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Modified equilibrium distributions for Cooper-Frye particlization
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We introduce a positive-definite single-particle distribution that is suitable for describing the transition
from a macroscopic hydrodynamic to a microscopic kinetic description during the late stages of heavy-ion
collisions in the presence of moderately large viscous corrections. The modified equilibrium distribution
function can be constructed with hydrodynamic input from either relativistic viscous fluid dynamics or
anisotropic fluid dynamics. We test the modified equilibrium distribution’s hydrodynamic output for a sta-
tionary hadron resonance gas subject to either shear stress, bulk pressure, or baryon diffusion current at
a given freeze-out temperature and baryon chemical potential. While it does not reproduce all compo-
nents of the net baryon current and energy-momentum tensor exactly, it significantly improves upon the
customary linearized approximations for the nonequilibrium correction δ fn which typically lead to un-
physical negative distribution functions at large particle momenta. A comparison of particle spectra and
pT –differential elliptic flow coefficients from the Cooper–Frye formula computed with the modified equi-
librium distribution and with linearized δ fn corrections is presented, for two different (2+1)–dimensional
hypersurfaces corresponding to central and noncentral Pb+Pb collisions at the Large Hadron Collider
(LHC).
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I. INTRODUCTION

Among a large variety of computational approaches de-
scribing the evolution of ultra-relativistic heavy-ion collisions,
hybrid models have had the greatest success in describing a
wide variety of hadronic observables simultaneously [1–8].
Hybrid models include (at least) a relativistic viscous hy-
drodynamics module describing the spacetime evolution of
the early hot and dense quark-gluon plasma (QGP) stage of
the fireball created in the collision, followed by a hadron
cascade “afterburner” that follows the many-particle system
of hadronic resonances created from the QGP during the
process of “hadronization” microscopically to its final “ki-
netic freeze-out.” While experimental data strongly suggest
that the QGP stage evolves as a near-perfect liquid [1,9–14],
its transport properties cannot be measured directly, nor can
they (yet) be reliably computed from first principles. Rather,
they must be inferred using various experimental probes, the
most abundant of which (and therefore most precisely mea-
sured) are the soft-momentum hadrons produced after the
quark-gluon plasma has cooled down below its pseudo-critical
temperature.

Modeling the emission of these hadrons is therefore a key
component in any hybrid model [15]. However, the exact spa-
tial and momentum configurations of these emitted hadrons
are not well understood since their distribution function is
governed by microscopic kinetic theory while the preceding
quark-gluon plasma phase is treated as a strongly coupled
fluid. The dynamical process in which the quark-gluon plasma
converts to hadrons, known as hadronization, is a highly

complex, unresolved problem. Instead, hybrid models bridge
the transition between these two different phases of QCD
matter with a particlization model where the strongly cou-
pled quark-gluon plasma is evolved hydrodynamically (i.e.,
macroscopically, with minimal microscopic input such as the
equation of state (EoS) which can be obtained from lattice
QCD [16–20] and parametrized transport coefficients) until
hadronization is complete, followed by an instant conversion
to weakly interacting hadrons on a hypersurface �(x) [21].
The conversion between different sets of microscopic degrees
of freedom relies on the assumption that both viscous hydro-
dynamics and kinetic theory are simultaneously valid on this
surface �(x).

Requiring that the energy, momentum and charges of the
system are conserved during this “particlization process,” the
Cooper–Frye formula gives the particle spectrum for hadron
species n as [22] (here and in the rest of the paper we denote
by a · b = aμbμ = (a0)2 − b · b the scalar product between
two four-vectors)

En
dNn

d3 p
= 1

(2π h̄)3

∫
�

p · d3σ (x) fn(x, p), (1)

where fn is its distribution function in phase-space [22]. For
a locally equilibrated hadron resonance gas this distribution
function takes the form

feq,n(x, p) = gn

exp
[ p·u(x)

T (x) − αn(x)
] + �n

, (2)

where gn is the spin degeneracy factor, uμ(x) is the fluid
velocity, T (x) is the temperature, αn(x) = μn(x)/T (x) is the
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chemical potential-to-temperature ratio of species n, and �n ∈
[1,−1] accounts for the quantum statistics of fermions and
bosons, respectively. In this work, we only consider the
baryon chemical potential μB and write αn = bnαB, where bn

is the baryon number of species n.
Due to dissipative effects in the preceding hydrodynamic

evolution of the fluid, the distribution function is gener-
ally out of local-equilibrium on the conversion surface. One
writes fn(x, p) = feq,n(x, p) + δ fn(x, p), where δ fn(x, p) en-
codes the deviation from local equilibrium. The temperature
and chemical potential for the equilibrium part are obtained
from the energy and net-baryon densities by Landau match-
ing. Deviations from local equilibrium are described in the
hydrodynamic stage by dissipative corrections to the energy-
momentum tensor T μν (x) and the net baryon current Jμ

B (x).
These so-called “dissipative flows” are the baryon diffusion
current V μ

B (x) (a spatial vector in the local fluid rest frame
(LRF), characterized by three degrees of freedom), the shear
stress tensor πμν (x) (a symmetric traceless rank-2 tensor
with only spatial components in the LRF, characterized by
five degrees of freedom) and the bulk viscous pressure 	(x)
(adding a single scalar degree of freedom). In kinetic theory
these dissipative flows are defined as momentum moments
of the off-equilibrium part δ fn of the distribution functions,
summed over all hadron species n. At each spacetime point
x their values provide altogether nine constraints on the mo-
mentum dependencies of all of the off-equilibrium corrections
δ fn(x, p), n = 1, . . . , NR, but obviously these are not suffi-
cient to fully determine them.

In this sense, the particlization problem is ill-posed. In con-
trast to a full solution of the underlying kinetic equations, the
hydrodynamic output provides only limited information about
δ fn(x, p). To fully specify the form of fn(x, p) in the Cooper–
Frye formula Eq. (1), additional guiding principles are needed
to make optimal use of the hydrodynamic constraints. One
well-known scheme is Grad’s 14–moment approximation [23]
in which the momentum dependence of δ fn is expanded up to
second order in the momenta, with coefficients matched to the
14 hydrodynamic moments of { fn}, T μν and Jμ

B , and assuming
that all particle species n have the same expansion coeffi-
cients. Another is the first-order Chapman–Enskog expansion
of the Boltzmann equation in the relaxation time approxima-
tion (RTA), with a common relaxation time for all hadron
species [24,25]. Both schemes treat δ fn as a linear perturba-
tion of fn(x, p), ignoring higher-order terms when matching
to the hydrodynamic constraints. Unfortunately, these linear
corrections can turn the total distribution functions negative
at high momenta, especially for large dissipative flows. In
particular, when particlization is performed in close proximity
to the quark-hadron phase transition, dissipative corrections
related to bulk viscosity (which peaks near the pseudocritical
temperature) tend to be large, and a linearized approach can
no longer be trusted [26].

In the past decade, work has been done on constructing a
nonequilibrium distribution function suitable for Cooper–Frye
particlization that does not rely on a linearized expansion
scheme. In the original work by Pratt and Torrieri [27] (see
also Ref. [28] for a related ansatz), dissipative perturba-
tions are added to the “auxiliary fields” T (x), uμ(x) and

αB(x) in the Boltzmann factor, effectively transforming the
local-equilibrium distribution Eq. (2) into a quasiequilibrium
distribution. The resulting modified equilibrium distribution is
given by the formula

f PT
eq,n = Zngn

exp
[√

p′2+m2
n

T +δT − bn(αB+δαB)
] + �n

, (3)

where δT = λT 	 and δαB = λαB	 are bulk viscous correc-
tions to the effective temperature and chemical potential,
while p ′

i = −Xi · p′ are modified local-rest-frame (LRF) mo-
mentum components, with X μ

i = (X μ,Y μ, Zμ) being the
spatial basis vectors (i.e., the four-vectors that reduce in the
LRF to the directional unit vectors along the x, y, z axes). The
fluid velocity perturbation δuμ is encoded in the momentum
space transformation

pi = Ai j p ′
j, (4)

where pi = −Xi · p are the usual LRF momentum compo-
nents and

Ai j = (1+λ		)δi j + λππi j (5)

is a symmetric matrix that deforms the momentum space
linearly with the bulk viscous pressure 	(x) and LRF shear
stress tensor πi j (x) = X μ

i X ν
j πμν (x).1,2 The normalization

factor

Zn = 1

detA
(6)

rescales the distribution function such that its particle density
agrees with that of a local-equilibrium distribution with tem-
perature T +δT and chemical potential αB+δαB.

The modified equilibrium distribution Eq. (3) is con-
structed such that its momentum moments reproduce all
components of Jμ

B and T μν at first order in the (small) dissipa-
tive corrections. As the dissipative flows 	 and πi j become
larger, however, the mismatch between the hydrodynamic
input and the output when re-computing them as moments
of the modified distribution function Eq. (3) increases. This
raises the question whether the modifications to the local-
equilibrium distribution can minimize this mismatch even
for moderately large viscous corrections. Tests conducted in
Ref. [27] for the case of vanishing bulk viscous pressure
(	 = 0) showed that Eq. (3) accurately reproduces the target
shear stress as well as the energy and charge densities even for
moderately large shear stress modifications. However, when
repeated for moderately large bulk viscous pressures, this time
setting the shear stress to πi j = 0, the modified equilibrium
distribution’s hydrodynamic output strongly deviated from
the input values. This suggests that Eq. (3) can be further
improved.

1The scalar coefficients λT , λαB , λ	 and λπ are functions of the
temperature and chemical potential (T , αB).

2Reference [27] did not consider a nonzero baryon diffusion current
V μ

B (x).
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To reduce the errors associated with bulk viscous pres-
sure, a variant of the Pratt–Torrieri modified equilibrium
distribution has been developed and recently implemented
in a Bayesian model parameter extraction of heavy-ion
collision simulations of Pb+Pb collisions at LHC ener-
gies (

√
sNN = 2.76 and 5.02 TeV) [8]. A different type of

quasiequilibrium distribution, developed much earlier but
with somewhat similar goals in mind, is the anisotropic
distribution [29] on which anisotropic fluid dynamics is
based [30]. Although its analytic form has similarities with
Eq. (3), the relation between the modification parameters
and the dissipative flows is made nonlinear to capture the
large pressure anisotropies present in rapidly longitudinally
expanding systems [31]. Anisotropic fluid dynamical simula-
tions have been interfaced with particlization models based
on the Romatschke–Strickland anisotropic distribution [29]
to describe, with considerable success, the particle spectra
of Pb+Pb collisions at LHC energies (

√
sNN = 2.76 TeV)

and Au+Au collisions at RHIC energies (
√

sNN = 200 GeV)
[32,33]. A further generalization of this approach has been
proposed in Ref. [34].

In this paper we present an improved formulation of the
modified equilibrium distribution Eq. (3). The perturbations
made to the exponential argument of the local-equilibrium dis-
tribution Eq. (2) are derived systematically from the gradient
expansion of the RTA Boltzmann equation. These modifica-
tions, which are proportional to the hydrodynamic gradients,
are constructed in such a way that the modified equilibrium
distribution reduces to the first-order RTA Chapman–Enskog
expansion in the limit of small viscous corrections. We test
its ability to reproduce the net baryon current and energy-
momentum tensor of a stationary hadron resonance gas
subject to a variety of dissipative flows at chemical freeze-out,
including moderately large bulk viscous pressures and baryon
diffusion currents. We further apply the same method to also
modify a Romatschke–Strickland anisotropic distribution [29]
at leading order (i.e., with only nonzero diagonal elements in
the momentum deformation matrix Ai j) in such a way that it
can approximately capture the smaller off-diagonal compo-
nents of the energy-momentum tensor. We demonstrate the
potential use of our modified equilibrium (anisotropic) distri-
bution by computing the particle spectra from a longitudinally
boost-invariant Pb+Pb collision and comparing them to those
computed with the linearized δ fn corrections as well as the
modified equilibrium distribution derived in Ref. [8].

The paper is structured as follows: in Sec. II we re-
view the linearized viscous corrections to the hadronic
distributions given by the 14–moment approximation and
RTA Chapman–Enskog expansion. In Sec. III we derive the
modified equilibrium distribution from the relaxation time
approximation and test the reproduction of Jμ

B and T μν for
a stationary hadron resonance gas. In Sec. IV, we repeat
the procedure outlined in Sec. III but starting with a leading
order anisotropic distribution. In Sec. V we compute the parti-
cle spectra from a (2+1)–dimensional viscous hydrodynamic
simulation of Pb+Pb collisions at LHC energies (

√
sNN =

2.76 TeV) using the Cooper–Frye formula and compare the
differences between the modified distributions and linearized
δ fn corrections.

II. LINEARIZED VISCOUS CORRECTIONS

A. 14–moment approximation

The 14–moment approximation is a moments expansion
of the distribution function around feq,n that is truncated to
the 14 lowest momentum moments (pμ, pμ pν) [23]. This
approximation assumes that the distribution function can be
adequately characterized by just its hydrodynamic moments
(i.e.,

∫
p pμ fn,

∫
p pμ pν fn) [13]. For a multicomponent gas with

nonzero baryon chemical potential, the 14–moment approxi-
mation reads [35]

δ f 14
n = feq,n f̄eq,n(bncμ pμ + cμν pμ pν ), (7)

where f̄eq,n = 1 − g−1
n �n feq,n. For simplicity, we follow com-

mon practice and take the expansion coefficients cμ and cμν

to be species-independent. To solve for the coefficients, one
rewrites Eq. (7) in irreducible form,

δ f 14
n = feq,n f̄eq,n

(
cT m2

n + bn
(
cB(u · p)+c〈μ〉

V p〈μ〉
)

+ cE (u · p)2 + c〈μ〉
Q (u · p)p〈μ〉 + c〈μν〉

π p〈μ pν〉
)
, (8)

where p〈μ〉 = �μ
ν pν and p〈μ pν〉 = �

μν

αβ pα pβ , with �μν =
gμν − uμuν and �

μν
αβ = 1

2 (�μ
α�ν

β+�
μ
β�ν

α ) − 1
3�μν�αβ , are

purely spatial in the LRF and traceless. The irreducible co-
efficients in Eq. (8) are

cB = uμcμ, (9a)

c〈μ〉
V = �μ

ν cν, (9b)

cT = gμνcμν, (9c)

cE = uμuνcμν, (9d)

c〈μ〉
Q = uα�

μ
β cαβ, (9e)

c〈μν〉
π = �

μν

αβ cαβ. (9f)

One solves for these coefficients as follows, by inserting
Eq. (8) into the Landau matching conditions for the net baryon
density nB and energy density E , the definition of the Landau
frame T μνuν = Euμ (which implies a vanishing heat current
Qμ = 0), and the kinetic definitions for the bulk viscous
pressure 	, baryon diffusion current V μ

B and shear stress
tensor πμν :

δnB =
∑

n

∫
p

bn (u · p)δ fn = 0, (10a)

δE =
∑

n

∫
p
(u · p)2δ fn = 0, (10b)

Qμ =
∑

n

∫
p
(u · p)p〈μ〉δ fn = 0, (10c)

	 = 1

3

∑
n

∫
p
(−p · � · p)δ fn, (10d)

V μ
B =

∑
n

∫
p

bn p〈μ〉δ fn, (10e)

πμν =
∑

n

∫
p

p〈μ pν〉δ fn. (10f)
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Here the sum runs over the number of resonances, n =
1, . . . , NR, and

∫
p ≡ ∫ d3 p

(2π h̄)3E . After some algebra one obtains

cT = 	P
A21P + N31Q + J41R , (11a)

cB = 	Q
A21P + N31Q + J41R , (11b)

cE = 	R
A21P + N31Q + J41R , (11c)

c〈μ〉
V = V μ

B J41

N 2
31 − M21J41

, (11d)

c〈μ〉
Q = − V μ

B N31

N 2
31 − M21J41

, (11e)

c〈μν〉
π = πμν

2(E+Peq)T 2
, (11f)

where Peq(E, nB) is the equilibrium pressure and

P = N 2
30 − J40M20, (12a)

Q = B10J40 − A20N30, (12b)

R = A20M20 − B10N30. (12c)

The thermal integrals Jkq, Nkq, Mkq, Akq, and Bkq are defined
in Appendix A. It is well known that the coefficients of the
14–moment approximation are linearly proportional to the
dissipative flows of the fluid [36]. An obvious problem with
truncating the δ f 14

n correction to first order is that it can over-
whelm the local-equilibrium distribution at sufficiently high
momentum, potentially turning the total distribution function
negative. This problem grows worse with larger dissipative
flows. In principle, one can systematically improve the mo-
ments expansion by including the nonhydrodynamic moments
(
∫

p pμ pν pλ fn, etc.) [13]. However, using them as macroscopic
input along with Jμ

B and T μν would require solving a set of
evolution equations for these higher-order moments together
with the fluid dynamical simulation.

B. First-order RTA Chapman–Enskog expansion

Another common approach to obtaining a linear δ fn cor-
rection for the Cooper–Frye formula is the Chapman–Enskog
expansion, which is a perturbative series of the form

fn = feq,n +
∞∑

k=1

δ f (k)
n = feq,n +

∞∑
k=1

εkh(k)
n , (13)

where ε and h(k)
n are the expansion parameter and coefficients

[37]. This expansion scheme can be applied to the RTA Boltz-
mann equation [25],

pμ∂μ fn = − (u · p)( fn− feq,n)

τr
, (14)

where we take the relaxation time τr (x) to be momentum and
species independent. If the hydrodynamic gradients are small
compared to the relaxation rate τ−1

r , the expansion parameter
is the directional derivative

ε = −sμ∂μ, (15)

with

sμ(x) = τr (x)

p · u(x)
pμ. (16)

Inserting the ansatz Eq. (13) into Eq. (14) one finds at first
order in gradients

δ f (1)
n = −sμ∂μ feq,n. (17)

Using Eq. (2) and expanding the derivative one obtains

δ f (1)
n = − τr feq,n f̄eq,n

(
bnα̇B + (u · p) Ṫ

T 2
+ (−p · � · p)θ

3(u · p)T

+ bn p〈μ〉∇μαB

u · p
− p〈μ〉(u̇μ−∇μlnT )

T
− σμν p〈μ pν〉

(u · p)T

)
,

(18)

where θ = ∂μuμ is the scalar expansion rate and σμν =
∂〈μuν〉 ≡ �αβ

μν∂βuα is the velocity shear tensor. We denote the
LRF time derivative as ȧ = uμ∂μa and the spatial gradient in
the LRF as ∇μa = �μν∂νa. To simplify Eq. (18) in terms
of the hydrodynamic quantities one makes use of the con-
servation equations for the net baryon number, energy, and
momentum,

∂μJμ
B = 0, (19a)

uν∂μT μν = 0, (19b)

�μ
ν ∂λT λν = 0, (19c)

to eliminate the time derivatives:

α̇B ≈ Gθ, (20a)

Ṫ ≈ Fθ, (20b)

u̇μ ≈ ∇μ ln T + nBT

E+Peq
∇μαB. (20c)

Here we only keep the first-order terms; the coefficients G and
F are listed in Appendix B. The spatial gradients are substi-
tuted by dissipative flows using the Navier–Stokes relations:

	 ≈ −ζθ, (21a)

V μ
B ≈ κB∇μαB, (21b)

πμν ≈ 2ησμν. (21c)

The first-order RTA Chapman–Enskog expansion Eq. (18)
then reduces to

δ f CE
n = feq,n f̄eq,n

[
	

β	

(
bnG + (u · p)F

T 2
+ (−p · � · p)

3(u · p)T

)

+ V μ
B p〈μ〉
βV

(
nB

E+Peq
− bn

u · p

)
+ πμν p〈μ pν〉

2βπ (u · p)T

]
,

(22)

where β	, βV , and βπ are the ratios of the bulk viscosity,
baryon diffusion coefficient and shear viscosity, respectively,
to the relaxation time. It is straightforward to check that δ f CE

n
satisfies the Landau matching and frame condition Eqs. (10a)–
(10c). The coefficients β	, βV and βπ can be extracted by
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inserting Eq. (22) into Eqs. (10d)–(10f). The resulting expres-
sions are

β	 = GnBT + F (E+Peq)

T
+ 5J32

3T
, (23a)

βV = M11 − n2
BT

E+Peq
, (23b)

βπ = J32

T
. (23c)

Like the 14–moment approximation, the first-order
Chapman–Enskog expansion reproduces Jμ

B and T μν exactly,
but the total distribution function can turn negative at high
momentum. In this case, one could improve the expansion
scheme by adding higher-order gradient corrections, but this
approach is tedious and will not be pursued here.

III. MODIFIED EQUILIBRIUM DISTRIBUTION

A. Formulation

Both the 14–moment approximation Eq. (8) and the first-
order RTA Chapman–Enskog expansion Eq. (22) solve the
problem of parametrizing the momentum dependence of
δ fn(x, p) in terms of the available hydrodynamic information
in such a way that the dissipative flows are exactly repro-
duced from the corresponding hydrodynamic moments of δ fn,
but they also suffer from the negative probability problem at
sufficiently high momenta. The latter is a direct consequence
of truncating the expansion underlying each of the two ap-
proaches at first order in the dissipative flows. One way to
circumvent this problem is to manipulate the argument of
the exponential function in the local-equilibrium distribution
Eq. (2) with viscous corrections, as was done in Ref. [27]. By
construction, this avoids the negative probability problem but,
as we will see, at the expense of not being able to match the
dissipative flows exactly to the corresponding moments of this
modified equilibrium distribution.

Our starting point is the RTA Chapman–Enskog expansion.
Equation (17) is the first-order term of the Taylor series

feq,n(x − s, p) ≈ feq,n(x, p) − sμ∂μ feq,n(x, p), (24)

with sμ given by Eq. (16). Therefore, we have as a first
approximation for the modified equilibrium distribution

f (mod)
eq,n (x, p) = feq,n(x − s, p), (25)

which retains the same analytic form as feq,n, except for a
shift in the position arguments of the auxiliary fields T (x),
αB(x), and uμ(x). Note that the shift depends on the particle
momentum pμ at which the distribution function is evaluated.
Assuming small gradients we can evaluate these corrections
to first-order:

T (x − s) ≈ T (x) − sν∂νT (x), (26a)

αB(x − s) ≈ αB(x) − sν∂ναB(x), (26b)

uμ(x − s) ≈ uμ(x) − sν∂νuμ(x). (26c)

The perturbations can be rewritten as

δT = −τr Ṫ − τr p〈μ〉∇μT

u · p
, (27a)

δαB = −τr α̇B − τr p〈μ〉∇μαB

u · p
, (27b)

δu · p = τrθ (−p ·� · p)

3(u · p)
− τr u̇μ p〈μ〉 − τrσμν p〈μ pν〉

u · p
.

(27c)

As before, we can eliminate the time derivatives and spatial
gradients by using the conservation laws and Navier–Stokes
relations. To obtain more precise expressions for the perturba-
tions, we first linearize the δ fn correction in Eq. (25) as

δ fn ≈ feq,n f̄eq,n

(
bnδαB + (u · p)δT

T 2
− δu · p

T

)
. (28)

After substituting Eqs. (27), (20), and (21) in Eq. (28) we
recover the RTA Chapman–Enskog expansion Eq. (22). We
now compare Eqs. (22) and (28) to read off the perturbations:3

δT = 	F
β	

, (29a)

δαB = 	G
β	

− V μ
B p〈μ〉

βV (u · p)
, (29b)

δu · p = −	(−p·�·p)

3β	(u · p)
− V μ

B p〈μ〉nBT

βV (E+Peq)
− πμν p〈μ pν〉

2βπ (u · p)
.

(29c)

These corrections are now used to modify the exponent of
Eq. (25) to obtain4

f (mod)
eq,n = gn

exp
[ (u+δu)·p

T +δT − bn(αB+δαB)
] + �n

. (30)

As long as the viscous corrections are not too large (say,
|	| < 3β	) this expression is positive definite, but it does
not reproduce the components of Jμ

B and T μν exactly since
it contains higher-order terms beyond the first-order RTA
Chapman–Enskog expansion. These discrepancies are at least
second order in gradients and should therefore be negligible if
the viscous corrections are small:

|	| 
 β	, (31a)√
VB,μV μ

B 
 βV , (31b)
√

πμνπμν 
 2βπ . (31c)

3We here drop the spatial temperature gradients arising from this
procedure in Eqs. (27a) and (27c) since they cancel in Eq. (28).

4Equation (30) is closely related to the “maximum entropy” (ME)
distribution recently proposed in Ref. [38], which modifies the expo-
nent of the local-equilibrium distribution with additional Lagrange
multipliers. At first order in the dissipative flows, it was shown [38]
that the nonequilibrium corrections due to these Lagrange multipliers
reduce to the perturbative terms in Eq. (30).

064903-5



M. MCNELIS AND U. HEINZ PHYSICAL REVIEW C 103, 064903 (2021)

However, Eq. (30) turns out to quickly lose its usefulness
for even moderate viscous corrections which are found to
result in serious violations of the matching to Jμ

B and T μν .
As it stands, Eq. (30) is not yet sufficient and needs additional
improvements to mitigate the errors arising from the higher-
order terms.5

B. Local momentum transformation and normalization

The main source of errors in the modified equilibrium
distribution Eq. (30) comes from the momentum dependent
terms in the perturbations Eqs. (29b) and (29c). In the limit of
small gradients, the deformations and shifts to the momentum
space are linearly proportional to the dissipative flows. For
larger viscous corrections, however, these effects propagate
into the hydrodynamic quantities nonlinearly. To control these
errors, one should recast the momentum-dependent perturba-
tions Eqs. (29b) and (29c) in such a way that the viscous
corrections to the dimensionless momentum scales 〈| p̄i|〉 =
〈|pi|〉/(T +δT ) are strictly linear in the dissipative flows.

The local momentum transformation Eq. (4), first intro-
duced in Ref. [27], provides an effective way of dealing with
the momentum-dependent perturbations in Eq. (29). Follow-
ing their prescription, we rewrite Eq. (30) as

f PTM
eq,n = Zngn

exp
[ √

p′2+m2
n

T +β−1
	 	F − bn

(
αB+	G

β	

)] + �n

. (32)

Starting from a thermal distribution of momenta p′ we con-
struct a map p = M(p ′) to the LRF momenta p such that
the deformations and shifts are linearly proportional to the
dissipative flows. Under the constraint of reducing to the
momentum-dependent perturbations in the limit of small gra-
dients, one finds the following transformation between p
and p′:

pi = Ai j p′
j − qi

√
p′2+m2

n + bnTai, (33)

where

Ai j =
(

1+ 	

3β	

)
δi j + πi j

2βπ

, (34a)

qi = VB,i nBT

βV (E+Peq)
, (34b)

ai = VB,i

βV
, (34c)

with VB,i = −Xi · VB being the LRF spatial components of
the baryon diffusion current. The deformation matrix Ai j is
identical to the one in Eqs. (4) and (5), i.e., λ	 = 1/(3β	) and
λπ = 1/(2βπ ). Compared to Eqs. (4) and (5) [27], Eqs. (33)
and (34) are further generalized to include baryon diffusion
effects.

5One option is to replace the perturbations in Eq. (30) by the La-
grange multipliers in Ref. [38] and adjust them so that the maximum
entropy distribution exactly reproduces the hydrodynamic moments.
However, an exact (numerical) calculation of these Lagrange multi-
pliers for moderately large viscous corrections is still outstanding.

For the normalization factor Zn we fix the particle density
of the modified equilibrium distribution to that given by the
RTA Chapman–Enskog expansion,

n(1)
n = neq,n + 	

β	

(
neq,n + N10,nG + J20,nF

T 2

)
, (35)

which contains a bulk viscous correction to the equilibrium
particle density neq,n(T, αB) [8,27]. This suppresses the non-
linear shear and bulk viscous corrections to the modified
particle density,

nPTM
n = Zn detA · neq,n

(
T +β−1

	 	F , αB+β−1
	 	G)

, (36)

which (if Zn = 1) are another major source of errors in
matching to the hydrodynamic output. Our choice for the
normalization factor is therefore

Zn = 1

detA
× n(1)

n

neq,n
(
T +β−1

	 	F , αB+β−1
	 	G) , (37)

which is similar to Eq. (6) except it contains an additional
factor. One should keep in mind that the linearized density
n(1)

n of light hadrons, especially pions, may turn negative if
the bulk viscous pressure is too negative.

The “PTM distribution” Eq. (32) cannot be applied in every
situation. The requirements for using f PTM

eq,n in the Cooper–
Frye formula are that the determinant of the Jacobian

det

(
∂ pi

∂ p′
j

)
= detA

(
1 − qiA

−1
i j p′

j√
p′2+m2

n

)
(38)

is positive for any value of p′, the deformation matrix Ai j

is invertible, and the normalization factor Zn is nonnegative.
These conditions can be violated when the dissipative flows
are too large. What to do in this case will be discussed in
Sec. V where we study certain situations where the modified
equilibrium distribution breaks down.

C. Reproducing the hydrodynamic quantities

As already noted, the nonlinear dependence of the modi-
fied equilibrium distribution Eq. (32) on the dissipative flows
makes it impossible to achieve an exact matching of the
hydrodynamic moments of this distribution with all compo-
nents of T μν and Jμ

B . This is different from the linearized
parametrizations described in Sec. II. In this subsection, we
study the matching violations for hadrons emitted from a sta-
tionary time-like freeze-out cell with the modified equilibrium
distribution Eq. (32).

The system is composed of the set of hadron species in-
cluded in the hadronic afterburner code URQMD [39] (NR ∼
320). These hadrons are assumed to be produced from a
fluid in chemical equilibrium at the chemical freeze-out (CF)
temperature TCF and baryon chemical potential μB,CF, which
can vary across different collision systems. The values used
here (shown in the legend of Fig. 1) are taken from a statis-
tical model fit to the hadron abundance ratios measured in
Pb+Pb collisions at LHC energies (

√
sNN = 5.02 TeV) and

in Au+Au collisions at RHIC and SPS energies (
√

sNN =
200 GeV and 17.3 GeV, respectively) [40]. For clarity, we vary
either the input shear stress, bulk viscous pressure or baryon
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FIG. 1. The reproduction of selected components of the net baryon current Jμ
B and energy-momentum tensor T μν using the Cooper–Frye

prescription with the PTM distribution Eq. (32), for a stationary hadron resonance gas subject to either shear stress (left column), bulk viscous
pressure (middle column) or a baryon diffusion current (right column). The temperature and baryon chemical potential (TCF, μB,CF) at chemical
freeze-out are indicated in the legend (top to bottom rows). Solid black curves represent the hydrodynamic input (i.e., the target Jμ

B and T μν)
while the dashed color lines are the output components of Jμ

B and T μν obtained by computing the corresponding moments of f PTM
eq .

diffusion current while fixing the other dissipative flows to
zero.

In the first example (left column of Fig. 1) we consider the
case where in a given freeze-out cell the hydrodynamic T μν

features a negative pressure anisotropy 2
3 (PL−P⊥) = π zz =

−2π xx = −2π yy, combined with zero bulk viscous pressure
and baryon diffusion current. Starting from equilibrium at the
right edge of the plots, we decrease π zz going left, causing
the longitudinal pressure PL = Peq + π zz to decrease and the
transverse pressure P⊥ = Peq + 1

2 (π xx+π yy) to increase. The
energy density should not change due to the Landau matching
condition Eq. (10a). These are the hydrodynamic components
of T μν that we aim to reproduce, shown by the solid black
curves. The colored dashed curves are the kinetic outputs, cal-
culated as moments of the modified equilibrium distribution
with these hydrodynamic inputs.6,7 One sees that for small
π zz the kinetic output closely follows the initial hydrodynamic
input. This is because in the limit of small dissipative flows

6Due to the normalization factor Eq. (37) the modified equilibrium
distribution conserves the net baryon number exactly (δnB = 0).

7For only shear stress inputs, the outputs Qμ and V μ
B vanish by

symmetry and are therefore not of interest here.

the modified equilibrium distribution reduces to the linear
RTA Chapman–Enskog expansion for which the kinetic out-
put reproduces the hydrodynamic input exactly. As π zz further
decreases to larger negative values, the kinetic output T μν

begins to deviate from the hydrodynamic target. In particular,
for a positive-definite distribution function such as Eq. (32)
the kinetic output PL stays always above zero even if the
hydrodynamic input for π zz is so large and negative that the
total longitudinal pressure in the fluid is negative. However,
the kinetic outputs for E and P⊥ agree well with their hydro-
dynamic targets even for large pressure anisotropies. These
trends are confirmed for all three combinations (TCF, μB,CF)
studied in the three rows of Fig. 1. Technically, the modified
equilibrium distribution breaks down completely for π zz �
−2βπ (which causes detA � 0), and one should not expect
f PTM
eq,n to work well for very large pressure anisotropies. How-

ever, for moderately large |π zz| � 1
2Peq, f PTM

eq,n reproduces the
target T μν components quite well, with |�PL|/PL � 9.0%,
|�P⊥|/P⊥ � 0.5% and |�E |/E � 0.8%.8

8We also successfully replicated the shear stress test shown in Fig. 2
of Ref. [27].
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In the middle column of Fig. 1 we vary the bulk viscous
pressure 	 at vanishing shear stress and baryon diffusion. We
checked that for this hydrodynamic input the kinetic outputs
for πμν , Qμ, and V μ

B vanish. The plots show that, for all
three choices of freeze-out parameters, the energy matching
condition �E = 0 holds very well even for large (negative)
values of 	. The kinetic output for the total pressure Peq + 	

tends to somewhat underpredict the hydrodynamic target, the
error staying below 10% for moderately large bulk viscous
pressures |	| � 1

2Peq. For more negative input values of 	,
	 � −2β	, the particle density for pions turns negative and
the modified equilibrium distribution becomes invalid.

In the right column of Fig. 1 we test the reproduction of
the baryon diffusion current (taken arbitrarily to point in the z
direction) at zero shear and bulk viscous stress. One sees that
the hydrodynamic input for the ratio αBV z

B/nB (which is ap-
proximately the same for all three freeze-out parameter pairs)
is well reproduced by the kinetic output from the modified
equilibrium distribution. The energy matching and Landau
frame (Qz = 0) conditions are also reproduced with excellent
precision. However, a nonzero input for V z

B 
= 0 also generates
nonzero kinetic outputs for the bulk and shear viscous stresses
even when their hydrodynamic inputs are zero: For V z

B/βV =
2 we find a 5% positive difference �PL/Peq between the
hydrodynamic input and the kinetic output for the longitudinal
pressure of which, after decomposition into shear and bulk
viscous contributions, 1.5% can be attributed to an induced
bulk viscous pressure 	 and 3.5% to an induced shear stress
π zz, both with positive signs. For moderately large baryon
diffusion currents |V z

B | � βV , the hydrodynamic output errors
are |�V z

B/V z
B | � 0.5%, |�PL|/Peq � 1.3%, |�E |/E � 0.2%,

and |Qz|/E ≈ 0.

D. Pratt–Torrieri–Bernhard distribution

Another variant of Pratt and Torrieri’s idea [27] was imple-
mented by Bernhard in Ref. [8]:

f PTB
eq,n = Zgn

exp
[√

p′2+m2
n

T

] + �n

. (39)

In this “PTB distribution” the baryon chemical potential and
diffusion current are neglected (αB = V μ

B = 0), and the effec-
tive temperature is not modified (δT = 0). The momentum
transformation rule is pi = Ai j p′

j with

Ai j = (1+λ	)δi j + πi j

2βπ

. (40)

The shear stress modification is the same as in Eq. (34),
while the bulk pressure term is replaced by the isotropic scale
parameter λ	. The normalization factor Z is taken as species-
independent:

Z = z	

detA
, (41)

leaving particle abundance ratios unchanged from their chem-
ical equilibrium values. The parameters λ	 and z	 are fixed

�1.0 �0.5 0.0 0.5 1.0
�1

0

1

2

3

4

5

�Peq

z

3 � Peq

FIG. 2. The isotropic scale parameter λ	 (solid red) and normal-
ization factor z	 (solid blue) as a function of 	/Peq are computed for
a hadron resonance gas at a fixed temperature T = 150 MeV. The
dotted blue and red lines are the upper bounds for z	 and 	/Peq,
respectively. This plot corresponds to Fig. 3.12 in Ref. [8], where
�〈p〉/〈p〉0 = λ	 and �n/n0 = z	 − 1.

such that in the absence of shear stress (πi j = 0) the energy
density and bulk viscous pressure are exactly matched [8]:

E ′(λ	, z	, T ) = E, (42a)

P ′(λ	, z	, T ) = Peq + 	 ; (42b)

here E ′ and P ′ are the kinetic theory output for the energy
density and isotropic pressure computed from the PTB distri-
bution Eq. (39).

The parametrization procedure is as follows: For the distri-
bution function Eq. (39) to be well-defined the isotropic scale
parameter must satisfy λ	 ∈ (−1,∞). At a given temperature
T one sets up a grid in λ	 and computes the corresponding
values for z	 and 	 numerically by rewriting Eqs. (42a) and
(42b) as

z	 = E
L20(λ	, T )

, (43a)

	 = z	L21(λ	, T ) − Peq. (43b)

The functions Lkq are defined in Appendix A. One can then
interpolate the data with respect to 	 to construct the func-
tions λ	(	; T ) and z	(	; T ); an example is shown in Fig. 2.
Generally, these are nonlinear functions of 	. In the limit of
small bulk viscous pressure, they linearize to

z	 ≈ 1 + δz	 = 1 − 3	Peq

5βπE − 3Peq(E+Peq)
, (44a)

λ	 ≈ δλ	 = 	E
5βπE − 3Peq(E+Peq)

. (44b)
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Equations (43) and (43b) imply that z	 and 	 are bounded
by

0 < z	 <
E
ρ

, (45a)

−Peq < 	 <
E
3

− Peq, (45b)

where ρ = ∑NR
n mnneq,n is the equilibrium mass density.

When 	 lies outside the bound9 Eq. (45b) or detA � 0, we
consider the modified equilibrium distribution Eq. (39) to
have broken down. As will be discussed in Sec. V B, we then
resort to linearizing Eq. (39) around local equilibrium, i.e., we
write f PTB

eq,n ≈ feq,n + δ fn, where

δ fn = feq,n(δz	 − 3δλ	)

+ feq,n f̄eq,n

(
δλ	(−p · � · p)

(u · p)T
+ πμν p〈μ pν〉

2βπ (u · p)T

)
. (46)

The effectiveness of the PTB distribution Eq. (39) in repro-
ducing the components of a given energy-momentum tensor
T μν was studied in Ref. [8] to which we refer the reader for
comparison with Fig. 1.

IV. MODIFIED ANISOTROPIC DISTRIBUTION

A. Anisotropic hydrodynamics

In this section we apply the formulation developed in
Sec. II to modify an anisotropic distribution function that
has already been deformed at leading order. In anisotropic
hydrodynamics, the distribution function is decomposed into
a momentum-anisotropic leading order term and a residual
correction [41–43] as follows:

fn(x, p) = fa,n(x, p) + δ f̃n(x, p). (47)

Here the anisotropic leading order distribution fa,n is taken
as10

fa,n(x, p) = gn

exp
[√

p·�(x)·p+m2
n

�(x)

] + �n

. (48)

Similar to the modified equilibrium distribution Eq. (32), it
has an effective temperature � and a momentum transforma-
tion encoded in the ellipsoidal tensor

�μν = ZμZν

α2
L

− �μν

α2
⊥

. (49)

Here Zμ ≡ X μ
3 is the longitudinal basis vector and �μν =

gμν−uμuν+ZμZν the associated transverse spatial projec-
tor [42]. The momentum anisotropy parameters αL and α⊥
deform the longitudinal and transverse momentum space,

9Violations of the upper bound in Eq. (45b) can occur at the tran-
sition from a conformal pre-hydrodynamic model to nonconformal
viscous hydrodynamics, where the mismatch between the conformal
and QCD equations of state gives exactly 	 = E/3 − Peq(E ).

10For simplicity, we set in this Section the effective baryon chemi-
cal potential to μ̃B = 0.

respectively. The anisotropic distribution Eq. (48) can be
rewritten more conveniently as

fa,n = gn

exp
[√

p′2+m2
n

�

] + �n

, (50)

where pi = Ai j p′
j with

Ai j = α⊥δi j + (αL−α⊥)ZiZ j, (51)

and Zi = −Xi · Z = (0, 0, 1) being the LRF components of
the longitudinal basis vector. Together, the anisotropic param-
eters �, αL and α⊥ are adjusted such that fa,n completely
captures the energy density E and the longitudinal and
transverse pressures, PL and P⊥, in the energy-momentum
tensor [42,43]

T μν = Euμuν+PLZμZν−P⊥�μν + 2W (μ
⊥z Zν) + π

μν

⊥ . (52)

The residual correction δ f̃n does not contribute to E ,
PL and P⊥ but accounts for the longitudinal momen-
tum diffusion current W μ

⊥z and the transverse shear stress
tensor π

μν

⊥ :

W μ

⊥z = −�μ
α ZνT αν, (53a)

π
μν

⊥ = �
μν

αβT αβ. (53b)

Here �
μν

αβ = 1
2 (�μ

α�ν
β + �ν

β�μ
α − �μν�αβ ) is the double-

transverse traceless projector. An expression for δ f̃n can be
derived using a linearization approach, such as the Chapman–
Enskog expansion. After substituting Eq. (47) in the RTA
Boltzmann equation Eq. (14), the first-order expression for
δ f̃n is

δ f̃n = −sμ∂μ fa,n − ( fa,n− feq,n), (54)

where the second-order term −sμ∂μδ f̃n was neglected. The
first term in Eq. (54) can be expanded into

−sμ∂μ fa,n = fa,n f̄a,n

(
Ea,nδ�

�2
− p · � · p

2Ea,n�

)
, (55)

where f̄a,n = 1 − g−1
n �n fa,n, Ea,n = √

p · � · p+m2
n,

p · δ� · p

2
=

(
α2

L−α2
⊥
)
(−Z · p)(δZ · p)

α2
⊥α2

L

+ (u · p)(δu · p)

α2
⊥

− δαL(−Z · p)2

α3
L

− δα⊥(−p · � · p)

α3
⊥

, (56)

and the perturbations δuμ and δZμ are11

δu · p = −τr

u · p
[(u · p)((−Z · p)Zμ+p{μ})u̇μ

− (−Z · p)2θL − 1

2
(−p · � · p)θ⊥

+ p{μ pν}σ⊥,μν + (−Z · p)p{μ}(Zν∇μ

⊥uν−Dzu
μ)],

(57a)

11We find that the δ f̃n terms ∝ (δ�, δαL , δα⊥) do not contribute to
W μ

⊥z and π
μν

⊥ so we can effectively set these perturbations to zero.
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δZ · p = −τr

u · p
[−(u · p)2Zμu̇μ + (u · p)(−Z · p)θL

+ (u · p)(−Z · p)θL + p{μ pν}σz,μν

− (−Z · p)p{μ}DzZ
μ − 1

2
(−p · � · p)∇⊥μZμ

+ (u · p)p{μ}(Żμ−Zν∇μ

⊥uν )], (57b)

where p{μ} ≡ �μ
ν pν , p{μ pν} ≡ �

μν
αβ pα pβ , θL = ZμDzuμ is the

longitudinal expansion rate, θ⊥ = ∇⊥,μuμ is the transverse
expansion rate, Dz = −Z · ∂ is the LRF longitudinal deriva-
tive, ∇μ

⊥ = �μν∂ν is the transverse spatial gradient, σ⊥,μν =
�αβ

μν∂αuβ is the transverse velocity shear tensor and σz,μν =
�αβ

μν∂αZβ [42].
For the sake of simplicity, we only consider the terms with

nonzero contributions to W μ

⊥z and π
μν

⊥ , whose kinetic theory
definitions are

W μ

⊥z =
∑

n

∫
p
(−Z · p)p{μ}δ f̃n, (58a)

π
μν

⊥ =
∑

n

∫
p

p{μ pν}δ f̃n. (58b)

By symmetry, the term ( fa,n− feq,n) in Eq. (54) and corrections
∝ (δ�, δαL, δα⊥) have zero contributions, so we can effec-
tively eliminate them. The only nonzero contributions from
δu · p and δZ · p in Eqs. (57a) and (57b) are

δu · p → −τr (−Z · p)p{μ}(Zν∇μ

⊥uν−Dzuμ)

u · p

− τr p{μ pν}σ
μν

⊥
u · p

, (59a)

δZ · p → −τr p{μ}(Żμ−Zν∇μ

⊥uν ). (59b)

The δ f̃n correction then reduces to

δ f̃n = τr fa,n f̄a,n

Ea,n�

[
p{μ pν}σ

μν

⊥
α2

⊥
− (−Z · p)p{μ}κ

μ

⊥
α⊥αL

]
, (60)

where

κ
μ

⊥ =
(
α2

⊥−α2
L

)
�μ

ν Żν−α2
⊥Zν∇μ

⊥uν+α2
L�μ

ν Dzuν

α⊥αL
. (61)

The gradients σ
μν

⊥ and κ
μ

⊥ are proportional to the “Navier–
Stokes” values for π

μν

⊥ and W μ

⊥z, respectively. After inserting
Eq. (60) in Eq. (58), one obtains

π
μν

⊥ = 2τrβ
⊥
π σ

μν

⊥ , W μ

⊥z = τrβ
⊥
W κ

μ

⊥, (62)

where

β⊥
π = J402−1

α2
⊥�

, β⊥
W = J421−1

αLα⊥�
, (63)

and the integrals Jkrqs are defined in Appendix A. Thus, the
first-order anisotropic RTA Chapman–Enskog expansion is

δ f̃n = fa,n f̄a,n

(
p{μ pν}π

μν

⊥
2β⊥

π Ea,nα
2
⊥�

− (−Z · p)p{μ}W
μ

⊥z

β⊥
W Ea,nα⊥αL�

)
. (64)

One can show that Eq. (64) satisfies the anisotropic matching
conditions for E , PL, and P⊥ and the Landau frame con-
straints:

δẼ =
∑

n

∫
p
(u · p)2δ f̃n = 0, (65a)

δP̃L =
∑

n

∫
p
(−Z · p)2δ f̃n = 0, (65b)

δP̃⊥ = 1

2

∑
n

∫
p
(−p · � · p)δ f̃n = 0, (65c)

QL =
∑

n

∫
p
(u · p)(−Z · p)δ f̃n = 0, (65d)

Qμ

⊥ =
∑

n

∫
p
(u · p)p{μ}δ f̃n = 0, (65e)

where QL = −Z · Q is the LRF longitudinal heat flow and
Qμ

⊥ = �μ
ν Qν is the transverse heat current.

B. Modifying the anisotropic distribution

With the anisotropic RTA Chapman–Enskog expansion
Eq. (64) at hand we can proceed to modify the leading order
anisotropic distribution Eq. (50). First, we insert a perturba-
tion δ� in fa,n, keeping δ� = 0:

f (mod)
a,n = gn

exp
[√

p·(�+δ�)·p+ m2
n

�

] + �n

. (66)

Linearizing this modified anisotropic distribution and compar-
ing it to Eq. (64) one finds

p · δ� · p = − p{μ pν}π
μν

⊥
β⊥

π α2
⊥

+ 2(−Z · p)p{μ}W
μ

⊥z

β⊥
W α⊥αL

. (67)

Next we rewrite Eq. (66) as12

f PTMA
a,n = Zgn

exp
[√

p′′2+m2
n

�

] + �n

, (68)

where the normalization Z will be discussed further below
and

pi = Bi j p′′
j = CimAm j p′′

j . (69)

By comparing with Eq. (51) one sees that the residual shear
transformation Cim further deforms the anisotropic momen-
tum space. The additional deformations, which are linearly
proportional to π

μν

⊥ and W μ

⊥z, are assumed to be smaller than
the anisotropy parameters αL and α⊥. The matrix Cim is con-
structed such that the total deformation matrix Bi j = CimAm j

is symmetric and reproduces the perturbation δ� in Eq. (66)
for small residual shear stresses. After some algebra one finds

Cim = δim + π⊥,im

2β⊥
π

+ α⊥W⊥z,iZm + αLW⊥z,mZi

β⊥
W (α⊥+αL )

. (70)

12The generalization of Eq. (68) for nonzero baryon chemical po-
tential and diffusion is nontrivial and will be left to future work.
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FIG. 3. The reproduction of selected components of the energy-momentum tensor T μν , using either the PTMA distribution Eq. (68) (dashed
color) or the PTM distribution Eq. (32) (dotted color), for a stationary hadron resonance gas at temperature T = 150 MeV with zero net
baryon density (αB = 0). The system is assumed to have a fixed pressure anisotropy π zz = − 2

5Peq and bulk viscous pressure 	 = − 2
5Peq and

is further subjected to either transverse shear stress (left panel) or longitudinal momentum diffusion (right panel). The solid black lines show
the components of the hydrodynamic input T μν .

Here π⊥,im = Xi · π⊥ · Xm and W⊥z,i = −Xi · W⊥z are the LRF
residual shear stress components. Although Cim in Eq. (70) is
not symmetric, Bi j is

Bi j = Ai j + α⊥π⊥,i j

2β⊥
π

+ α⊥αL(W⊥z,iZ j + W⊥z, jZi )

β⊥
W (α⊥+αL )

. (71)

Finally, we renormalize the particle density to the one given
by the leading order anisotropic distribution:

na,n = detA neq,n(�, 0), (72)

where na,n is the anisotropic particle density and detA = α2
⊥αL

(there is no contribution from the anisotropic RTA Chapman–
Enskog correction δ f̃n). The modified particle density from
Eq. (68) is

nPTMA
a,n = Z detCna,n, (73)

which leads us to the normalization factor

Z = 1

detC
. (74)

In Fig. 3, we test the reproduction of the energy-
momentum tensor by the “PTMA distribution” (68), similar
to the test done in Fig. 1. We consider a hadron resonance gas
at temperature T = 150 MeV and baryon chemical potential
αB = 0 with an input T μν featuring the two fixed dissipa-
tive flows π zz = 	 = − 2

5Peq (or, equivalently, PL = 1
5Peq

and P⊥ = 4
5Peq). These viscous pressures are captured by

the leading order distribution fa,n by numerically adjusting
(“Landau matching”) the anisotropy parameters �, αL, and
α⊥ accordingly.

In the left panel of Fig. 3 we explore the reliability
of the modified anisotropic distribution in reproducing a
nonzero transverse shear stress π xx

⊥ = −π
yy
⊥ . Moving from

the right edge of the plot leftward we decrease π xx
⊥ , causing

the pressures Px = P⊥ + π xx
⊥ and Py = P⊥ + π

yy
⊥ to de-

crease and increase, respectively. According to the anisotropic
matching conditions Eq. (65), the energy density and lon-
gitudinal pressure should remain constant as we do so. The
hydrodynamic input (solid black lines) and kinetic output
T μν components (colored dashed lines) from this test are
very similar to those shown in the left panels of Fig. 1,
with the kinetic output for Px (blue dashed) approaching
zero for large negative π xx

⊥ while the output for Py (green
dashed) overestimates the hydrodynamic target value but to
a lesser degree. The kinetic outputs for E and PL are in
very good agreement with their hydrodynamic target val-
ues. The modified anisotropic distribution breaks down for
π xx

⊥ < −2β⊥
π (or det C < 0) but for moderately large val-

ues |π xx
⊥ | � 1

6 (PL+2P⊥) the discrepancies between the input
and output values are |�Px|/Px � 4.0%, |�Py|/Py � 1.5%,
|�PL|/PL � 0.17%, and |�E |/E � 0.47%. We also checked
that for this hydrodynamic input the off-diagonal components
of the kinetic output T μν are zero.

For the second test (right panel of Fig. 3) we start from
the same system but add a longitudinal momentum diffusion
component W x

⊥z of increasing magnitude. The energy density
and pressure components Px, Py, and PL should not change as
we do so. Overall, we find that the kinetic outputs for E , Py,
and W x

⊥z are in good agreement with this expectation. How-
ever, the kinetic outputs for the pressure components Px and
PL are seen to exhibit stronger sensitivity to the errors caused

064903-11



M. MCNELIS AND U. HEINZ PHYSICAL REVIEW C 103, 064903 (2021)

by mismatched nonlinear terms in W x
⊥z. Still, for moderate

values of |W x
⊥z| � 1

6 (PL+2P⊥), the output errors stay be-
low |�W x

⊥,z/W x
⊥,z| � 1.6%, |�Px|/Px � 4.0%, |�Py|/Py �

0.55%, |�PL|/PL � 21%, and |�E |/E � 0.84%
Finally, we repeat the previous tests with the PTM modified

equilibrium distribution Eq. (32) and plot the corresponding
kinetic output T μν as dotted lines in Fig. 3 for comparison.
One observes that the PTM distribution follows essentially
the same trends as the PTMA distribution, but it does not
fully capture the pressure anisotropy and bulk viscous pres-
sure at zero residual shear stress, similar to what we saw
in Fig. 1. However, by imposing the generalized Landau
matching condition Eqs. (65b) and (65c) the leading order
anisotropic distribution precisely reproduces the longitudinal
and transverse pressures in that limit.

V. CONTINUOUS PARTICLE SPECTRA

In this section we compute the continuous momentum
spectra of identified hadrons (π+, K+, p) using the Cooper–
Frye formula Eq. (1). To generate the hypersurfaces, we
run the VAH code [44] to evolve central and noncentral
Pb+Pb collisions using standard viscous hydrodynamics with
smooth initial conditions. For simplicity, we only consider
the central slice (ηs = 0) in the transverse plane and as-
sume longitudinal boost-invariance to extend the solution in
the spacetime rapidity direction. For the different hadron
phase-space distribution models discussed in Secs. II–IV, we
will compare the azimuthally averaged transverse momentum
spectra

dNn

2π pT d pT dyp
=

∫ 2π

0

dφp

2π

dNn

pT d pT dφpdyp
(75)

and the pT –differential elliptic flow coefficient

v2,n(pT ) =
∫ 2π

0 dφp cos(2φp) dNn
pT d pT dφpdyp∫ 2π

0 dφp
dNn

pT d pT dφpdyp

(76)

at midrapidity (yp = 0). Specifically, we compare results ob-
tained with the 14–moment approximation Eq. (8), the RTA
Chapman–Enskog expansion Eq. (22), the PTM and PTB
modified equilibrium distribution Eqs. (32) and (39), and the
PTMA modified anisotropic distribution Eq. (68).

A. Setup

We evolve an azimuthally symmetric, event-averaged
TRENTO transverse energy density profile with (2+1)–
dimensional second-order viscous hydrodynamics [44,45].
We start the simulation at the longitudinal proper time τ0 =
0.5 fm/c with an initial central temperature of T0,center = 400
MeV. The spatial components of the fluid velocity uμ and bulk
viscous pressure 	 are initialized to zero. The shear stress
tensor is initialized as

πμν = 1
3 (PL−P⊥)(�μν + 3ZμZν ), (77)

where the initial pressure anisotropy is set to PL − P⊥ =
12
11Peq and the initial longitudinal basis vector is Zμ =
(0, 0, 0, τ−1

0 ). For the equilibrium pressure Peq(E ), we use the

lattice QCD equation of state from the HotQCD collaboration
[20]. The baryon chemical potential αB and baryon diffusion
current V μ

B are fixed to zero for the entire simulation.13

The shear and bulk viscosities are modeled using the
temperature dependent parametrizations from the JETSCAPE
collaboration [46,47]:

(η/S )(T ) = (η/S )kink + alow (T −Tη )�(Tη−T )

+ ahigh(T −Tη ) �(T −Tη ), (78a)

(ζ/S )(T ) = (ζ/S )max �ζ (T )2

�ζ (T )2 + (T −Tζ )2
, (78b)

where �(x) is the Heaviside step function and

�ζ (T ) = wζ [1 + λζ sgn(T −Tζ )]. (79)

In this work we fix the viscosity parameters to
(η/S )kink = 0.093, Tη = 0.22 GeV, alow = −0.77 GeV−1,
ahigh = 0.21 GeV−1, (ζ/S )max = 0.1, wζ = 0.05 GeV and
λζ = 0. However, for exploration purposes we vary the
temperature Tζ at which ζ/S peaks, setting it to either 220
MeV or 160 MeV.

From the hydrodynamic simulation we generate an isother-
mal particlization hypersurface of temperature Tsw = 150
MeV, using the freeze-out finder code CORNELIUS [21].
For our central Pb+Pb collision, the longitudinally boost-
invariant hypersurface at spacetime rapidity ηs = 0 contains
about 6.8 × 104 freeze-out cells. Figure 4 shows a τ−x slice
of the particlization surface at y = ηs = 0, as well as the shear
and bulk inverse Reynolds numbers to gauge the strength of
the shear and bulk δ fn corrections.14 Finally, we evaluate the
Cooper–Frye formula with the code IS3D [48], which was
developed from the particlization module ISS [15]. The code
gives the user the option to use one of five δ fn corrections
described in Secs. II–IV. To compute the longitudinally boost-
invariant particle spectra, the hypersurface volume needs to
be extended to the ηs dimension and centered around the
momentum rapidity yp. We perform the numerical integra-
tion of the Cooper–Frye formula along the ηs–direction using
Gauss–Legendre integration on a 48-point grid (yp − ηs) j with
integration weights ω j given by

(yp − ηs) j = sinh−1

(
x j

1 − x2
j

)
, (80a)

ω j = w j

1 + x2
j∣∣1 − x2

j

∣∣√1 − x2
j + x4

j

, (80b)

13The current version of the relativistic hydrodynamic code VAH
[44] does not propagate the net baryon density and baryon diffusion
current.

14We note the setup used in this Section is different from the one
in an earlier study to test the IS3D particle sampler (see Sec. 3 in
Ref. [48]). There we found that the viscous corrections were so large
that the PTMA distribution was unusable for a significant part of the
hypersurface. The hypersurface shown in Fig. 4 was computed with
parameter settings that allow for a meaningful comparison between
the PTM and PTMA distributions.
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FIG. 4. The τ−x slice (y = ηs = 0) of the shear inverse Reynolds number Re−1
π = √

πμνπμν/(Peq

√
3) (left panels) and bulk inverse

Reynolds number Re−1
	 = |	|/Peq (right panels) showing the strength of the δ fn corrections on a particlization hypersurface of constant

temperature Tsw = 150 MeV (white contour) from a (2+1)–dimensional central Pb+Pb collision with smooth TRENTO initial conditions. We
vary the peak temperature of the specific bulk viscosity ζ/S to either Tζ = 220 MeV (top row) or Tζ = 160 MeV (bottom row).

where x j and w j are the Gauss–Legendre roots and weights,
respectively.

B. Breakdown of the modified distributions and technical issues

As stated in the previous sections, the modified equilibrium
distribution Eqs. (32) and (39) break down in freeze-out cells
with large viscous corrections. For the first scenario where
the specific bulk viscosity’s peak temperature is Tζ = 220
MeV (top row in Fig. 4), both the shear and bulk viscous
corrections are small enough to use the modified equilibrium
distribution for all freeze-out cells. For Tζ = 160 MeV (bot-
tom row in Fig. 4) the bulk viscosity peaks much closer to
the particlization hypersurface. Not only are the bulk viscous
corrections much larger in this case, but the shear corrections
are also enhanced due to shear-bulk coupling effects in the
hydrodynamic simulation [49]. Together they cause the mod-
ified equilibrium distribution to break down for about 4400

freeze-out cells at r ∼ 10 fm and 0.5 fm/c < τ < 1.3 fm/c.
There are several options to handle the particle spectra con-
tributions from these freeze-out cells: (i) ignore such cells
entirely, (ii) use for them the local-equilibrium distribution
fn = feq,n, which is positive definite but neglects the viscous
components of T μν , or (iii) linearize in such cells the modified
equilibrium distribution f (mod)

eq,n ≈ feq,n + δ fn, which may turn
negative at high momenta but captures all components of T μν .
Here we choose the third option, i.e., for the PTM distribution
we switch to the Chapman–Enskog expansion Eq. (22) when
detA < 10−5 or when the normalization factor Zn of any
hadron (usually the lightest pion π0) turns negative. For the
PTB distribution, we use δ fn from Eq. (46) when detA < 10−5

or −Peq < 	 < E/3 − Peq. In this study, the impact of these
manipulations on the total particle spectra is negligible since
the number of “bad” freeze-out cells is small. However, if a
significant fraction of the hypersurface requires one to use
something other than the modified equilibrium distribution,
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then Eqs. (32) and (39) should probably not be used for
particlization.

Even if the modified equilibrium distribution can be
used, a very small detA value can cause its width along
the rapidity direction yp − ηs to be extremely narrow. This
leads to numerical errors in the particle yields if the
spacetime rapidity grid (yp − ηs) j is not fine enough. To
resolve this technical issue, we rescale the spatial grid
(yp − ηs) j by the distribution’s rapidity width δyp. One
can estimate δyp from a diagonal deformation matrix
Ai j = diag(1 + 	̄− 1

2 π̄zz, 1 + 	̄− 1
2 π̄zz, 1 + 	̄+ π̄zz ):

δyp ∼ 1 + 	̄ + π̄zz, (81)

where 	̄ = 	/(3β	) (or λ	) and π̄zz = πzz/(2βπ ). Relative
to the transverse momentum space, the rapidity distribution
becomes very narrow when π̄zz ≈ −(1 + 	̄). In this limit, the
rapidity width is proportional to

δyp ∝ detA

(detA	)2/3
, (82)

where detA	 = (1 + 	̄)3. Therefore, for each longitudinally
boost-invariant freeze-out cell d2σμ,i we rescale the spacetime
rapidity grid points and weights Eq. (80) as

(yp − ηs)i, j = detAi

(detA	,i )2/3
× (yp − ηs) j, (83a)

ωi, j = detAi

(detA	,i )2/3
× ω j . (83b)

This rescaling trick is found to work well even for small val-
ues of detA ∼ 10−5. For (3+1)–dimensional hypersurfaces,
however, this method cannot be used because the freeze-out
finder fixes the freeze-out cells’ spacetime rapidity. Instead,
we switch to a linearized δ fn correction if the rapidity width
is too small [e.g., detA/(detA	)2/3 < 0.01].

The modified anisotropic distribution Eq. (68) can also
break down, usually because the longitudinal pressure PL

turns negative during the viscous hydrodynamic simulation.
When this happens one cannot construct a solution for the
momentum deformation parameter αL in the leading order
anisotropic distribution Eq. (48). For the hypersurface with
large bulk viscous corrections we find PL < 0 in about 7800
freeze-out cells during the period 0.5 fm/c < τ < 2.3 fm/c
(see footnote 14). For these freeze-out cells, we here simply
replace Eq. (68) by the local-equilibrium distribution Eq. (2).
In practice it would be more appropriate to use the PTMA
distribution on hypersurfaces constructed from anisotropic
hydrodynamic simulations in which the occurrence of nega-
tive longitudinal pressures is largely avoided [44].

C. Central collisions

Figure 5 shows the continuous transverse momentum
spectra Eq. (75) of (π+, K+, p), without resonance decay
contributions or hadronic rescattering, for our central Pb+Pb
collision, using a specific bulk viscosity peak temperature of
Tζ = 220 MeV. We study the shear and bulk viscous correc-
tions to the ideal spectra (i.e., δ fn = 0) computed with the
four models for δ fn discussed in Sec. II.

As seen in the figure, the shear stress (although small)
slightly flattens the pT spectra (red curves), without affecting
the total yields, since it slows the longitudinal expansion and
pushes the particles outward in the transverse direction. The
bulk viscous pressure has the opposite effect by counteracting
the scalar expansion rate and reducing the average pressure,
thereby softening the pT spectra (blue curves). One observes
the “shoulder” at low values of pT that is typical for ther-
mal flow spectra [50]; there the bulk corrections are more
pronounced in protons than in pions and kaons. Furthermore,
the bulk viscous correction decreases the total pion and kaon
yields while increasing the proton yield. The PTB distribution
is the only exception to these trends: for nonzero bulk viscous
pressure it both raises the shoulder and increases the yields of
all particles, which sets it apart from the other δ fn corrections.
Finally, the purple curves show the combined effects of the
shear and bulk viscous corrections to the spectra. Overall, the
slope of the total pT spectra is steeper than the ideal one since
here the bulk viscous pressure is larger than the shear stress
for most of the hypersurface.

We also compare the δ fn corrections of the 14–moment
approximation, RTA Chapman–Enskog expansion, PTM dis-
tribution and PTB distribution. We see that the momentum
dependence of the viscous correction varies considerably be-
tween models: the ratio of the total particle spectra to the ideal
one at high pT is approximately quadratic for the 14–moment
approximation and linear for the RTA Chapman–Enskog ex-
pansion, as illustrated by the bottom panels in Fig. 5. The
PTM spectra are almost identical to the ones computed with
the Chapman–Enskog expansion because the shear stress and
bulk viscous pressures are small; differences between the
two approaches emerge only at large values of pT . Overall,
there are no significant differences among the first three δ fn

models across most of the pT spectrum in Fig. 5. The PTB
distribution, however, has a moderate excess of low pT pions
and kaons relative to the other δ fn corrections.

In Fig. 6 we show how the central Pb+Pb collision spectra
from Fig. 5 change when we move the peak of the specific
bulk viscosity from Tζ = 220 MeV to 160 MeV. This obvi-
ously increases the magnitude of the bulk viscous pressure on
the particlization hypersurface at Tsw = 150 MeV. The shear-
bulk coupling effect in the hydrodynamic simulation then also
increases the strength of the shear viscous corrections on the
hypersurface, resulting in much flatter pT slopes than in the
previous case. Surprisingly, the shear viscous corrections from
the four δ fn models are still very close to each other (for
PTM and PTB this is expected because these distributions
use the same shear stress modification). Instead, the largest
differences are found in their bulk viscous corrections. Be-
cause the bulk viscous pressure on the hypersurface is quite
large (lower right panel in Fig. 4), the linearized bulk viscous
correction in the 14–moment approximation causes the pion
spectra to turn negative already at intermediate momentum
pT ∼ 1.8 GeV while the kaon and proton spectra flip sign
for pT > 2 GeV and 2.4 GeV, respectively. The bulk viscous
correction in the RTA Chapman–Enskog expansion is less
severe than in the 14–moment approximation, but the pion and
kaon spectra still turn negative for pT � 2 GeV (the proton
spectra remain positive up to pT = 3 GeV). In contrast, the
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FIG. 5. The azimuthally averaged transverse momentum spectra of (π+, K+, p) (top panels) computed with the Cooper–Frye formula for
the (2+1)–dimensional central Pb+Pb collision described in Sec. V A. The peak temperature of ζ/S is set to Tζ = 220 MeV. We compare the
shear (red), bulk (blue) and combined shear + bulk (purple) δ fn corrections of the 14–moment approximation (dotted color), RTA Chapman–
Enskog expansion (dashed color), PTM distribution (solid color) and PTB distribution (dot-dashed color) relative to the ideal spectra with
δ fn = 0 (solid black). The bottom panels show the ratio of the particle spectra with δ fn corrections to the ideal spectra.

PTM spectra are positive definite by construction even for
moderately large bulk viscous pressures, maintaining an expo-
nential tail at high values of pT .15 One also observes a slight
excess of protons at low pT (this effect is much less visible
for kaons). The PTB spectra also remain positive but have
significantly steeper slopes than the PTM spectra; the shoulder
enhancements at low pT are also much larger, especially for
pions.

After combining the shear and bulk viscous corrections, the
pT spectra become positive except for the one computed with
the 14–moment approximation, which has a strong quadratic
momentum dependence from its bulk viscous correction.

D. Noncentral collisions

Next we repeat the same hydrodynamic simulations for a
nonzero impact parameter b = 5 fm, to study the effects of

15Without regulation, the linearized δ fn corrections from the “bad”
freeze-out cells (see Sec. V B) eventually turn the PTM and PTB
spectra negative but this occurs outside the experimental range of
interest for soft hadron emission pT < 3 GeV.

the different viscous corrections δ fn on the pT –differential
elliptic flow coefficient, shown in Fig. 7 for π+, K+, and
p. Here we start with Tζ = 220 MeV, resulting in relatively
weak viscous stresses on the particlization hypersurface. The
shear viscous corrections are seen to decrease the differential
elliptic flow v2(pT ), counteracting the effects of anisotropic
transverse flow. The bulk viscous pressure, however, tends to
increase v2(pT ) by suppressing the radial flow and making
the pT spectra Eq. (75) steeper. Individually, the small shear
and bulk viscous corrections to the ideal v2(pT ) (defined
by setting δ fn = 0) are roughly linear in pT , except for the
bulk δ fn correction of the 14–moment approximation, which
causes v2(pT ) to diverge at high pT when the spectrum [which
enters the denominator of v2(pT )] passes through zero. Over-
all, there is a net suppression on the differential elliptic flow
since it is more sensitive to the shear viscous corrections at the
space-like edges of the hypersurface, whose fluid cells have
undergone the strongest transverse acceleration. Interestingly,
the only exception is the PTB elliptic flow, whose shear and
bulk viscous corrections nearly cancel each other. Similar
to the spectra discussed in the previous subsection, the four
δ fn models produce very similar viscous corrections to the
elliptic flow when Tζ = 220 MeV. Clear distinctions between
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FIG. 6. Same as described in the caption of Fig. 5 but with a ζ/S peak temperature of Tζ = 160 MeV.

these models appear only for large transverse momenta pT >

2 GeV.
When Tζ is lowered to 160 MeV (see Fig. 8), the

much larger bulk viscous pressure on the spacelike part of
the hypersurface results in the divergence of the linearized
bulk viscous corrections to v2(pT ) at intermediate values of
pT ∼ 1.5−2.5 GeV, for all three particle species considered,
reflecting the corresponding sign change of their azimuthally
averaged pT spectra Eq. (75). The shear viscous correc-
tions help offset this effect by flattening the slope of the
pT spectra, but the pion and kaon elliptic flows still di-
verge, albeit now at slightly higher pT (as does the proton
v2(pT ) from the 14–moment approximation). For realistic
event-by-event simulations where the hadrons are Monte
Carlo sampled from the hypersurface prior to the after-
burner phase, these divergences are removed by enforcing
the regulation feq,n + δ fn � 0 in the Cooper–Frye formula
[15,48].

In the PTM distribution, however, the bulk viscous modifi-
cations prevent the pT spectra from turning negative, and the
resulting elliptic flow curves are well behaved even at high
pT . After including the shear stress modification, the PTM
differential elliptic flows decrease but remain above the ideal
curves since the bulk viscous pressure overwhelms the shear
stress on the hypersurface. The PTB elliptic flow coefficients
also stay finite at high pT but are significantly larger than those
computed with the PTM distribution.

E. Modified anisotropic distribution

We close this section by looking at the particle pT spec-
tra and differential elliptic flows computed with the PTMA
distribution Eq. (68). Figure 9 shows the resulting transverse
momentum spectra for the same central Pb+Pb collision as
in Fig. 6. Compared to the PTM spectra, which here include
both shear and bulk viscous corrections, the PTMA kaon and
proton distributions have a slightly higher mean transverse
momentum, indicated by corresponding shifts in the slope
and shoulder, and the pion yield slightly increases. We know
from Fig. 1 that the PTM distribution underpredicts the input
isotropic pressure Peq + 	 because the bulk viscous modifi-
cations to the effective temperature and isotropic momentum
space in Eq. (32) do not perfectly reproduce the input bulk
viscous pressure. The anisotropic parameters (�,α⊥, αL) in
the PTMA distribution are optimized to correct for these er-
rors, outputting a slightly larger isotropic pressure than the
PTM distribution. One also notices that the PTMA spectra
are virtually identical to the ones computed with leading
order anisotropic distribution Eq. (48), which excludes the
residual shear corrections in Eq. (71). Due to the approxi-
mate azimuthal symmetry of the hypersurface, we expect the
transverse shear stress π

μν

⊥ (W μ

⊥z = 0 by longitudinal boost-
invariance) to have little to no impact on the azimuthally
averaged particle spectra.

Figure 10 shows the elliptic flow coefficients from
the PTMA distribution for the same noncentral Pb+Pb
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FIG. 7. The pT –differential elliptic flow coefficient of (π+, K+, p) for the (2+1)–dimensional noncentral Pb+Pb collision (top panels).
The peak temperature of ζ/S is set to Tζ = 220 MeV. Similar to Fig. 5, we plot the shear and bulk viscous corrections of each δ fn model to
the ideal v2(pT ) (solid black). The bottom panels show the differences between v2(pT ) with δ fn corrections and the ideal v2(pT ).

collision as in Fig. 8. Although the PTM and PTMA models
yield very similar results, the smaller bulk viscous modifi-
cation in the PTMA distribution slightly brings down the
v2(pT ) curves. Relative to the leading order anisotropic dis-
tribution, we see that the transverse shear corrections play a
larger role in noncentral collisions, damping the anisotropic
flow.

VI. CONCLUSIONS

In this work we proposed and studied a positive-definite
hadronic distribution for Cooper–Frye particlization that im-
proves upon the Pratt–Torrieri distribution introduced in
Ref. [27]. At an intermediate stage of the derivation, we
used the RTA Boltzmann equation to identify the nonequi-
librium corrections to the Boltzmann factor. This ensures that
in the limit of small dissipative flows our “modified equilib-
rium” distribution function reduces exactly to the first-order
RTA Chapman–Enskog expansion. Even with these dissipa-
tive modifications, the distribution function remains positive
definite for arbitrarily large momenta, but there is a trade-off:
different from the first-order RTA Chapman–Enskog expan-
sion, the modified equilibrium distribution no longer matches
the input energy-momentum tensor and net baryon current
exactly. The mismatch becomes significant already for mod-
erately large viscous corrections.

To minimize these errors, in Sec. III B we slightly re-
structured the dissipative perturbations by linearizing the
viscous corrections to the momentum scales of the local-
equilibrium distribution as well as their contributions to the
corresponding particle yields. The resulting PTM modified
equilibrium distribution bears close resemblance to the Pratt–
Torrieri distribution [27] but it can better reproduce the input
hydrodynamic quantities in freeze-out cells subject to mod-
erately large bulk viscous pressures. Although the output
of the energy-momentum tensor calculated with the mod-
ified equilibrium distribution does not perfectly match the
input T μν , one can further improve it by applying the same
technique to modify not the isotropic local-equilibrium distri-
bution but instead the leading order anisotropic distribution
(which accounts for some large dissipative effects nonper-
turbatively). At this point this PTMA distribution has only
been constructed for systems with zero net baryon density;
its generalization to nonzero baryon chemical potential will
be left to future work.

We also compared the PTM distribution to the linearized
14–moment approximation and the first-order RTA Chapman–
Enskog expansion, by using the Cooper–Frye formula to
compute the momentum spectra and pT –differential elliptic
flow coefficients of hadrons emitted from a particlization
hypersurface. For small viscous corrections the azimuthally
averaged transverse momentum spectra and pT –differential
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FIG. 8. Same as described in the caption of Fig. 7 but with a ζ/S peak temperature of Tζ = 160 MeV.

elliptic flows generated by all of these δ fn models are
very similar. When the dissipative flows on the hypersur-
face (in our case mostly the bulk viscous pressure) become
moderately large, the transverse momentum spectra of the
linearized δ fn corrections turn negative at intermediate pT

values while those of the PTM and PTMA distributions re-
main positive at all pT , by construction. This simultaneously
prevents the pT –differential elliptic flow coefficients from
developing singularities caused by zero crossings of the pT

spectra, a problem that plagues the linearized viscous correc-
tions whenever the hypersurface features large bulk viscous
pressures.

In practical applications the hydrodynamic evolution of
the fluid inside the particlization hypersurface must be com-
plemented by a microscopic kinetic evolution outside that
surface, typically simulated by a hadronic cascade that allows
for the decay of unstable resonances and their regeneration via
hadronic rescattering (such as, e.g., URQMD [39] or SMASH
[51]). Initialization of this cascade requires the sampling of
hadron positions and momenta from the Cooper–Frye for-
mula using Monte Carlo techniques [5], rather than computing
continuous particle spectra by numerically performing the
Cooper–Frye integral as we have done in this work. Monte
Carlo sampling requires a positive-definite hadron distribu-
tion function fn = feq,n + δ fn. Positivity during the particle
sampling process can be ensured by appropriate regularization
prescriptions [5,48]. Combined with fluctuations from finite

sampling statistics, it then becomes difficult to distinguish
the modified equilibrium distributions from the regulated lin-
earized δ fn corrections at large momenta where few particles
are emitted in any given collision event. The differences that
matter in practice are those that are visible at soft momenta
pT � 1 GeV/c.

The Monte Carlo sampling of hadrons from the Cooper–
Frye formula using one of the five δ fn models discussed in
this work has already been implemented in the code IS3D
[48]. In addition to the PTM and PTMA distributions, it may
be insightful to consider other δ fn correction candidates, to
fully quantify the theoretical uncertainties associated with
the particlization process in heavy-ion collisions. A recent
model-to-data analysis that utilized our code to reduce model
selection bias in the phenomenological constraints on the
quark-gluon plasma’s transport properties was reported in
Refs. [46,47]. The only δ fn model discussed here that was
not used in that analysis is the PTMA modified anisotropic
distribution, which is the latest addition to the IS3D particle
sampler.

An interesting recent development [38] is the proposal
of a new type of positive-definite particle distribution that
introduces dissipative corrections to the local thermal equi-
librium distribution by maximizing the entropy while using
additional Lagrange multipliers to keep all ten components
of the energy-momentum tensor T μν (including the bulk and
shear viscous stresses) fixed exactly at their hydrodynamic
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FIG. 9. The azimuthally averaged transverse momentum spectra of (π+, K+, p) (top panels) for the central Pb+Pb collision with Tζ =
160 MeV. We compare the full PTMA distribution (solid light blue) to the PTM distribution with shear and bulk modifications (solid purple),
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values. The conceptual advantage of this approach is that
it does not rely on any uncontrolled assumptions about the
microscopic dynamics of the distribution function but uses
only the available macroscopic information encoded in the
hydrodynamic output for T μν . We note that this so-called
“maximum entropy” distribution [38] shares many features
with our PTM and PTMA modified equilibrium distributions.
It would be interesting to see whether a deeper connection
exists between these two approaches, and to compare their
particle spectra in event-by-event simulations of heavy-ion
collisions with fluctuating initial conditions. Such studies will
become feasible once a full numerical calculation of the La-
grange multipliers in the maximum entropy distribution for
arbitrary energy-momentum tensors becomes available.
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APPENDIX A: MOMENTS OF THE
DISTRIBUTION FUNCTION

We define the thermal, isotropic, and anisotropic integrals
that appear in this paper. For each species n let

Jkq,n ≡
∫

p

(u · p)k−2q(−p · � · p)q

(2q+1)!!
feq,n f̄eq,n. (A1)

The thermal integrals over the local-equilibrium distribution
are then given by

Jkq =
∑

n

Jkq,n, (A2a)

Nkq =
∑

n

bnJkq,n, (A2b)

Mkq =
∑

n

b2
nJkq,n, (A2c)

Akq =
∑

n

m2
nJkq,n, (A2d)

Bkq =
∑

n

bnm2
nJkq,n. (A2e)

The isotropic integrals over the PTB distribution Eq. (39)
without shear stress modifications (i.e., for πi j = 0) are

Lkq =
∑

n

∫
p

(u · p)k−2q(−p · � · p)q

(2q+1)!!
fλ,n, (A3)

where

fλ,n = gn(1+λ	)−3

exp
[

1
T

√
m2

n − p·�·p
(1+λ	 )2

]
+ �n

. (A4)

In particular, the modified energy density and isotropic
pressure are given by E ′(λ	, z	, T ) = z	L20(λ	, T ) and
P ′(λ	, z	, T ) = z	L21(λ	, T ).

Finally, the anisotropic integrals are given by

Jkrqs =
∑

n

1

(2q)!!

∫
p
(u · p)k−r−2q(−Z · p)r

× (−p · � · p)q(p · � · p)s/2 fa,n f̄a,n. (A5)

APPENDIX B: CONSERVATION LAWS IN
FIRST-ORDER APPROXIMATION

Here we derive the expression for the time derivatives
Eq. (20) by making a first-order approximation to the conver-
sation laws Eq. (19). The conservation equations for the net
baryon number and energy up to first order in gradients are

ṅB = −nBθ, Ė = −(E+Peq)θ. (B1)

Taking the time derivative of the kinetic definitions for the net
baryon and energy densities,

nB =
∑

n

bn

∫
p
(u · p) feq,n, E =

∑
n

∫
p
(u · p)2 feq,n, (B2)

one obtains

α̇B = G(T, αB)θ, Ṫ = F (T, αB)θ. (B3)

The coefficients G and F appear in the RTA Chapman–
Enskog expansion Eq. (22):

G = T

(
(E+Peq)N20 − nBJ30

J30M10 − N 2
20

)
, (B4a)

F = T 2

(
nBN20 − (E+Peq)M10

J30M10 − N 2
20

)
. (B4b)

The evolution equation for the fluid velocity up to first-order
in gradients is given by

u̇μ = ∇μPeq

E+Peq
. (B5)

After computing the spatial gradient of the equilibrium
pressure Peq = 1

3

∑
n

∫
p(−p · � · p) feq,n, Eq. (B5) can be

rewritten as

u̇μ = ∇μlnT + nBT

E+Peq
∇μαB, (B6)

where we made use of the identities [37] J31 = (E+Peq)T
and N21 = nBT .
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