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Probes of the quark-gluon plasma and plasma instabilities
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Penetrating probes in heavy-ion collisions, like jets and photons, are sensitive to the transport coefficients
of the produced quark-gluon plasma, such as shear and bulk viscosity. Quantifying this sensitivity requires a
detailed understanding of photon emission and jet-medium interaction in a nonequilibrium plasma during the
hydrodynamic stages of heavy-ion collisions. Up to now, such an understanding has been hindered by plasma
instabilities. These instabilities arise out of equilibrium and lead to spurious divergences when evaluating the
rate of interaction of hard probes with the plasma. In this paper, we show that taking into account the time
evolution of an unstable plasma cures these divergences. Specifically, we calculate the time evolution of gluon
two-point correlators in a setup with a small initial momentum anisotropy and show that the gluon occupation
density at first grows exponentially. Based on this calculation, we argue for a phenomenological prescription
where instability poles are subtracted. Finally, we show that in the Abelian case instability fields do not affect
medium-induced photon emission to our order of approximation.
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I. INTRODUCTION

In heavy-ion collisions at ultrarelativistic energies a dense
medium of quarks and gluons is formed: the quark-gluon
plasma (QGP) [1]. The medium expands and cools until the
quarks and gluons coalesce into soft hadrons which rescatter
and fly to the detectors. Remarkably, this time evolution of
the QGP is captured by hydrodynamics making the QGP
a relativistic fluid [2]. A major goal of heavy-ion collision
experiments is to characterize this QGP using transport co-
efficients, such as shear and bulk viscosity, which quantify its
response to weak perturbations and are fundamental proper-
ties of QCD. Hydrodynamic studies have shown that the ratio
of shear viscosity to entropy density of QGP is the lowest
of any known material [2], but arguably the precise value is
only known within a factor of 2 or so. Another major goal of
these experiments is to understand how the QGP is formed in
the first place. Specifically, it needs to be understood how an
initial collision of two heavy nuclei at high energies gives rise
to a macroscopic fluid within a time frame of 1 fm/c or even
less.

Explaining equilibration and transport coefficients in
heavy-ion collisions relies on knowledge of the nonequi-
librium physics of the quark-gluon plasma. Up until now
transport coefficients of the QGP have mostly been extracted
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by fitting hydrodynamic studies to experimental results of
the yield and angular distribution of soft hadrons [2]. An
alternative way is offered by hard probes of the QGP, such as
photons, jets, and heavy quarks. As an example, jets broaden
and lose energy as they interact with the QGP medium [3].
The rate of interaction and its dependence on the energy of a
jet particle depend in detail on the makeup of the fluid. Thus
the interaction with a thermally equilibrated fluid and a fluid
with shear flow will be different, meaning that the energy
loss of jets is sensitive to the QGP’s shear viscosity [4]. To
use jets or photons to get the QGP’s shear viscosity requires
thorough understanding of hard probes in nonequilibrium
QGP.

In this paper we focus on hard probes in the nonequilib-
rium plasma present in the hydrodynamic stage of heavy-ion
collisions. A number of challenges arise when calculating
nonequilibrium effects on hard probes in the plasma. An im-
portant challenge comes from instabilities intrinsic to weakly
coupled plasmas. These Weibel instabilities [5,6] come about
when quasiparticles that are anisotropically distributed in mo-
mentum space radiate soft gluons, the density of which grows
exponentially with time. The system is thus intrinsically time
dependent. The effect of this time dependence on medium-
induced processes in hard probes has not been taken into
account.1 Taking it into account is essential since otherwise
spurious divergences arise, such as in the rate of jet particles
splitting or the rate of photon production in nonequilibrium
QGP [9–12].

1We note that jet broadening and energy loss due to acceleration
of partons in the unstable fields have been studied and do not suffer
from these divergences [7,8].
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This paper is organized as follows: In Sec. II we explain
how instabilities in weakly coupled QGP lead to spurious
divergences when studying hard probes in a nonequilibrium
plasma. In Secs. III and IV we calculate the time evolution
of gluon correlators in a nonequilibrium plasma with slight
initial momentum anisotropy. We argue that for phenomeno-
logical applications the contribution of instabilities should be
subtracted. Finally, in Secs. V and VI we show that in the
Abelian case instability fields do not affect medium-induced
photon emission to our order of approximation. Details of
calculations are relocated to the Appendices.

II. BACKGROUND

Instabilities in a weakly coupled nonequilibrium quark-
gluon plasma lead to spurious divergences when calculating,
e.g., the rate of photon emission from the plasma or the rate
of jet-medium interaction. Understanding the origin of these
divergences requires some background on weakly coupled
plasmas and quantum-field theoretical calculations of photon
emission.

The ultimate goal when calculating photon emission in a
nonequilibrium plasma is to learn about the QGP formed in
experiments by using photons. This necessitates a flexible
approach where rates of photon production can be com-
bined with hydrodynamic simulations of heavy-ion collisions.
Specifically, we have two conditions.

(1) The rate of photon production should only depend on
the properties of the medium in that instant, and not on the
medium’s history. This requires

tprocess � tmedium (1)

where tprocess is the time it takes to emit a photon and tmedium is
the time scale over which the medium changes substantially.

(2) The rate of photon production should depend solely on
macroscopic variables, like pressure and shear flow, that can
be obtained from hydrodynamic calculations. This is achieved
by describing the medium by a quasiparticle momentum dis-
tribution f (p) that corresponds to the macroscopic variables.2

These two conditions have immediate consequences for
quantum field theory calculations of photon production. The
first condition says that the medium is effectively static during
the emission of a photon. We thus want to specify a quasi-
particle distribution f (p) at an initial time t0 → −∞ which
will appear in bare propagators. Assuming that f (p) remains
the same during photon emission, we can use the same bare
propagators at all times. Since time ranges from −∞ to ∞ we
can do Fourier transforms and work in frequency space which
provides huge simplification. Naively, we expect the results
for the rate of photon production to have the same form as in

2In general, there might be multiple momentum distributions for the
same macroscopic variables but the hope is that the calculation is not
sensitive to which distribution is chosen as long as the macroscopic
variables remain the same.

thermal equilibrium, with equilibrium distributions replaced
by a more general distribution f (p).3

Unfortunately, this simple picture does not work in general.
As explained in greater detail below, one generally gets a
nonsensical, infinite rate of photon production when assuming
a static medium characterized by a momentum distribution
f (p). The culprits are instabilities in the plasma which give
rise to rapid exponential growth in the density of soft gluons,
violating the assumption of a static medium. These instabil-
ities arise for any momentum distribution that is anisotropic,
i.e., f (p) �= f (p). (In the case of thermal equilibrium or other
isotropic distributions the instabilities are not present and one
can assume a static medium.) In fact, the same problem of
divergent rates is present when calculating, e.g., the rate of
jet-medium interaction [9,10], heavy-quark potential [11], and
even the rate of interaction among the quasiparticles compris-
ing the medium [12].

Understanding this problem better requires a detailed dis-
cussion of weakly coupled QCD plasmas that are sufficiently
close to equilibrium. Such plasmas are characterized by two
energy scales. First, there are quasiparticles—quarks and
gluons—which are localized and propagate freely, apart from
occasionally interacting with each other. Their phase space
behavior can be described by kinetic theory [12], and their
distribution functions obey a Boltzmann equation:

vμ ∂ f

∂xμ
+ F · ∂ f

∂p
= C[ f , A] (2)

where the distribution f (t, x; p) changes because of external
forces F and collisions between quasiparticles, as described
by C. Here color indices have been suppressed for simplicity.

The quasiparticles radiate gluon fields with energy g�
where g � 1 is the coupling constant. These long-wavelength,
soft gluons have high occupancy and can thus be described us-
ing classical field theory. Specifically, they obey the classical
equations of motion for a gluon field Aμ:

DμFμν = jν, (3)

where Dμ is a covariant derivative, Fμν is the chromoelectro-
magnetic tensor, and jμ is a current which comes from the
quark and gluon quasiparticles.

These two coupled equations, Eqs. (2) and (3), tell us that
quasiparticles source gluon fields which deflect the quasiparti-
cles in turn. They can be solved simultaneously, giving rise to
an effective field theory for the long-wavelength gluons called
hard thermal loops (HTL) [15]. We write the quasiparticle
momentum distribution as

f (p) = f0(p) + δ f (xμ; p) (4)

where δ f is a small fluctuation around the distribution f0 spec-
ified at the initial time t0 → −∞. Dropping the subleading

3A detailed argument is needed to show this [13], as the original
calculation of leading-order photon production in a plasma assumed
the Kubo-Martin-Schwinger condition which is only valid in thermal
equilibrium [14].
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collision kernel, Eq. (2) then becomes

vμ ∂δ f

∂xμ
= −F · ∂ f0

∂p
(5)

where an external force F[Aμ] due to an applied gauge field
Aμ sources fluctuation δ f . Solving for the fluctuation gives
a current jμ[Aμ] ∼ ∫

d3 p pμ

p δ f which linear response theory
tells us is related to the applied field Aμ through j(P) =
�ret (P)A(P). We thus get the retarded self-energy for soft
gluons [16]:

�
μν
ret (Q) ∼ g2

∫
d3 p

2p(2π )3
f0(p)

×
[

gμν − Q · ∂P
PμPν

P · Q − iε

]∣∣∣∣
p0=p

, (6)

which depends explicitly on the initial momentum distribution
f0. Here P and Q are four-momenta while p = |p| is the three-
momentum.

Equation (6) contains a wealth of information on how soft
gluons propagate in the medium. Continuing with the assump-
tion of a static medium, the retarded propagator Gμν

ret (x, y) =
θ (tx − ty)〈[Aμ, Aν]〉 becomes

Gret (P) = i[P2 − �ret (P)]−1 (7)

in momentum space where �
μν
ret is given by Eq. (6). A pole of

the retarded propagator, ω = E (p) − i�(p), contributes∫
dω

2π i

e−iωt

ω − E + i�
= e−iEt e−�t (8)

in the time domain. This shows that ω = E (p) is the disper-
sion relation of the excitation and �(p) is the decay width.

Whenever the initial momentum distribution f0 is
anistropic, instabilities are present in the system. In [12,17,18]
it was shown that a new pole, ω = iγ , appears in the re-
tarded gluon propagator in the upper half complex plane. It
corresponds to exponential growth eγ t in soft gluon density in
the time domain. This happens as energy is transferred from
quasiparticles to the soft chromomagnetic field as it deflects
the quasiparticles which source an even stronger field [6]. This
instability in soft gluon density has been studied extensively
numerically; see [6] and references therein. The instability
has furthermore been studied analytically in a longitudinally
expanding, boost-invariant background; see, e.g., [19].

The presence of instabilities invalidates the assumption of a
static medium. This can for instance be seen when evaluating
photon production from the medium. At leading order in the
strong coupling constant g, photons are produced through two
distinct channels. The first channel is two-to-two scattering
with a photon in the final stage, Fig. 1(a), which is unaffected
by instabilities in gluon density since the mediator is a quark.4

4The interaction of quasiparticles includes two-to-two scattering
such as in Fig. 1(b). This channel does not diverge in a static,
nonequilibrium medium despite having a gluon mediator. This is be-
cause the mediator is a retarded propagator and not an rr propagator.
More physically, the gluon mediator is emitted by the quarks upon

(a) (b)

(c) (d)

FIG. 1. Different processes in a weakly coupled quark-gluon
plasma: (a) photon production through two-to-two scattering,
(b) two-to-two scattering with gluon exchange, (c) photon emission
triggered by in-medium interactions, and (d) gluon emission trig-
gered by in-medium interactions.

Its rate has been calculated in a nonequilibrium plasma for
various momentum distributions [20–22]. The second channel
is medium-induced bremsstrahlung of a collinear photon; see
Fig. 1(c). A quark is brought slightly off shell by kicks from
the medium’s soft gluons, which allows it to emit a photon.
The probability for a kick to give the quark transverse mo-
mentum q⊥ is

C(q⊥) = g2CF

∫
dq0dqz

(2π )2
2πδ(q0 − qz ) Re Grr (Q)μνK̂μK̂ν,

(9)
where K̂μ = Kμ/k is the direction of the quark [12,13].
Here the crucial ingredient is the correlator Gμν

rr (x, y) =
1
2 〈{Aμ, Aν]} which describes the density of soft excitations.
In a static medium with initial time t0 = −∞ it is given by

Grr (Q) = Gret �aa Gadv (10)

with Gadv = G∗
ret and �aa denotes the probability to create

the excitation. During emission of a collinear photon, the
quark can receive arbitrarily many kicks from the soft glu-
ons. The kicks act coherently and tend to reduce the rate
of emission; this is the Landau-Pomeranchuk-Migdal effect
[14,23,24]. Thus in a static medium the rate of photon produc-
tion through bremsstrahlung has a complicated dependence on
C(q⊥) which can be seen in Eqs. (23) and (24) [13].

We can now finally see how instabilities invalidate the
assumption of a static medium when calculating photon pro-
duction through medium-induced bremsstrahlung. Roughly
speaking the rr propagator for the instability mode can be
approximated as

Grr ∼ 1

(q0 − iγ )(q0 + iγ )
. (11)

interaction and thus does not depend on the accumulated density of
gluons in the system.
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Substituting this into Eq. (9) and ignoring qz dependence gives

C(q⊥) ∼ 1

2γ (q⊥)
. (12)

We thus see that for slowly growing modes γ → 0 at finite q⊥
the probability for interacting with soft gluons diverges. This
is a sign that our handling of instabilities in a static medium is
incorrect.

The function C(q⊥) in Eq. (9) not only appears in photon
production but also when calculating the rate of jet-medium
interaction [23,25], as well as interaction of quasiparticles
[12]. All of these processes thus suffer from the same diver-
gence in a naive calculation in a static medium. Furthermore,
a similar problem arises when calculating the imaginary part
of the heavy quark potential in a nonequilibrium medium [11].

III. OVERVIEW OF RESULTS AND IMPLICATIONS
FOR PHENOMENOLOGY

We must go beyond the assumption of a static medium
to calculate photon production through bremsstrahlung in a
nonequilibrium QGP as is found in the hydrodynamic stage
of heavy-ion collisions. Otherwise, we get nonsensical re-
sults because of instabilities in soft gluon density. However,
including the time evolution of the medium in general is a
complicated task, especially since we can no longer do Fourier
transforms which are essential to get simple equations for
the Landau-Pomeranchuk-Migdal effect. To be able to handle
this task, we consider the simplest setup imaginable for the
medium and draw lessons from it for more realistic settings.
This furthermore gives a rare opportunity to do analytic cal-
culation in nonequilibrium plasma.

In our setup the plasma is initially composed of hard quasi-
particles with energy � while soft gluons with energy g� are
absent. The initial condition at t0 = 0 is given by a slightly
anisotropic quasiparticle distribution f0(p). The anisotropy is
defined by

ξ ∼ |〈pz〉 − 〈p⊥〉|
〈pz〉 (13)

where 〈pz〉 and 〈p⊥〉 are the momentum distribution’s typical
momenta. We assume that ξ � g. This guarantees that the
growth of instabilities is slow enough for us to have a handle
on the calculation. The small anisotropy thus allows for a
controlled calculation. For higher values of anisotropy, such as
in phenomenological applications [26], the calculation could
be extended beyond this controlled regime, much like when
perturbative calculations are extended to realistic coupling
strength. We furthermore only consider times shortly after
the starting time. This ensures that the density of the soft
gluons does not become so high that the HTL approximation
is invalidated.

In Sec. IV we calculate the propagators that describe soft
gluons in this setup. The retarded correlator becomes

Gret (tx, ty; p) =
∫

α

d p0

2π
e−ip0(tx−ty )Gret (p0, p). (14)

The propagator is written in the time domain where tx, ty > 0
are the times of the two fields. Since we assume an infi-

α

k

(a) (b) (c)

FIG. 2. Integration contours in the frequency domain. (a) The
contour α runs along the real axis and goes above all poles in the
upper half plane. (b) The contour α continued in the upper half plane.
(c) The contour γ circles all poles in the upper half plane.

nite spatial extension we can define a three-momentum p by
Fourier transform. The function

Gret (p0, p) = [(
G0

ret (P)
)−1 − �ret (P)

]−1
(15)

is the same as in Eq. (7). It generally has poles in the upper
half complex plane which correspond to instabilities [17].
Crucially, we must choose a contour α that goes above all
poles in the upper half complex plane, as in Fig. 2(a). An
instability pole p0 = iγ then gives Gret ∼ eγ (tx−ty ) for tx > ty
which grows exponentially, showing that the system is unsta-
ble to perturbations. Choosing the contour in this way also
guarantees that Gret (tx, ty; k) = 0 for ty > tx.

The important ingredient when calculating photon emis-
sion is the rr correlator of soft gluons which describes the
soft gluon density. To find an expression for it we must sep-
arate between two scales, namely, the soft scale g� and the
instability growth rate γ ∼ ξg�.5 As an example we write the
retarded correlator in Eq. (15) as

Gret (K ) = Ĝret (K ) +
∑

i

Ai

k0 − iγi
(16)

where Ĝret only has poles and branch cuts of order g� while γi

are all poles of order ξg�, including instability poles. Using
a number of controlled approximations, explained in Sec. IV,
we then get the rr correlator at early times when the gluon
occupation density is not so high that the HTL approximation
is invalidated. It is

Grr (tx, ty; k) ≈
∫

dk0

2π
e−ik0(tx−ty )Ĝrr (K )

+
∑
i, j

Ai�aa(0)A∗
j

γi + γ j
[e(γi+γ j ) T − 1] (17)

with

Ĝrr (K ) = Ĝret (K ) �aa(K ) Ĝadv(K ) (18)

and Ĝadv = Ĝ∗
ret. Here T = tx+ty

2 is the time that has passed
since the system was initialized.

The rr propagator in Eq. (17) has a clear physical interpre-
tation. The first term has no information about the initial time.
It is of the same form as the rr correlator in a static medium,

5Strictly speaking, γ ∼ ξ 3/2 but we will not need these more pre-
cise estimates in our paper [27].
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Eq. (9), except that instability modes are not included. The
second term describes the instability modes and shows expo-
nential growth at scale γ ∼ ξg�. It vanishes at the initial time
T = 0 when the instability modes are not occupied.

Most importantly, Eq. (17) is finite for slow growth rate
γ → 0. In particular, the second term in the square bracket,
which comes from the initial condition, cancels the divergence
of eγi eγ j /(γi + γ j ). This shows that including the time evo-
lution of the instabilities cures the spurious divergences we
encountered in Eq. (12), giving a finite collision kernel C(q⊥).

It is instructive to evaluate the collision kernel C(q⊥) in
our particular setup of small anisotropy. This kernel describes
the probability for a quark traveling at the speed of light to
interact with a single gluon. Assuming for simplicity that there
is only one instability mode with growth rate γ , and Fourier
transforming Eq. (17), we can write

Grr (K ) = Ĝrr (K ) + A�aa(0)A∗

2γ
[e2γ T − 1]2πδ(k0). (19)

Substituting into Eq. (9) then gives the collision kernel

C(q⊥) = Ĉ(q⊥) + g2CF K̂μK̂ν[A�aa(0)A∗]μν e2γ T − 1

2γ

∣∣∣∣
qz=0

(20)

where γ = γ (q). The first term is independent of instability
modes and is given by

Ĉ(q⊥) = g2CF

∫
dq0dqz

(2π )2
2πδ(q0 − qz ) Re Ĝrr (Q)μνK̂μK̂ν .

(21)
It describes a fluctuating cloud of soft gluons that are sourced
by hard quasiparticles at each instant. The effect of the soft
gluon cloud on photon production thus only depends on the
instantaneous, macroscopic properties of the medium. It con-
tains a wealth of nonequilibrium information coming from the
nonequilibrium distribution of hard quasiparticles. The second
term in Eq. (20) depends on the occupation density of the
instabilities. It is time dependent and thus depends on the
whole history of the medium. As we have argued it is finite
as γ −→ 0, showing explicitly that the collision kernel is
finite.

We derived Eq. (20) rigorously for a particular setup
where a system is started with a small anisotropy, ξ � g.
Furthermore, we follow the system shortly after the ini-
tialization so that the HTL approximation remains valid.
At later times and in a more general setup the instabil-
ity modes should be described by some general correlator
Gμν

rr, inst (tx, ty; k) that quantifies their occupancy and must be
calculated numerically. Assuming that the correlator does not
change substantially during the time it takes to emit a photon,
tx − ty ∼ 1/g2�, this suggests a collision kernel

C(q⊥) = Ĉ(q⊥) + g2CF K̂μK̂νGμν
rr, inst (T, T ; k)|qz=0 (22)

where T is the time at which a photon is emitted.
In both Eqs. (20) and (22) we have two scales: First, there

is a fluctuating gluon cloud at energy g�. An emitting quark
gets kicks from the cloud which take time 1/g� and which

FIG. 3. An example of diagrams that are summed up to evaluate
photon production in an Abelian background field. The thin lines
joining quark propagators are background field insertions.

are ordered in time as the time between two kicks is typically
1/g2�. This makes it possible to sum up all the momentum
kicks as must be done at leading order in perturbation the-
ory. Second, there are the instability fields the wavelength
of which is longer than the time it takes to emit a photon.
Therefore, they are not ordered in time, forcing one to evaluate
diagrams like Fig. 3 for photon emission in a background
field. This is difficult in general. However, in Secs. V and VI
we take a modest step in that direction by showing that in an
Abelian plasma the long-wavelength instability field does not
affect photon emission at leading and next-to-leading order
in l�t � 1, irrespective of occupation density, where l is a
typical transverse kick of instability modes and �t is the time
needed for photon emission.

For phenomenological purposes worries about including
the effect of long-wavelength instability fields are likely su-
perfluous. First, we have shown that there are no spurious
divergences when time dependence is taken into account,
meaning that instabilities are not enhanced through di-
vergences. Second, the contribution of instabilities to the
collision kernel will always depend on their occupation den-
sity, like in Eq. (20). Thus, the instability contribution can
be dropped if they have a low enough occupation density.
This is borne out by detailed classical-statistical simulations
which suggest that plasma instabilities only play a role in
the very early stages of heavy-ion collisions [28,29]. These
calculations describe a weakly coupled, highly occupied clas-
sical system with fluctuating initial conditions coming from
the color-glass condensate. There the instabilities are impor-
tant in the approach to a universal, nonequilibrium attractor
but once the attractor is reached detailed information on the
initial stages is forgotten and the dynamics is dominated by a
turbulent cascade towards higher energies until thermalization
is reached.

For the phenomenology of photon production in a nonequi-
librium QGP, it is therefore reasonable to neglect the
contribution of instabilities and use the function Ĉ in Eq. (21).
This function is nontrivial and has not yet been calcu-
lated fully for a given nonequilibrium distribution. Using
it guarantees a finite rate which still includes the essential
nonequilibrium information, both from the nonequilibrium
quasiparticle distribution f as well as from the soft gluon
cloud sourced at each instant by the quasiparticles. The same
procedure works for medium-induced jet splitting which also
depends on the function Ĉ. We will report on photon produc-
tion in a nonequilibrium QGP, using this procedure [30,31].
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Applying this prescription, the rate of emitting photons
with momentum k through bremsstrahlung is

k
dR

d3k
= 3Q2αEM

4π2

∫
d3 p

(2π )3
F (P + K )[1 − F (P)]

× pz 2 + (pz + k)2

2pz 2(pz + k)2
p⊥ · Re f (p; k) (23)

when the photon is emitted in the z direction [13]. Here
Re f (p) can be thought of as the probability for the quark to
gain transverse momentum p because of medium kicks. It is
solved by the Boltzmann-like equation

p⊥ = iδE f (p⊥) +
∫

d2q⊥
(2π )2

Ĉ(q⊥)[f (p⊥) − f (p⊥ + q⊥)],

(24)
where Ĉ comes from Eq. (21).

Our rigorous derivation of Eqs. (17) and (20) assumed
a small anisotropy ξ � g. At higher anisotropy, the gluon
occupation density grows rapidly and the HTL approximation
is violated before the medium has had time to emit a photon.
More generally, our discussion has assumed that the instability
modes change slowly during photon emission; see Eq. (22).
At higher anisotropy the occupation density of the instability
modes changes rapidly while a photon is being emitted. Thus
we need a collision kernel in the time domain that changes
with each gluon kick from the instability modes. Including
such a collision kernel changes the structure of the equations
describing photon production through bremsstrahlung and is
beyond the scope of this paper. Nevertheless, our calculation
shows that even at this higher anisotropy the new collision
kernel will have no divergences due to instabilities. We know
this because we can still derive the effect of the instabilities
at higher anisotropy at very early times before the HTL ap-
proximation breaks down. This calculation which is discussed
further at the end of Sec. IV, shows that spurious divergences
in the rr correlator only arise because time dependence is
ignored, even at higher anisotropy.

IV. CORRELATORS FOR UNSTABLE FIELDS

We now turn to derive the correlators in Eqs. (14) and (17)
for an anisotropic plasma shortly after specifying the initial
condition in our setup. We assume a small anisotropy ξ � g.
The retarded propagator is defined by

Gret (x, y) = G0
ret (x, y) +

∫
d4z

∫
d4w G 0

ret (x, z)

×�ret (z,w)Gret (w, y) (25)

where �ret is the retarded self-energy and G0
ret is the bare

retarded propagator (see, e.g., [32] and Sec. 3 of [33]). In
a static system, such as thermal equilibrium, this equation
can be solved by Fourier transforming to the frequency do-
main, thanks to translational invariance which guarantees that
Gret (x, y) = Gret (x − y). We must take a different route to
solve Eq. (25) since time translational invariance is broken
by instabilities. We assume that our system has infinite spatial
extension so that the spatial dependence can be described in
Fourier space.

We start our system at initial time t0 = 0. The time integrals
in Eq. (25) range over all times greater than the initial time.
Using the properties of retarded functions, we write6

Gret (x, y) = G0
ret (x − y)

+
∫ x

y
dz

∫ z

y
dw G0

ret (x − z)

×�ret (z − w) Gret (w, y), (26)

where the dependence on three-momentum is omitted. We
have �ret (z,w) = �ret (z − w) in the HTL approximation,
valid at the early times we consider when the soft gluon
density is not too high. This equation has the same form
as in equilibrium because the initial time does not appear
explicitly. Furthermore, Gret (x + τ, y + τ ) is a solution of
Eq. (26) for any τ . This suggests that we can write Gret (x, y) =
Gret (x − y). We will therefore try to find a solution7

Gret (x, y) =
∫

α

dk

2π
e−ik(x−y)Gret (k) (27)

for some function Gret (k). It is enough to find one such solu-
tion because the solution of Eq. (26) is unique. The contour
α goes along the real line and above all instability poles
that Gret (k) might have in the upper half complex plane; see
Fig. 2(a). This ensures that Gret (x, y) = 0 for y > x.

We will now evaluate the last term in Eq. (26) in detail.
Substituting Eq. (27) and the Fourier transforms8 of G0

ret and
�ret we write that term as∫ x

y
dz

∫ z

y
dw

∫
dk1

2π

∫
dk2

2π

∫
α

dk3

2π

× e−ik1(x−z)e−ik2(z−w)e−ik3(w−y) G0
ret (k1) �ret (k2) Gret (k3).

(28)

The time integrals can be done explicitly. This would not be
possible if the time integrals were written for all z,w � 0
since the integral with e−ik3(w−y) would not converge with k3

in the upper half complex plane. In the end we get∫
dk1

2π

∫
dk2

2π

∫
α

dk3

2π
G0

ret (k1) �ret (k2) Gret (k3) f (k1, k2, k3)

(29)

6To avoid clutter we denote time coordinates with x, y, z, w instead
of x0, y0, z0, w0.

7Here k can be seen as a frequency coordinate. We will write k
instead of k0.

8Since �ret (x, y) = �ret (x − y), we can define a Fourier transform
in the usual way which justifies integrating k2 over the real line in
Eq. (28). For the full retarded function, a Fourier transform Gret (k) =∫

d (x − y) eik(x−y)Gret (x − y) is ill defined since Gret (x − y) has an
exponentially growing instability part. Formally, we could define a
Laplace transform with the inverse given by Eq. (27). However, we
prefer avoiding formal integrals which do not converge. In the end,
the time domain is the only physical domain in a nonequilibrium sys-
tem and Gret (k) is just some function that gives the correct retarded
function when substituted in Eq. (27).
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where

f (k1, k2, k3) = − e−ik1(x−y)

(k1 − k2)(k1 − k3)
− e−ik2(x−y)

(k2 − k1)(k2 − k3)
− e−ik3(x−y)

(k3 − k1)(k3 − k2)
. (30)

Some tricks are needed to evaluate Eq. (29). We notice that the function f (k1, k2, k3) has no poles in its variables. Thus, we
can include a principal value for each term in the function by substituting

f (k1, k2, k3) −→ 1

8

∑
{k1 → k1 + iε1}
{k1 → k1 − iε1}

∑
{k2 → k2 + iε2}
{k2 → k2 − iε2}

∑
{k3 → k3 + iε3}
{k3 → k3 − iε3}

f (k1, k2, k3). (31)

Here ε1, ε2, ε3 > 0 are set to zero in the end. The result must be independent of the order in which they are set to zero. As is
shown in Appendix A we can then evaluate the momentum integrals in Eq. (29) using the residue theorem. Doing so requires
continuing the integration contours to the correct half plane which only contains poles of the function f . The final result is∫

α

dk

2π
e−ik(x−y)

[
Gret (k) − G0

ret (k) − G0
ret (k)�ret (k)Gret (k)

] = 0. (32)

From this we immediately see that

Gret (k
0, k) = {[

G0
ret (k)

]−1 − �ret (k)
}−1

, (33)

confirming our expression for Gret in Eq. (14). We note that the advanced correlator can easily be shown to be

Gadv(x, y) =
∫

α̃

dk

2π
e−ik(x−y)Gadv(k), (34)

where Gadv(k) = Gret (k)∗ and the integration contour is α̃ = α̃∗ which goes below all poles of Gadv(k).
We have found the retarded and advanced correlators. The other two-point correlator is Grr = 1

2 〈{Aμ(x), Aν (y)}〉 which gives
the occupation density of gluonic modes in the medium. It is

Grr (x, y) =
∫ x

0
dz

∫ y

0
dw Gret (x − z) �aa(z − w) Gadv(w − y) (35)

where the integration limits have been rewritten using properties of the retarded and advanced functions, as well as the initial
time t0 = 0 [33]. In general there is an additional term corresponding to correlation with the initial state. Assuming that there are
no soft gluons in the initial state, we can omit that term but it could easily be included in our calculations. The integrals depend
explicitly on the initial time so we expect that Grr (x, y) �= Grr (x − y). Substituting the Fourier transform of the HTL �aa as well
as Eqs. (27) and (34) gives

Grr (x, y) =
∫

α

dk1

2π

∫
dk2

2π

∫
α̃

dk3

2π

[−e−ik2xeik2y + e−ik1xeik2y + e−ik2xeik3y − e−ik1xeik3y
]

× 1

(k1 − k2)(k2 − k3)
Gret (k1) �aa(k2) Gadv(k3) (36)

after doing the time integrals.
In order to evaluate the remaining integrals in Eq. (36) we must think about the scales of the problem. The retarded correlator

is at two momentum scales:

Gret (k) = Ĝret (k) +
∑

i

Ai

k − iγi
. (37)

Here, Ĝret only has poles and branch cuts of order g� which are all in the lower half complex plane while γi are all poles of order
ξg�, with ξ � g the initial anisotropy of the system. We have split Gret into a fluctuating part Ĝret that is continually sourced by
quasiparticles and an instability part that includes time evolution. Similarly, we write

Gadv(k) = Ĝadv(k) +
∑

j

A∗
j

k + iγ j
(38)

where Ĝadv = Ĝ∗
ret. The self-energy �aa only has poles and

branch cuts of order g�.
We need to be careful when writing the retarded correlator

as in Eq. (37). The correlator has a branch cut from ω =

−|k| − iε to |k| − iε which corresponds to Landau damping.
The branch cut is most often chosen to lie just below the
real axis but then it will be partially at the scale ξg� which
spoils the separation of scales in Eq. (37). The remedy is to

064904-7



HAUKSSON, JEON, AND GALE PHYSICAL REVIEW C 103, 064904 (2021)

q0

iγ

(a)

q0

iγ

(b)

FIG. 4. Different branch cuts for Landau damping in the retarded
gluon correlator: (a) the typical branch cut which spoils a separation
of scales and (b) an alternative branch cut which respects separation
of scales; if it is chosen additional poles appear in the second Rie-
mann sheet.

choose a branch cut that avoids the ξg� region; see Fig. 4.
This results in new decaying modes on the second Riemann

sheet [34]. Ultimately, the retarded propagator only exists in
the time domain where it is independent of the branch cut we
choose.

We will use controlled approximations to evaluate the rr
correlator in Eq. (36). First, we assume that x, y � 1/g2�

so that sufficient time has passed since the system was ini-
tialized. This allows us to drop any term with e−iax where
Im a < 0 and Im a ∼ g�, as correlations with the initial con-
dition are damped when sufficient time has passed. Second,
we can assume that x − y ∼ 1/g2� since this is the time that
medium-induced emission takes. This allows us to drop any
term with e−iax where Re a ∼ g�, as it oscillates very rapidly
during emission and cancels out. The terms we drop would
also be present in a thermally equilibrated system started at an
initial time t0 = 0. They tell us little about the nonequilibrium
physics we are interested in.

These approximations allow us to to evaluate the rr prop-
agator at early times. Using the same calculational tricks as
before, a lengthy calculation given in Appendix A shows that

Grr (x, y) ≈
∫

dk

2π
Ĝret (k) �aa(k) Ĝadv(k) e−ik(x−y) +

∑
i

∫
dk

2π

Ai

k − iγi
�aa(k) Ĝadv(k) (e−ikx − eγix )eiky

+
∑

j

∫
dk

2π
Ĝret (k) �aa(k)

A∗
j

k + iγ j
e−ikx (eiky − eγ j y) +

∑
i, j

∫
dk

2π

Ai

k − iγi
�aa(k)

A∗
j

k + iγ j

×(e−ikx − eγix )(eiky − eγ j y), (39)

where the terms correspond to fluctuating contributions k ∼
g�, instability contributions k ∼ ξg�, or their cross terms.

Equation (39) has a simple interpretation. Schematically, a
mode e−iEt−γ t of the retarded function contributes∫ x

−∞
dt eik0t e−iEt−γ t = −i

k0 − E + iγ
ei(k0−E+iγ )x (40)

to the rr correlator in a system in thermal equilibrium with
initial condition at t → −∞. This expression has a pole at
k0 = E − iγ . However, in a nonequilibrium system with ini-
tial time at t = 0 the corresponding integral is∫ x

0
dt eik0t e−iEt−γ t = −i

k0 − E + iγ
[ei(k0−E+iγ )x − 1], (41)

which has no pole. In a similar fashion, there should strictly
speaking be no poles in Eq. (39): for a pole b ∼ g� of Ĝret we
should have

1

k − b
(e−ikx − e−ibx ). (42)

Nevertheless, in using our approximations we have dropped
all terms ≈ e−ibx since sufficient time has passed to eliminate
all traces of an initial time t0 = 0. Conversely, we must retain
the analogous factors eγ x for instability modes since they grow
exponentially in time.

It is instructive to rewrite Eq. (39). We can drop cross-terms
between instability and fluctuating modes since the decay
or oscillations of fluctuating modes dominates over the slow

growth rate of instability terms.9 The last term in Eq. (39) has
no poles because of the exponentials and can thus be written
with a different contour:∑

i, j

∫
β

dk

2π

Ai

k − iγi
�aa(k)

A∗
j

k + γ j

× (e−ikx − eγix )(eiky − eγ j y). (43)

Here β is a contour that goes along the real line and above
all instability poles of Gret in the upper half plane and below
all instability poles of Gadv in the lower half plane; see Fig. 5.
Doing the contour integrals then gives

Ai�aa(0)A∗
j

γi + γ j
[eγixeγ j y − θ (x − y)eγi (x−y) − θ (y − x)eγ j (y−x)]

(44)

9This can be seen in a simple way. Let us consider a term e(id+c)t

where d ∼ g� gives oscillations and c ∼ ξg� gives exponential
growth. Averaging over the time of interaction in medium-induced
emission corresponds to introducing an initial time t0 which
varies over scale 1/g2�. This can, e.g., be done by integrating
e(id+c)(t−t0 )e−t2

0 /2σ 2
over the initial time t0 where the Gaussian with

width σ ∼ 1/g2� corresponds to averaging the time of emission over
the time a typical emission takes. Integrating over t0 then gives a
factor e− 1

2 σ 2 (d2−c2+2icd ) which is heavily suppressed since d � c and
σd � 1. A full field theoretical calculation gives the same exponen-
tial suppression.
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β

k

FIG. 5. The contour β goes above instability poles of Gret in the
upper half plane and below instability poles of Gadv in the lower half
plane. Otherwise, it goes along the real axis.

where we can ignore poles10 of �aa(k) and write �aa(ai ) ≈
�aa(a∗

j ) ≈ �aa(0). Using that a(x − y) ∼ ξ/g � 1 gives our
final expression for the full rr correlator which reproduces
Eq. (17):

Grr (tx, ty; k) ≈
∫

dk0

2π
e−ik0(tx−ty )

× Ĝret (k
0; k) �aa(k0; k) Ĝadv(k0; k)

+
∑
i, j

Ai�aa(0)A∗
j

γi + γ j
[e(γi+γ j ) T − 1] (45)

where γi and Ai are functions of the three-momentum k, and
T = tx+ty

2 is the time that has passed since the system was
initialized.

Recall that this calculation has assumed a small anisotropy,
ξ � g. At higher anisotropy the HTL approximation breaks
down before the medium has had time to emit a photon.
Nevertheless, much of the derivation of the rr correlator is
valid for higher values of anisotropy in the small time win-
dow after initialization during which the HTL approximation
is still valid. In particular, Eq. (39) remains valid, except
that decaying and oscillating modes at energy g� cannot
be dropped. (Their inclusion shortly after initialization of a
system is discussed in [35].) For our purposes we only need
the last term in Eq. (39) which describes the instability modes
and has no decaying or oscillating modes. This is the term
that, when treated incorrectly, leads to spurious divergences
in a collision kernel. Just like at lower anisotropy it can be
rewritten to give Eq. (44). We see this expression is finite
when γ = γi = γ j −→ 0, precisely because of the last two
terms which come from the initial condition. This shows that
spurious divergences in the rr correlator, and by extension
the collision kernel, only arise because time dependence is
ignored. As explained in Sec. III a full calculation of the
collision kernel at higher anisotropy is involved and beyond
the scope of this paper. But importantly, we have shown that
it will not suffer from spurious divergences.

10The fact that poles of �aa can be ignored can be seen as follows:
Let us write �aa as A/(k − B) where B ∼ g� is a pole and A is the
residue. Upon performing the contour integral, the pole B will con-
tribute A/(B − ai )(B − a∗

j ) ∼ A/(g2�) while an instability pole will
contribute A/(ai − B)(ai − a∗

j ) ∼ A/ξg2� which is much bigger.

V. QUARK PROPAGATORS IN LONG-WAVELENGTH
ABELIAN BACKGROUND FIELDS

We have argued that for phenomenological applications the
time-dependent instability field in Eq. (17) should simply be
subtracted, leaving a simple expression for photon production
in a nonequilibrium plasma. It is nevertheless interesting to
explore the effect of the long-wavelength instability field,
both from a theoretical point of view, as well as as a first
step towards including background, classical fields to photon
production through bremsstrahlung.

We will now calculate how the long-wavelength back-
ground fields modify photon emission, focusing on the case
of an Abelian plasma. In particular we consider how the
background fields modify medium-induced bremsstrahlung as
seen in Fig. 1(c) which suffers from spurious divergences
when one assumes a static, nonequilibrium plasma. Our setup
is fairly general: The medium can be described by the rr
correlator in Eq. (17) but also by any other rr correlator
which has two different scales, fluctuating time-independent
excitations with energy g� and a time-dependent background
field with energy ξg�, ξ � g. This calculation also extends
easily to jet-medium interaction and quasiparticle splitting as
seen in Fig. 1(d). Our goal is to sum up nonperturbative effects
of the background field at a given order in l�t � 1 where
l ∼ ξg� is the small momentum of the background field and
�t ∼ 1/g2� is the time photon emission takes.

The two energy scales, i.e., the fluctuating field at g� and
the background field at ξg�, affect photon emission in very
different ways. The time for collinear bremsstrahlung of pho-
tons is ≈1/g2� which is very long compared to the time 1/g�
for a typical medium kick. Thus the medium kicks are ordered
in time and diagrams with crossed rungs like in Fig. 3 are sup-
pressed. On the other hand the long-wavelength background
field has wavelength ≈1/ξg� which is much longer than the
time for photon emission. Thus we must evaluate diagrams
like in Fig. 3 for the background field. These diagrams are
complicated because of the color factors and can only realisti-
cally be summed up in the case of an Abelian background field
or a non-Abelian background field in the large Nc limit where
only planar diagrams contribute. We focus on the Abelian case
here. Our goal is to do a calculation that includes both medium
kicks and the background field as can be seen in Fig. 6.

We make a few assumptions about the scales of the
problem. First, we assume that the momentum l of the long-
wavelength background field satisfies

l�t � 1 (46)

FIG. 6. A diagram for medium-induced photon production in the
presence of a background field. The red gluons denote medium kicks
at energy g� which are time ordered. The blue lines denote kicks
from the background field at energy ξg�. They are not time ordered.
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t tytx
ar l

p

FIG. 7. A retarded propagator with one background field insertion.

where �t is the time the emission of a photon takes. In our
case �t ∼ 1/g2� so for instability fields ξ � g. Furthermore,
we assume that γ�t � 1 where 1/γ is the time over which
the background fields change appreciably. We also assume

1 � ��t (47)

where � is the hard scale of the medium and �t is the time
an emission takes. Medium-induced emission of photons or
gluons takes time ≈1/g2� which is long enough to fulfill the
condition. In general Eq. (47) is satisfied for off-shell photon
emission with virtuality Q2 � �2.

We finally assume that the wavelength of the background
fields cannot be so long that it correlates two subsequent gluon

emissions. In other words

1

�(�t )2 � l (48)

where 1/�(�t )2 ∼ �/g4, the mean free path for gluon emis-
sion.

Quark propagators are modified in the presence of back-
ground fields. The bare retarded propagator is

S(0)
ret (tx, ty; p) = 1

2θ (�t )[e−ip�t /̂P − eip�t /̃P] (49)

where �t = tx − ty and P̂ = (1, p̂) and P̃ = (−1, p̂) denote
different polarizations. Adding one background field inser-
tion, Fig. 7, gives

S(1)
ret (tx, ty; p; l) = igAμ

∫
dt S(0)

ret (tx, t ; p)γ μS(0)
ret (t, ty; p + l).

(50)

We can take the background field Aμ out of the time integral
since it changes slowly. This gives

S(1)
ret (tx, ty; p; l) ≈ 1

2θ (�t )eip�t
[
(igAμP̂μ) /̂P

(
�t − 1

2 i l||(�t )2
) + (igAμP̃μ) /̃P

(
�t + 1

2 i l||(�t )2
)]

. (51)

Here we have expanded in �t l|| � 1 with l|| = p̂ · l. Terms with �t in Eq. (51) denote a potential phase rotation in the
background field. The subleading term with l||(�t )2 gives the first derivative of the background field Aμ and thus denotes
the effect of electromagnetic fields on photon emission. Higher-order terms are not amenable to evaluation using our methods.11

The retarded quark propagator with an arbitrary number of background field insertions is

S(n)
ret (tx, ty; p; {l1, . . . , ln}) ≈ 1

2
θ (�t )

[
(igAμP̂μ)ne−ip�t /̂P

n∏
i=1

e−i l ||i �t − 1

−i l ||
i

+ (−1)n+1(igAμP̃μ)neip�t /̃P
n∏

i=1

ei l ||i �t − 1

i l ||
i

]
. (52)

This simple form is achieved by summing over all the different permutations of attaching n background field insertions. See
Fig. 8 for an example with two background field insertions. The analogous expression for the advanced propagator has an
overall minus sign and θ (−�t ) instead of θ (�t ).

Equation (52) can be derived by noting that the dependence on background field momentum is∫
dω

2π
e−iω�t i

ω − p + iε

i

ω − |p +l1| + iε
· · · i

ω − |p + l1 + · · · +ln| + iε
(53)

for n ordered instability insertions. Performing the integral and expanding in li || = p̂ · li gives a complicated expression. It is
hugely simplified by summing over all permutations of attaching n background field insertions, and using that∑

permute {l1, . . . , l j }

1

(l1 + · · · + l j )(l2 + · · · + l j ) . . . l j
= 1

l1 . . . l j
. (54)

Finally, we must evaluate how the rr propagator is modified in the presence of a long-wavelength background field. The bare
rr propagator in the time domain is

S(0)
rr (tx, ty; k) = [

1
2 − Fq(k)

][
S(0)

ret (tx, ty; k) − S(0)
adv(tx, ty; k)

]
(55)

l1 l2 + l2 l1

FIG. 8. A retarded propagator with two background field insertions. The different ways of attaching the insertions are summed over.

11The omitted terms in Eqs. (51) and (52) are in fact subleading. Cross terms like /̂Pγ μ /̃P which denote spin flip in the background field give
1
p � l (�t )2 after doing the time integral and can thus be ignored. Furthermore, we can ignore spin precession in the background fields. It will

give spinor factors with ̂P+L
μ ≈ Pμ + O(l/�). After doing the time integral the spin precession correction gives a term O(l�t/�) which is

subleading to the terms in Eq. (52).
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r r
r r a r a r
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+ r r
r a r a r r

FIG. 9. The three different ways of ordering r and a indices on a rr propagator with two background field insertions.

where

F (k) =
{

fq(k), for K̂
1 − fq̄(−k), for K̃

(56)

describes the momentum distribution for incoming quarks
and outgoing antiquarks, respectively. There are many ways
to add background field insertions in the ra basis. As an
example Fig. 9 shows the three possible ways of including
two background field insertions. To find them we have used
that a background field insertion has index r, that each vertex
has an odd number of a indices, and that bare aa propagators
vanish [14]. Assuming that the momentum distributions in
each propagator are the same as our order of approximation,
fq(k) ≈ fq(k + l1) ≈ fq(k + l1 + l2),12 and using Eq. (55),
most of the terms cancel [13]. We end up with

S(2)
rr = [

1
2 − Fq(k)

](
S(2)

ret − S(2)
adv

)
. (57)

A similar cancellation takes place for any number of back-
ground field insertions so that in the end

S(n)
rr (tx, ty; p; {l1, . . . , ln})

= [
1
2 − F (k)

][
S(n)

ret (tx, ty; p; {l1, . . . , ln})

− S(n)
adv(tx, ty; p; {l1, . . . , ln})

]
. (58)

VI. MEDIUM-INDUCED PHOTON EMISSION IN ABELIAN
BACKGROUND FIELDS

We turn to evaluating photon emission in an Abelian back-
ground field. For simplicity, we begin by only considering
the long-wavelength background field with momentum ξg�,
considering medium kicks with momentum g� below.

12By making the approximation fq(k + l) ≈ fq(k) we ignore how
quarks are rotated in the background field during emission. This
correction is of order l · ∇ f (p) ∼ l

�
f (p). Such terms have a com-

bination of retarded and advanced propagator with no simple time
ordering. The time integral at the vertex with momentum contribu-
tion l will thus give T , the time that has passed since the initial
conditions that specified the momentum distribution f (p). Choosing
T � �t so that the momentum distribution describes the quarks just
before they emit the photon, it is easy to see that the correction is
subleading to Eq. (52).

b c

a d
P

K + P

P

K + P

FIG. 10. Definition of the four point quark function Sabcd .

On-shell photon emission from on-shell quarks is kinemat-
ically suppressed in the absence of kicks from a background
field or a medium. The rate of on-shell photon emission is
given by �

γ

12 which goes like the four-point quark correlator
S1122; see Fig. 10. We show in Appendix B that

S1122 = 2F (P + K )[1 − F (P)]Re Srraa (59)

where we have gone to the ra basis in the closed-time path
formalism [32] defined by

ψr = ψ1 + ψ2

2
, ψa = ψ1 − ψ2. (60)

The momentum factors in Eq. (59) describe different chan-
nels. As an example with p0 > 0 we get fq(p + k)[1 − fq(p)]
which denotes a quark with momentum p + k emitting a pho-
ton with momentum k through bremsstrahlung. The rate of
emitting an on-shell photon with momentum k through quark
bremsstrahlung then goes like

i�μ
12 μ(k) = e2

4
Tr

[
γμ

/̂Kγ μ /̂K
]
2 fq(p + k)[1 − fq(p)]

× Re
∫

d (tx − ty)eik(tx−ty )θ (tx − ty)

× e−i(|p+k|−p)(tx−ty ) (61)

as can be seen in Fig. 11. The frequency integral gives
δ(k − |p + k| + p) which vanishes under integration over p
for an on-shell photon. This is simply because the emission is
kinematically suppressed.

We now turn on the background field and see whether
on-shell photon emission becomes possible. Since we have as-
sumed that 〈A〉 = 0 but Grr = 1

2 〈{A, A}〉 �= 0 we must pair up
the background field insertions into rr two-point functions to
account for fluctuations in the background field. An example
of a contribution can be seen in Fig. 3.

The upper quark rail with momentum p + k becomes

Sn1
ret (tx, ty; p + k; {l1, . . . })

= S(0)
ret (tx, ty; p + k)(igAμK̂μ)n1

n1∏
j=1

e−îk·l j (tx−ty ) − 1

−îk · l j

(62)

tx ty
1 2

FIG. 11. Photon self-energy diagram, without a background field
or a medium.
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after summing over all possible permutations of n1 back-
ground field insertions. Similarly, the lower quark rail with
momentum k becomes

Sn2
adv(ty, tx; p + k +

∑
li; {l̃1, . . . })

= S(0)
ret (ty, tx; p + k)e−i

∑
i k̂·li (ty−tx )

×(igAμK̂μ)n2

n2∏
j=1

e−îk·l̃ j (ty−tx ) − 1

−îk · l̃ j
, (63)

with n2 instability insertions. The extra factor of e−i
∑

i k̂·li (ty−tx )

arises because the momentum flow into the advanced
propagator is p + k + ∑

li where li comes from the retarded
propagator.

When pairing up background insertions we must integrate
over the momenta in rr propagators, l and l̃. Pairing up two
background field insertions on the upper quark rail gives a
factor

D := −g2K̂μK̂ν

∫
d3l

(2π )3
Gμν

rr (T ; l)

× e−îk·l(tx−ty ) − 1

−îk · l

eîk·l(tx−ty ) − 1

îk · l

≈ −g2K̂μK̂ν

∫
d3l

(2π )3
Gμν

rr (T ; l)
[

(�t )2 − 1

12
l2(�t )4

]
(64)

where we used that the momentum flow is l in one insertion,
and −l in the other insertion. The first term, (�t )2, describes a
phase shift and the second term describes how the dispersion
relation changes because of fluctuating background fields.
Pairing up two background field insertions on the lower quark
rail gives the same factor D. Finally, pairing up an insertion
from the upper rail and an insertion from the lower rail gives

−g2K̂μK̂ν

∫
d3l

(2π )3
Gμν

rr (T ; l)
e−îk·l(tx−ty ) − 1

−îk · l

×e−îk·l(ty−tx ) eîk·l(ty−tx ) − 1

îk · l
(65)

which has the value −D.
We must now sum over all possible ways of attaching

background field insertions to the two quark rails. A typical
diagram can be seen in Fig. 3. Fortunately, we have already
summed over all ways of ordering field insertions on each
quark rail in Eqs. (62) and (63). Thus we only need to sum
over the number of insertions on each rail and the different
ways of joining them in rr propagators. Assuming that there
are m1 rr propagators where both ends are on the upper quark
rail, m2 propagators with both ends on the lower quark rail,
and m3 pairs that join the two propagator, the time dependence
becomes

θ (tx − ty)e−i(|p+k|−p)(tx−ty )

×
∞∑

n=0

∑
m1, m2, m3 � 0

m1 + m2 + m3 = n

1

m1!m2!m3!

1

2m1 2m2
Dm1 Dm2 (−D)m3 .

(66)

k n − kgΛ

ξgΛ

FIG. 12. A retarded propagator with one HTL medium kick and
n background field insertions.

There is a total of 2n background field insertions. The combi-
natorial factors account for the fact that the diagram remains
the same after interchanging different propagators between
the same rails or interchanging the ends of a propagator. (We
do not divide by 2m3 since we have not permuted instability in-
sertions between the rails.) The combinatorial sum in Eq. (66)
gives

∞∑
n=0

1

2nn!
(D + D − 2D)n = 1. (67)

Thus the total contribution of the background field cancels out
in the Abelian case. The same cancellation takes place in the
other channels, namely, for an antiquark emitting a photon and
in quark-antiquark pair annihilation.

The effect of a long-wavelength background field on pho-
ton emission is vanishing to our order of approximation. This
is true in the absence of a medium but it turns out to be equally
true when there is a medium kicking the quarks back and
forth in the transverse plane. To show this, we need retarded
propagators including both medium kicks and the effect of
a long-wavelength background field. With a medium kick
at time t and k background field insertions before the kick
and n − k insertions after the kick (see Fig. 12), the quark
propagator becomes

S(k)
ret (tx, t ; p; {l1, . . . , lk}) I (t ; q)

×S(n−k)
ret (t, ty; p + q + l1 + · · · + lk; {lk+1, . . . , ln})

= S(0)
ret (tx, t ; p) I (t ; q) S(0)

ret (t, ty; p + q)

× (igAμP̂μ)n
k∏

i=1

X (li )
n∏

j=k+1

Y (li) (68)

where I is the vertex factor for the medium kick and q is the
momentum flow in the kick. We have defined

X (li ) = e−i p̂·li (tx−t ) − 1

−i p̂ · li
e−i p̂·li (t−ty ) (69)

for background field insertions left of the kick and

Y (l j ) = e−i p̂·l j (t−ty ) − 1

−i p̂ · l j
(70)

for insertions right of the kick. We have furthermore used that
p̂+q ≈ p̂ to avoid corrections of order gl (�t )2 to Eq. (68).

We now sum over all ways of attaching the n background
field insertions, either before or after the medium kick. This
gives

S(0)
ret (tx, t ; p) I (t ) S(0)

ret (t, ty; p + q)

× (igAμP̂μ)n
n∏

i=1

[X (li ) + Y (l j )]
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= S(0)
ret (tx, t ; p) I (t ) S(0)

ret (t, ty; p + q)

× (igAμP̂μ)n
n∏

i=1

e−i p̂·li (tx−ty ) − 1

−i p̂ · li
. (71)

The effect of the instabilities is a factor which does not depend
on the time of the medium kick. This argument can clearly be
extended for any number of medium kicks. Thus, the effect of
medium kicks and n background field insertions factorizes and
the dependence on the background field strength is exactly the
same as in the case without a medium. The same argument that
lead to Eq. (67) then shows that the background field does not
affect photon emission at leading and next-to-leading order
in l�t and the rate is given by Eq. (23), independent of the
occupation density of the instabilities that was discussed in
Sec. III.

VII. CONCLUSIONS

Nonequilibrium QCD plasmas at weak coupling contain
instabilities which lead to exponential growth in soft gluon
density with time. This makes the plasma inherently time
dependent. Therefore, quantum field theory calculations that
assume a static nonequilibrium plasma do not work. In partic-
ular, assuming a static plasma leads to spurious divergences in
the rate of medium-induced jet splitting or photon production
in the plasma.

In this paper, we consider a nonequilibrium setup with a
small anisotropy, ξ � g, in the initial momentum distribution
of quasiparticles. Using tools of nonequilibrium quantum field
theory, we derive the time dependence of the retarded cor-
relator, Eq. (14), and rr correlator, Eq. (17), at early times.
As expected, the rr correlator shows exponential growth in
the soft gluon density because of instabilities. We furthermore
derive a collision kernel, Eq. (20), in our setup. This kernel is
the probability for a photon-emitting quark to get a transverse
momentum kick from a gluon in the medium. We show that
the collision kernel factorizes into kicks from a fluctuating
cloud of soft gluons, and a time-dependent instability con-
tribution with exponential growth. Crucially, the instability
contribution is finite, meaning that spurious divergences in
the rate of photon production are cured when time depen-
dence of the plasma is taken into account. At higher values of
anisotropy the collision kernel changes rapidly while a photon
is being emitted and some of our approximations break down.
But importantly, we show that the spurious divergences are
also cured for higher anisotropy when time dependence is
included.

The time-dependent instability modes in the collision ker-
nel have a complicated effect on photon emission. Due to their

long wavelength the transverse momentum kicks of the insta-
bility modes are not ordered in time, making their inclusion
more challenging. We take a step in that direction by showing
that in an Abelian plasma the instabilities’ effect on photon
production vanishes up to next-to-leading order in l�t � 1
where l is the energy scale of the instabilities and �t is the
time needed to emit a photon.

For phenomenological purposes we suggest a simple pre-
scription in which the instability contribution is omitted when
evaluating the rate of photon production and jet splitting.
Our argument is twofold. First, we have shown that there are
no spurious divergences when time dependence is taken into
account, meaning that instabilities are not enhanced through
divergences. Second, the remaining effect of instability modes
comes through the rr correlator which measures their oc-
cupation density. Thus the instability modes can be omitted
when their occupation is sufficiently low. Indeed, recent nu-
merical work using classical-statistical field theory suggests
that instability modes are no longer highly occupied once
the hydrodynamical stage is reached [28,29], justifying our
prescription.

Using our phenomenological prescription one gets rates
that only depend on the instantaneous properties of the
medium; see Eq. (23). They contain both nonequilibrium
momentum distributions and the nonequilibrium, fluctuating
soft gluon cloud which has not yet been evaluated. The rate
equations can then be solved numerically whenever a mo-
mentum distribution of quarks and gluons is specified; see
[30,31]. Thus it becomes possible to calculate the effect of
shear viscous flow on jet evolution in the plasma, as well as
photon production, through all leading-order channels. Com-
bined with a hydrodynamical model of the QGP fluid, this
supports the possibility of using jet physics and photons to
constrain the magnitude of the viscosity of QGP.
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APPENDIX A: EVALUATION OF CORRELATORS

We begin by deriving the retarded propagator in Eq. (14)
in full detail. We start from Eq. (29) and evaluate it term by
term by inserting principal values as in Eq. (31). The first term
becomes

−
∫

dk1

2π

∫
dk2

2π

∫
α

dk3

2π
G0

ret (k1) �ret (k2) Gret (k3) e−ik1(x−y)

×1

8

[(
i

k1 − k2 + iε1 − iε2
+ i

k1 − k2 + iε1 + iε2

)(
i

k1 − k3 + iε1 − iε3
+ i

k1 − k3 + iε1 + iε3

)
+

(
i

k1 − k2 − iε1 − iε2
+ i

k1 − k2 − iε1 + iε2

)(
i

k1 − k3 − iε1 − iε3
+ i

k1 − k3 − iε1 + iε3

)]
. (A1)
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We can continue the k3 integral by adding a semicircle in the upper half plane with a large radius; see Fig. 2(b). Using the residue
theorem we avoid all poles of Gret so only the poles in the square bracket contribute. We similarly continue the k2 to the upper
half plane. This gives∫

R

dk1

2π
G0

ret (k1) �ret (k1) Gret (k1) e−ik1(x−y) 1

8
{θ (ε2 − ε1)θ (ε3 − ε1) + [1 + θ (ε1 − ε2)][1 + θ (ε1 − ε3)]}, (A2)

where the integration contour is simply the real line. In a similar fashion, the second term in Eq. (29) becomes∫
R

dk

2π
G0

ret (k) �ret (k) Gret (k) e−ik(x−y) 1

8
{θ (ε1 − ε2)θ (ε3 − ε2) + [1 + θ (ε2 − ε1)][1 + θ (ε2 − ε3)]}. (A3)

The third term in Eq. (29) is slightly trickier to evaluate. We write the k3 integration contour as
∫
α

= ∫
R +∑

i

∫
γi

where γi go
around the instability poles in the upper half complex plane; see Fig. 2(c). The part with the real line integration gives∫

R

dk3

2π
G0

ret (k3) �ret (k3) Gret (k3) e−ik3(x−y) 1

8
{[1 + θ (ε3 − ε1)][1 + θ (ε3 − ε2)] + θ (ε1 − ε3)θ (ε2 − ε3)} (A4)

after doing the k1 and k2 integrals. The part with integration over the γi contour can be done explicitly, giving

∑
i

∫
γi

dk

2π
G0

ret (k) �ret (k) Gret (k)e−ik(x−y). (A5)

We are finally in a position to find the retarded propagator. Adding up the contributions of Eqs. (A2), (A3), (A4), and (A5)
and using identities of θ functions we get ∫

α

dk

2π
G0

ret (k) �ret (k) Gret (k)e−ik(x−y) (A6)

which leads directly to Eq. (32) and thus to Eq. (14) as we wanted to show.
We next evaluate the rr correlator. Specifically, we will show how Eq. (39) follows from Eq. (36) using the approximations

described in Sec. IV. Just like for the evaluation of Gret there are no poles when k1 = k2 or k2 = k3 which allows us to insert
principal values. This gives

Grr (x, y) =
∫

α

dk1

2π

∫
dk2

2π

∫
α̃

dk3

2π

[
e−ik2(x−y) − e−ik1xeik2y − e−ik2xeik3y + e−ik1xeik3y

]
× 1

8

[(
1

k2 − k1 + iε2 − iε1
+ 1

k2 − k1 + iε2 + iε1

)(
1

k2 − k3 + iε2 − iε3
+ 1

k2 − k3 + iε2 + iε3

)
+

(
1

k2 − k1 − iε2 − iε1
+ 1

k2 − k1 − iε2 + iε1

)(
1

k2 − k3 − iε2 − iε3
+ 1

k2 − k3 − iε2 + iε3

)]

×
(

Ĝret (k1) +
∑

i

Ai

k1 − ai

)
�aa(k2)

(
Ĝadv(k3) +

∑
j

A∗
j

k3 − a∗
j

)
, (A7)

where we have substituted the scale separation of Eqs. (37) and (38).
The evaluation of Eq. (A7) depends on the scale one is working at. We begin by evaluating terms at the scale g�, i.e., terms

with Ĝret and Ĝadv. We do this one exponential at a time. The first exponential term (i.e., all terms with e−ik2(x−y)) can be evaluated
exactly by continuing the k1 integral to the upper half complex plane, the k3 to the lower half complex plane, and applying the
residue theorem. Then all poles of Ĝret and Ĝadv are avoided and one gets∫

dk2

2π
Ĝret (k2) �aa(k2) Ĝadv(k3) e−ik2(x−y) 1

8
{θ (ε3 − ε2)[1 + θ (ε2 − ε1)] + θ (ε1 − ε2)[1 + θ (ε2 − ε3)]}. (A8)
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In the second exponential term (i.e., all terms with −e−ik1xeik2y) in Eq. (A7) we continue the k3 integral to the lower half plane,
giving

−i
∫

α

dk1

2π

∫
dk2

2π
Ĝret (k1) �aa(k2) Ĝadv(k2) e−ik1x eik2y 1

8

[
θ (ε3 − ε2)

(
1

k2 − k1 + iε2 − iε1
+ 1

k2 − k1 + iε2 + iε1

)
+ [1 + θ (ε2 − ε3)]

(
1

k2 − k1 − iε2 − iε1
+ 1

k2 − k1 − iε2 + iε1

)]
(A9)

exactly. In order to evaluate the k1 integral we need to use our approximations. Because of the exponential we must continue the
contour to the lower half complex plane. Applying the residue theorem we get a contribution from all poles and branch cuts of
Ĝret but they all contain a factor e−ibx with b ∼ g� and can thus be dropped according to our approximations. Thus only poles
with k2 = k1 contribute, giving∫

dk2

2π
Ĝret (k2) �aa(k2) Ĝadv(k2) e−ik2(x−y) 1

8
{θ (ε1 − ε2)θ (ε3 − ε2) + [1 + θ (ε2 − ε3)][1 + θ (ε2 − ε1)]}. (A10)

In the same way, the third exponential term in Eq. (A7) is∫
dk2

2π
Ĝret (k2) �aa(k2) Ĝadv(k2) e−ik2(x−y) 1

8
{θ (ε1 − ε2)θ (ε3 − ε2) + [1 + θ (ε2 − ε1)][1 + θ (ε2 − ε3)]} (A11)

and the fourth exponential is∫
dk2

2π
Ĝret (k2) �aa(k2) Ĝadv(k2) e−ik2(x−y) 1

8
{θ (ε1 − ε2)[1 + θ (ε2 − ε3)] + θ (ε3 − ε2)[1 + θ (ε2 − ε1)]}. (A12)

Adding up the different terms in Eqs. (A8), (A10), (A11), and (A12) and using identities for θ functions, we get that the
contribution to the rr propagator at the scale g� is

≈
∫

dk

2π
Ĝret (k) �aa(k) Ĝadv(k) e−ik(x−y). (A13)

We next turn to evaluating terms in Eq. (A7) at the scale ξg�, i.e., the contribution of instability poles in the retarded and
advanced propagators. As before the contribution of the first exponential is∑

i, j

∫
dk2

2π

Ai

k2 − ai
�aa(k2)

A∗
j

k2 − a∗
j

e−ik2(x−y) 1

8
{θ (ε3 − ε2)[1 + θ (ε2 − ε1)] + θ (ε1 − ε2)[1 + θ (ε2 − ε3)]}. (A14)

In the second exponential in Eq. (A7) we continue the k3 integral to the lower half plane to get

−i
∑
i, j

∫
α

dk1

2π

∫
dk2

2π

Ai

k1 − ai
�aa(k2)

A∗
j

k2 − a∗
j

e−ik1x eik2y

×1

8

[
θ (ε3 − ε2)

(
1

k2 − k1 + iε2 − iε1
+ 1

k2 − k1 + iε2 + iε1

)
× [1 + θ (ε2 − ε3)]

(
1

k2 − k1 − iε2 − iε1
+ 1

k2 − k1 − iε2 + iε1

)]
. (A15)

Now when we continue the k1 integral to the lower half plane we get a contribution from k1 = k2 as well as a contribution from
k1 = ai leading to ∑

i, j

∫
dk2

2π

Ai

k2 − ai
�aa(k2)

A∗
j

k2 − a∗
j

e−ik2(x−y)

×1

8
{θ (ε1 − ε2)θ (ε3 − ε2) + [1 + θ (ε2 − ε3)][1 + θ (ε2 − ε1)]}

− 1

2

∑
i, j

∫
dk2

2π

Ai

k2 − ai
�aa(k2)

A∗
j

k2 − a∗
j

e−iaix eik2y. (A16)
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Similarly, the third exponential in Eq. (A7) is∑
i, j

∫
dk2

2π

Ai

k2 − ai
�aa(k2)

A∗
j

k2 − a∗
j

e−ik2(x−y)

× 1

8
{θ (ε1 − ε2)θ (ε3 − ε2) + [1 + θ (ε2 − ε1)][1 + θ (ε2 − ε3)]}

− 1

2

∑
i, j

∫
dk2

2π

Ai

k2 − ai
�aa(k2)

A∗
j

k2 − a∗
j

e−ik2x eia∗
j y (A17)

and the fourth one is∑
i, j

∫
dk2

2π

Ai

k2 − ai
�aa(k2)

A∗
j

k2 − a∗
j

e−ik2(x−y) 1

8
{θ (ε1 − ε2)[1 + θ (ε2 − ε3)] + θ (ε3 − ε2)[1 + θ (ε2 − ε1)]}

−1

2

∑
i, j

∫
dk2

2π

Ai

k2 − ai
�aa(k2)

A∗
j

k2 − a∗
j

e−ik2x eia∗
j y − 1

2

∑
i, j

∫
dk2

2π

Ai

k2 − ai
�aa(k2)

A∗
j

k2 − a∗
j

e−iaix eik2y

+
∑
i, j

∫
dk2

2π

Ai

k2 − ai
�aa(k2)

A∗
j

k2 − a∗
j

e−iaix eia∗
j y. (A18)

Adding up the contributions in Eqs. (A14), (A16), (A17), and (A18) then gives that the contribution to Grr at the scale ξg� is∑
i, j

∫
dk

2π

Ai

k − ai
�aa(k)

A∗
j

k − a∗
j

(e−ikx − e−iaix )(eiky − eia∗
j y). (A19)

The calculation for mixed terms with, say, contribution at scale g� from the retarded correlator and contribution at scale ξg�
from the advanced correlator proceeds analogously. The final result is precisely Eq. (39).

APPENDIX B: EVALUATION OF FACTORS WITH MOMENTUM DISTRIBUTIONS

We begin by showing Eq. (59), namely, that

S1122 = 2F (P + K )(1 − F (P))Re Srraa (B1)

in the presence of instabilities. Using that

φ1 = φr + 1
2φa, φ2 = φr − 1

2φa (B2)

it is easy to see that

S1122 = Srrrr + 1
2 (Sarrr + Srarr − Srrar − Srrra) + 1

4 (Saarr − Sarar − Sarra − Sraar − Srara + Srraa)

+ 1
8 (−Saaar − Saara + Saraa + Sraaa) + 1

16 Saaaa. (B3)

The different four-point functions are defined in Fig. 9. Using that aa propagators vanish we see that Snaam = Sanma = 0 for any
n, m ∈ {a, r} so we are then left with

S1122 = Srrrr + 1
2 (Sarrr + Srarr − Srrar − Srrra) + 1

4 (Saarr − Sarar − Srara + Srraa). (B4)

Using Eq. (58) we furthermore see that Srnmr = [ 1
2 − F (P)](Sanmr − Srnma) and Snrrm = [ 1

2 − F (P + K )](Snram − Snarm) so

S1122 = [
1
2 − F (P + K )

][
1
2 − F (P)

]
(−Srraa + Sarar + Srara − Saarr ) + [

1
2 − F (P + K )

]
1
2 (Sarar − Saarr − Srraa + Srara)

+ [
1
2 − F (P)

]
1
2 (−Srara + Saarr + Srraa − Sarar ) + 1

4 (Saarr − Sarar − Srara + Srraa). (B5)

We furthermore have that Sarar = Srara = 0 because the two quark propagators give theta functions of the form θ (tx − ty)θ (ty −
tx ) = 0. We are then left with

S1122 = F (P + K )[1 − F (P)](Srraa + Saarr ) = 2F (P + K )[1 − F (P)]Re Srraa. (B6)

We finally note how the momentum factors work out when there is a medium as well as background fields. Adding n
background field insertions to the bare rr propagator gives

S(n)
rr (tx, ty; p; {l1, . . . , ln}) = [

1
2 − F (k)

] × [
S(n)

ret (tx, ty; p; {l1, . . . , ln}) − S(n)
adv(tx, ty; p; {l1, . . . , ln})

]
, (B7)
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as in Eq. (58). We can factor out the instability insertions to get

S(n)
rr (tx, ty; p; {l1, . . . , ln}) = [

1
2 − F (k)

][
S(0)

ret (tx, ty; p) − S(0)
adv(tx, ty; p)

]
(igAμK̂μ)n

n∏
j=1

e−îk·l j (tx−ty ) − 1

−îk · l j
(B8)

or in other words

S(n)
rr (tx, ty; p; {l1, . . . , ln}) = S(0)

rr (tx, ty; p) (igAμK̂μ)n
n∏

j=1

e−îk·l j (tx−ty ) − 1

−îk · l j
(B9)

for the P̂ part and similarly for the P̃ part. The same argument as in Sec. VI then allows us to factor out the effect of background
fields for any combination of rr, retarded, and advanced propagator and shows that the effect of the background field vanishes.
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