrated
results as Taylor series and the leading terms are just Eqs. (41)
and (42).

F. Momentum distributions of light nuclei

Substituting Eqs. (35), (36) and (41), (42) into Eqs. (22)
and (23), we finally have the momentum distributions of light
nuclei as

fd (p) = 8(
√

π h̄c)3gdγ(
CR2

f + σ 2
d

)√
C(R f /γ )2 + σ 2

d

fp

( p
2

)
fn

( p
2

)
,

(43)

f3He(p) = 82(π h̄2c2)3g3Heγ
2

3
√

3
(

C
2 R2

f + σ 2
3He

)√
C
2 (R f /γ )2 + σ 2

3He

× 1(
2C
3 R2

f + σ 2
3He

)√
2C
3 (R f /γ )2 + σ 2

3He

× fp

( p
3

)
fp

( p
3

)
fn

( p
3

)
. (44)

Equations (43) and (44) show the relationships of light nuclei
with primordial nucleons in momentum space in the labo-
ratory frame. They can be used to calculate the yields and
transverse momentum spectra of light nuclei measured ex-
tensively as long as the nucleon momentum distributions are
given. They can also be conveniently used to probe production
correlations of light nuclei and nucleons, such as the coales-
cence factor, which will be discussed in the next section.

G. Coalescence factor BA

In this section, we explore analytic results of coalescence
factors BA. Noting that in Eq. (43) fd (p) = d3Nd/d pd and
fp,n(p) = d3Np,n/d pp,n, we have

B2 ≡
(

Ed
d3Nd

d pd

)/[(
Ep

d3Np

d pp

)(
En

d3Nn

d pn

)]

= 32(
√

π h̄c)3gd

md
(
CR2

f + σ 2
d

)√
C(R f /γ )2 + σ 2

d

, (45)

where Ep = En = 1
2 Ed = 1

2γ md is used for the second equal-
ity. The mass of the deuteron is md = 1.875 GeV and γ =
(1 + p2

d/m2
d )1/2. Our result Eq. (45) is consistent with pre-

vious works [22,25], as one notices that we define R f in
the laboratory frame while Refs. [25] and [22] defined these
fireball radius parameters in the nucleon pair rest frame and
the Yano-Koonin-Podgoretskı̆ (YKP) frame, respectively.

Similarly for 3He, we have

B3 = 192
√

3(π h̄2c2)3g3He

m2
3He

(
C
2 R2

f + σ 2
3He

)√
C
2 (R f /γ )2 + σ 2

3He

× 1(
2C
3 R2

f + σ 2
3He

)√
2C
3 (R f /γ )2 + σ 2

3He

. (46)

The mass of 3He is m3He = 2.815 GeV and γ =
(1 + p2

3He/m2
3He)1/2. Equations (45) and (46) are the final

results for BA factors we derived, which clearly show that B2

and B3 depend sensitively on the system size denoted by R f ,
the size of light nuclei via σd/3He, and the momentum of light
nuclei via γ .

From Eqs. (45) and (46), we can get properties of BA

factors. The first is the larger R f , the smaller B2, and B3. This
means BA always becomes smaller from small p-p collisions
to semicentral Pb-Pb collisions and then to central Pb-Pb col-
lisions. The second is that finite sizes of light nuclei suppress
their production, and the suppression is stronger in small p-p
and p-Pb collisions than in Pb-Pb collisions. Last but most
important, Eqs. (45) and (46) give explicitly the momentum
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FIG. 1. (a) B2 of d and
√

B3 of 3He, (b) B3 of 3He as a function
of Rf at pT /A = 0.75 GeV/c.

dependence of B2 and B3 via γ , In the case of R f � σd or
σ3He, such as in central Pb-Pb collisions at the LHC, both B2

and B3 increase with the increasing momentum. In the case
of R f � σd or σ3He, such as in small p-p collisions, B2 and B3

nearly keep invariant with the momentum. All these properties
of BA are characteristics of light nuclei production in the co-
alescence production mechanism. They can be directly tested
by the experimental data.

III. APPLICATIONS IN p-p, p-Pb, AND Pb-Pb COLLISIONS
AT THE LARGE HADRON COLLIDER

In this section, we apply the results deduced in Sec. II to the
midrapidity region of p-p, p-Pb, and Pb-Pb collisions at the
LHC to study the behavior of BA as a function of the collision
system size and the transverse momentum of light nuclei. First
we present results of B2 and B3 as a function of the effective
radius of the hadronic system R f . Then we give results of B2

and B3 as a function of the charged particle pseudorapidity
density dNch/dη. Finally, we show results of B2 and B3 as a
function of the transverse momentum per nucleon, pT /A.

A. BA as a function of Rf

With Eqs. (45) and (46), we calculate B2 of d and B3 of
3He at the fixed value of pT /A = 0.75 GeV/c as a function of
the collision system size denoted by R f . The results are pre-
sented with the solid line and the dash-dotted line in Fig. 1(a)
and 1(b), respectively, which show that both B2 and B3 de-
crease with the increase of R f , and B3 decreases more rapidly
than B2.

In the large-R f region where R f � σd/3He, Eqs. (45) and
(46) give

B2 ∝ R−3
f ∝ V −1

f , (47)

B3 ∝ R−6
f ∝ V −2

f . (48)

Vf is the effective volume of the collision system at the freeze-
out of light nuclei. These results are consistent with those
in Refs. [53,54]. From Eqs. (47) and (48) one can see

√
B3

should have a similar behavior as that of B2 as a function of

FIG. 2. (a) B2 of d and (b) B3 of 3He as a function of dNch/dη in
p-p, p-Pb, and Pb-Pb collisions at the LHC. Filled symbols are the
data [46,48–51,62], and different lines are our results.

R f . We plot the result of
√

B3 with the dashed line in Fig. 1(a)
and find it is indeed almost parallel to B2 in the large-R f region
such as R f > 4 fm. But in the small-R f area,

√
B3 is different

from B2 because in this area they are affected by not only
R f but also σd/3He related with different sizes of d and 3He
themselves.

B. BA as a function of dNch/dη

The pseudorapidity density of the charged particles,
dNch/dη, is the most direct observable to represent the size
of the collision system. In this section, we study B2 of d
and B3 of 3He as a function of dNch/dη. To compare with
the experimental data, we choose pT /A = 0.75 GeV/c for d
and pT /A = 0.735 GeV/c for 3He. The relationship between
dNch/dη and R f can be parametrized based on the Hanbury
Brown–Twiss (HBT) interferometry as R f = a(dNch/dη)1/3

[60]. Here the proportionality coefficient a is a free parameter,
and it is located in the range 0.4–1.0 extracted from the HBT
correlations in Ref. [61]. We first adopt a = 0.43 to compute
B2 and B3. The solid lines in Fig. 2 are our results, and filled
symbols are the experimental data [46,48–51,62]. Overall, our
results agree with the data of B2 and B3 in different collision
systems at LHC energies except for overestimations of B2 in
Pb-Pb collisions.

We retune a to be 0.51 to recompute B2 in Pb-Pb colli-
sions, and the result presented by the dashed line in Fig. 2(a)
reproduces the data very well. In our model, different values
of a means different R f at a given dNch/dη and further means
a different freeze-out time. The values 0.51 for d and 0.43
for a for 3He mean that the effective radius of the system at d
freeze-out is about 20% larger than that at 3He freeze-out. This
could either be related to the simplifying assumptions of our
model or it might indicate a later freeze-out for d compared
with 3He in Pb-Pb collisions. We note that this is consistent
with the work of the Blast-wave model where it gives that the
kinetic freeze-out temperature (transverse expansion velocity)
of d is lower (larger) than that of 3He [46]. Richer measure-
ments for 3He are expected to make precise conclusions.
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FIG. 3. (a) B2 of deuterons and (b) B3 of 3He as functions of pT /A in p-p collisions at
√

s = 7 TeV. (c) B2 of deuterons and (d) B3 of 3He
as functions of pT /A in p-p collisions at

√
s = 13 TeV. Symbols are the data from Refs. [50,51], and the different lines are our results. B2 and

B3 have been scaled by the indicated factors for better visibility.

C. BA as a function of transverse momentum

In this section we study the transverse momentum depen-
dence of BA in the midrapidity regions in p-p, p-Pb, and
Pb-Pb collisions at the LHC. Recalling Eqs. (45) and (46) and
considering γ = (1 + p2

T /m2
d/3He)1/2 at midrapidity, we have

B2(pT ) =
32(

√
π h̄c)3gd

√
1 + p2

T

m2
d

md
(
CR2

f + σ 2
d

)√
CR2

f + (
1 + p2

T

m2
d

)
σ 2

d

, (49)

B3(pT ) =
192

√
3(π h̄2c2)3g3He

(
1 + p2

T

m2
3He

)
m2

3He

(
C
2 R2

f + σ 2
3He

)√
C
2 R2

f + (
1 + p2

T

m2
3He

)
σ 2

3He

× 1(
2C
3 R2

f + σ 2
3He

)√
2C
3 R2

f + (
1 + p2

T

m2
3He

)
σ 2

3He

. (50)

The above two equations show that B2 and B3 have close
relations with the pT of light nuclei.

In particular, if R f is much larger than the sizes of light
nuclei, such as in central Pb-Pb collisions at the LHC, we have

B2(pT ) = 32(
√

π h̄c)3gd

mdC3/2R3
f

√
1 + p2

T

m2
d

, (51)

B3(pT ) = 1728(π h̄2c2)3g3He

m2
3HeC

3R6
f

(
1 + p2

T

m2
3He

)
. (52)

Equations (51) and (52) show that both B2 and B3 should in-
crease with pT , and such an increasing trend of B3 is stronger
than that of B2. Otherwise, in the limiting case that R f is much
smaller than the sizes of light nuclei, we have

B2(pT ) = 32(
√

π h̄c)3gd

mdσ
3
d

, (53)

B3(pT ) = 192
√

3(π h̄2c2)3g3He

m2
3Heσ

6
3He

. (54)

In this limiting case, B2 and B3 are independent of pT . From
the above discussions, one can see that the pT dependence of
BA is different in different collisions. Such interesting behav-
ior of BA as a function of pT in different collision systems is
a natural characteristic of our model. It can be used to test the
validity of our model and the production mechanisms of light
nuclei. Next we test it in p-p, p-Pb, and Pb-Pb collisions in
LHC experiments.

We first study B2 and B3 as functions of pT /A in p-p colli-
sions at

√
s = 7 TeV and 13 TeV. The results are in Fig. 3. We

use the data of dNch/dη from Refs. [63,64] to determine R f by
R f = a(dNch/dη)1/3 and adopting a = 0.43. Symbols are the
data from Refs. [50,51], and different lines are our results. B2

and B3 have been scaled with the indicated factors for better
visibility. From Fig. 3, one can see that B2 exhibits nearly
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FIG. 4. (a) B2 of deuterons and (b) B3 of 3He as functions of
pT /A in p-Pb collisions at

√
sNN = 5.02 TeV. Open symbols are the

data [48,49], and different lines are our results. B2 and B3 have been
scaled with the indicated factors for better visibility.

constant trends within error bars and B3 shows very weak pT

dependence. This is the natural result of Eqs. (49) and (50). In
small p-p collisions, R f is even smaller than the sizes of the
light nuclei themselves denoted by σd or σ3He. In this case, the

item containing 1 + p2
T

m2
d/3He

in the denominator becomes promi-

nent and can nearly offset the pT dependence in the numerator.
In the limiting case of R f = 0 fm, the pT dependence in the
denominator can completely offset the pT dependence in the
numerator, and BA exhibits constant behavior as the function
of pT /A. So the smaller of the collision system, the weaker pT

dependence of BA due to the non-negligible size of the light
nuclei.

We then study B2 and B3 as functions of pT /A in p-Pb
collisions at

√
sNN = 5.02 TeV. The results are in Fig. 4.

We use the data of dNch/dη in Ref. [65] to determine R f .
Here a is 0.43, the same as in p-p collisions. Open symbols
are the data [48,49], and the different lines are our results.
B2 and B3 have been scaled with the indicated factors for
better visibility. From Fig. 4, one can see that our results can
reproduce the behavior of B2 and B3 measured experimentally.
In p-Pb collisions, R f becomes comparable to the sizes of the
light nuclei themselves. So B2 and B3 begin to increase as a
function of pT .

We finally calculate B2 and B3 as functions of pT /A in
Pb-Pb collisions at

√
sNN = 2.76 TeV and 5.02 TeV. We use

the data of dNch/dη in Refs. [66,67] to determine R f . a is
0.43 for 3He, the same as in p-p and p-Pb collisions, while it
is 0.51 for d . Symbols with error bars in Fig. 5 are the data
[46,47,62], and the different lines are our theoretical results.
From Fig. 5, one can see that the rising behavior of the data
can be described by our results and this rising trend becomes
stronger from peripheral to central collisions. This rising trend
as a function of the transverse momentum can be naturally
explained in our model by setting nucleon coalescence criteria
in the rest frame of the nucleon pair (three-nucleon cluster)
rather than in the laboratory frame. Recalling that BA presents
the probability of nucleons combining into light nuclei, when
transformed from the laboratory frame to the nucleon-pair
rest frame, the coordinate space which the nucleons are in, is
Lorentz contracted. So their relative distance becomes smaller
and it becomes easier for them to coalescence into light nuclei.
The larger transverse momentum means larger velocity and
also means stronger contraction. This leads to larger coales-
cence probability.

At the end of this section, we want to point out that R f

is parametrized to be pT independent to give numerical re-
sults in this paper. From the latest experimental measurements
for femtoscopic correlations of particle pairs [two pions, two
kaons, and two (anti)protons], one sees that R f exhibits a de-
creasing trend as a function of pT [68]. Our equations (49) and
(50) clearly show that B2 and B3 would increase stronger if R f

decreases as a function of pT , especially in central heavy-ion
collisions. This would improve our numerical results in Pb-Pb
collisions in Fig. 5. But due to very limited pT range and large
error bars of R f obtained from two (anti)proton correlation
measurements, it is hard to quantitatively study effects on BA

factors resulting from the pT dependence of R f currently.

IV. SUMMARY

Inspired by the interesting behavior of the coalescence
factors BA of light nuclei measured experimentally, we studied
the momentum dependence of the production of deuterons
and helions in high-energy collisions in the framework of
nucleon coalescence. We derived the momentum spectra for d
and 3He. To get intuitionistic expressions for the momentum
dependence of light nuclei, in particular, those for BA factors,
we took a few assumptions and/or approximations such as the
factorization of coordinate and momentum dependencies of
the kernel functions and the normalized joint nucleon distribu-
tions. We obtained simple formulas of the momentum spectra
of d and 3He, and, in particular, we gave analytic expressions
for momentum-dependent BA and discussed their properties
as functions of the collision system size as well as the light
nuclei size and momentum.

We applied the results deduced to the midrapidity regions
of p-p, p-Pb, and Pb-Pb collisions at the LHC. We reproduced
the rapidly decreasing behavior of the data of B2 and B3 as a
function of dNch/dη. In central and semicentral Pb-Pb colli-
sions at dNch/dη > 100, we found that the effective radius of
the system at d freeze-out was about 20% larger than that at
3He freeze-out. Since the larger radius usually means the later
time during system expansion evolution, our results might
indicate later freeze-out for d compared with 3He in Pb-Pb
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FIG. 5. (a) B2 of deuterons and (b) B3 of 3He as functions of pT /A in Pb-Pb collisions at
√

sNN = 2.76 TeV. (c) B2 of deuterons and (d) B3

of 3He as functions of pT /A in Pb-Pb collisions at
√

sNN = 5.02 TeV. Symbols with error bars are the data [46,47,62] and the different lines
are our results at different centralities.

collisions. Furthermore, we gave natural explanations for the
obvious growth of BA against pT for all centralities in Pb-Pb
collisions and relatively weak pT dependencies of BA in p-p
and p-Pb collisions at the LHC.

At last, we want to discuss that the present paper focuses
on common features of the coalescence mechanism in de-
scribing the production of light nuclei in different collision
systems, and the dynamical details in the coalescence pro-
cess are not included. We try our best to intuitively present
effects of kernel functions in the rest frame of the nucleon
cluster and their interesting influences on BA at different pT

bins in p-p, p-Pb, and Pb-Pb collisions. We have taken the
coordinate and momentum factorization assumption which
means that the flow effect is ignored. The flow in different
collision systems is very different, and its effect on light nuclei

production, especially in relativistic heavy-ion collisions, is
another interesting issue and deserves to be further considered
carefully.
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