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Maximum entropy kinetic matching conditions for heavy-ion collisions
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Coupling hadronic kinetic theory models to fluid dynamics in phenomenological studies of heavy ion
collisions requires a prescription for “particlization”. Existing particlization models are based on implicit or
explicit assumptions about the microscopic degrees of freedom that go beyond the information provided by
the preceding fluid dynamical history. We propose an alternative prescription which uses only macroscopic
information provided by the hydrodynamic output. This method follows directly from the connections between
information theory and statistical mechanics.
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I. INTRODUCTION

When modeling heavy-ion collision dynamics macroscopi-
cally with fluid dynamics, the problem of particlization of the
fluid near its decoupling into hadrons is a persistent source
of theoretical model bias in the estimation of the material
transport properties of the quark-gluon plasma (QGP) liq-
uid [1–3]. Fluid dynamics provides only the hydrodynamic
moments of the microscopic distributions of hadrons. For a
fluid with conserved energy and momentum (but ignoring
conserved charges) the stress-tensor T μν describes the energy
and momentum fluxes. It is given by the second momentum-
moment of the microscopic distribution,

T μν (x) =
∑

h

gh

(2π )3

∫
d3 p

p0
pμ pν fh(x; p), (1)

where the four-vectors x and p denote the space-time positions
and particle momenta, gh is the spin-isospin degeneracy of
hadronic species h, and fh(x; p) is the one-particle distribution
function of species h. In local equilibrium the distribution
function of each species is uniquely specified by the macro-
scopic inverse temperature β and the four-velocity of the fluid
rest frame uμ. It is given by the Jüttner distribution

feq,h(x; p) = [exp[β(u · p)] − θ ]−1, (2)

where θ = 1, 0, or −1 for particles obeying Bose-Einstein,
Maxwell-Boltzmann, or Fermi-Dirac statistics, respectively.

Out of local equilibrium however, there exist infinitely
many microscopic distributions of hadron momenta and yields
that reproduce the same hydrodynamic moments. Therefore,
practitioners of hydrodynamic phenomenology often choose a
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particular ansatz for the microscopic physics when particliz-
ing fluid cells in a hybrid hydrodynamic model of heavy-ion
collisions. Commonly used ansätze include assumptions re-
garding the momentum-dependence of the viscous corrections
to the local equilibrium distribution, such as the Grad (‘14-
moments’) approach [4–6], and various approximations of an
underlying kinetic theory based on the relativistic Boltzmann
equation, e.g., the first-order Chapman-Enskog method with
a collision term in the relaxation time approximation (RTA)
[7,8]. Both the Grad and Chapman-Enskog (CE) methods
suppose that the microscopic distribution is split into two
terms, the local-equilibrium distribution feq,h and a dissipative
correction δ fh,

fh(x; p) = feq,h(x; p) + δ fh(x; p), (3)

and then solve their respective matching conditions to a finite
(usually first) order in the viscous correction δ fh(x; p).

In the Grad method one supposes that the viscous correc-
tion function may only have a quadratic dependence on the
momenta,

δ fh(x; p) = feq,h(1 − θ feq,h)bμν pμ pν, (4)

where bμν are coefficients which are fixed by the matching
conditions (1) and thus linearly expressed in terms of the
dissipative stresses, the bulk viscous pressure � and the shear
stress tensor πμν . Although at first order this does not involve
a microscopic equation of motion [6] (e.g., the Boltzmann
equation) it does make a somewhat arbitrary assumption about
the possible momentum-dependence of the viscous correc-
tion. This assumption can, however, be justified by relating
the method to a systematic approximation of the Boltzmann
equation in moments of δ f [9]. The Chapman-Enskog series
with the RTA collision term requires, at leading order, that the
dissipative correction satisfies

δ fh = − τR

u · p
pμ∂μ feq + O(∂2), (5)

where τR is the microscopic relaxation time. In practice, it is
often assumed that the relaxation time τR = τR(x) is species
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and momentum-independent, and this assumption is implied
whenever we refer to the Chapman-Enskog RTA method in
this manuscript. Together with the matching conditions (1)
this yields an ansatz for the viscous correction δ fh which is
linear in the dissipative stresses, but with different coefficients
than Grad.

It was realized early that the viscous corrections from
the shear and bulk viscous stresses, motivated by various
kinetic theories (the pion gas, perturbative QCD, RTA) had
large effects on observables such as the elliptic flow [1,2].
Moreover, large bulk corrections in linearized approaches
could overwhelm the equilibrium distribution resulting in the
unphysical consequence fh = feq,h + δ fh < 0. This prompted
the development of resummation methods designed such that
the distribution functions are positive definite for all momenta
[10,11].

We note that many of these difficulties faced in the
modeling of particlization are not unique to the field of heavy-
ion collision phenomenology. Rather, this problem manifests
whenever a fluid’s coupling is not sufficiently strong, and its
expansion sufficiently fast, such that the fluid decouples into
particle degrees of freedom. Motivating a microscopic distri-
bution given only knowledge of its macroscopic moments is a
generic problem in kinetic theory and statistical mechanics.
More broadly, motivating a unique probability distribution
given only knowledge of its moments is a generic problem
in information theory. The solution (to both) problems that
provides the least-biased (maximally entropic) distribution
was given by Jaynes [12]. We follow these methods, tailoring
them to the more unique concerns of particlization in heavy-
ion collisions. These methods do not invoke a microscopic
equation of motion, nor any ad hoc ansätze regarding the mo-
mentum dependence of the viscous corrections. The result is
an expression for the microscopic distribution fh that depends
nonlinearly on the viscous stresses � and πμν , is positive-
definite, matches the entire stress-tensor and reduces to the
linearized Chapman-Enskog in relaxation time approximation
form when the viscous stresses are weak.

Throughout this paper we will use natural units
h̄ = kB = c = 1 and the mostly minus metric gμν =
diag(1,−1,−1,−1). Lorentz four-vector indices will be de-
noted by Greek letters while spatial three-vector indices are
denoted by Latin letters. Contractions of Lorentz indices
will sometimes be denoted by (·), e.g., AμBμ = A · B or
pμπμν pν = p · π · p.

II. THE MAXIMUM-ENTROPY DISTRIBUTION

The kinetic entropy density four-current sμ(x) of a system
of particles is given by

sμ(x) = −
∑

h

gh

(2π )3

∫
d3 p

p0
pμφ[ fh], (6)

where fh(x; p) is the one-particle distribution function, p the
momentum four-vector and x the position four-vector. The
function φ[ f ] depends on the quantum-statistical nature of
the particles through the parameter θ defined in Eq. (2) and

is defined by

φ[ f ] ≡ f ln( f ) − 1 + θ f

θ
ln(1 + θ f ). (7)

As is the case when performing particlization, let us
suppose that some macroscopic theory (e.g., viscous hydro-
dynamics) provides us with the stress-energy tensor T μν :

T μν = εuμuν − (peq + �)�μν + πμν, (8)

where ε is the energy density, peq the equilibrium pressure, uμ

the four-velocity vector, � the bulk viscous pressure, and πμν

the shear-viscous tensor. The energy-density and flow velocity
are the eigenvalue and timelike eigenvector of the stress tensor

εuμ = uνT μ
ν . (9)

The equilibrium pressure can be related to the energy density
by an equation of state peq = peq(ε), although it will not be
necessary to do so in the method proposed in this manuscript.
The spacelike projector �μν is defined by

�μν ≡ gμν − uμuν . (10)

It is also convenient to define the symmetric and traceless
projector

�
μν
αβ ≡ 1

2

(
�μ

α�ν
β + �ν

α�
μ
β

) − 1
3�μν�αβ. (11)

Then, the shear-stress tensor πμν is defined by

πμν = �
μν
αβT αβ, (12)

and the total isotropic pressure is defined by

peq + � = − 1
3�μνT μν. (13)

These definitions can be written as constraints on moments
of the microscopic distributions fh(x; p): The energy matching
condition requires

ε = uμT μνuν =
∑

h

gh

(2π )3

∫
d3 p

p0
(u · p)2 fh(x; p). (14)

Matching the total isotropic pressure P ≡ peq + � requires

P = −1

3
�μνT μν = −1

3
�μν

∑
h

gh

(2π )3

∫
d3 p

p0
pμ pν fh(x; p).

(15)
Finally, matching the shear-stress tensor requires

πμν = �
μν

αβT αβ = �
μν

αβ

∑
h

gh

(2π )3

∫
d3 p

p0
pα pβ fh(x; p). (16)

Our approach here is to find the microscopic distribution
fh(x; p) which maximizes the entropy density functional given
only the ten components of T μν in Eq. (1). We will do so
using the canonical method of Lagrange multipliers [12],
without imposing any microscopic equation of motion. Our
approach differs from Refs. [13,14] where, instead of the en-
tropy, the entropy production rate was extremized. Computing
that rate requires a microscopic approach—in particular, one
must specify the collision term. This incorporates additional
information that we pretend not to possess—in our work, we
assume that all that is known is the energy-momentum tensor
(1) resulting from the preceding hydrodynamic evolution of
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the fluid. In the absence of shear and bulk viscous stresses, our
approach recovers the local equilibrium distribution (2)—the
present work generalizes it to a maximum-entropy distribution
for systems with nonzero viscous stresses.

After introducing Lagrange multipliers with the appropri-
ate tensorial structure, the entropy density four-current can be
written

sμ(x) = −
∑

h

gh

(2π )3

∫
d3 p

p0
pμφ[ fh]

+�

[
εuμ −

∑
h

gh

(2π )3

∫
d3 p

p0
pμ(u · p) fh

]

+ λμ

[
P + 1

3
�αβ

∑
h

gh

(2π )3

∫
d3 p

p0
pα pβ fh

]

+ γ
μ

〈αβ〉

[
παβ − �αβ

ρσ

∑
h

gh

(2π )3

∫
d3 p

p0
pρ pσ fh

]
.

(17)

The Lagrange multipliers � = �(x), λμ = λμ(x) and γ
μ
αβ =

γ
μ
αβ (x) are all functions of spacetime x, although we do not

explicitly write it for brevity of notation. In the last line we
observed that παβ = �αβ

ρσ πρσ ≡ π 〈αβ〉, where �αβ
ρσ is defined

in Eq. (11), and used this to simplify the tensor structure of
the Lagrange multiplier γ

μ
αβ .

We seek the distribution fh which maximizes the entropy
density in the local rest frame u · s:

δ(u · s)

δ fh
= 0. (18)

It follows that

ln

[
fh

1 + θ fh

]
= −�(u · p) + u · λ

u · p
�αβ pα pβ

− 1

u · p
uμγ

μ
αβ�αβ

ρσ pρ pσ (19)

and, after simplification and exponentiation, yields the main
result

fh(x, p) =
[

exp

(
�(u · p) − u · λ

u · p
p〈α〉 p〈α〉

+ uμγ
μ

〈αβ〉
u · p

p〈α pβ〉
)

− θ

]−1

. (20)

We refer to Eq. (20) as the maximum-entropy (ME) distribu-
tion. Here, p〈α〉 = �αβ pβ denotes the spatial components of
pμ in the local rest frame (LRF), defined by uμ

LRF = (1, 0). In
that frame the maximum-entropy distribution is given by

f LRF
h =

[
exp

(
�p0 + λ�

p0
p2 + γ 0

i j pi pj

p0

)
− θ

]−1

, (21)

where p0 =
√

m2+p2, γ 0
i j is traceless and symmetric in the

spatial indices (i j), and we have defined λ� ≡ u · λ. This
equation can be rewritten in a form which bears resemblance
to previous particlization ansätze which have been studied in

the past [10],

fh(x; p) =
[

e�p0 exp

(
�i j

pi pj

p0

)
− θ

]−1

, (22)

where the linear-transformation operator �i j (which acts on
the spatial momenta in the LRF) is defined by

�i j (x) ≡ λ�(x)δi j + γ 0
i j (x). (23)

This maximum-entropy distribution, in particular the ten-
sor structure of the transformation �i j , indeed bears striking
resemblance to the so-called “modified equilibrium” distri-
butions [10,15]; however, we find the coefficients in �i j are
different. Equation (22) also shares some structural simi-
larities with “anisotropic equilibrium distribution” functions
[16–19]; again, a closer comparison reveals differences. We
show in Sec. III that if one works to linear order in the
dissipative stresses πμν and �, the maximum-entropy pre-
scription matches exactly the Chapman-Enskog RTA method.
This feature is also shared by particular modified equi-
librium approaches [10,15], meaning the relation between
the maximum-entropy, modified equilibrium and Chapman-
Enskog RTA approaches is exact at linear order in the
dissipative stresses. However, once second-order and higher
terms have been included, this equivalence is broken and all
three prescriptions differ.

We now discuss certain conditions which are sufficient for
the existence of the Maximum Entropy solution. Examining
Eq. (22) for the specific case of Bose-Einstein particles (θ =
1), we see that a well-behaved solution without divergences
requires

exp

[
�p0 + �i j

pi pj

p0

]
> 1, (24)

which implies

�p0 + �i j
pi pj

p0
> 0. (25)

The particle energy p0 � 0 can be factored out, and if we
define vi ≡ pi/p0, we have the condition

� + �i jv
iv j > 0. (26)

We note that by definition vi satisfies −1 � vi � 1. Since both
� and �i jv

iv j are scalars under rotations, we can consider
rotating into the eigenbasis of the matrix �i j (the basis in
which it is diagonal). Therefore, we have the condition

� + �1(v′
x )2 + �2(v′

y)2 + �3(v′
z )2 > 0, (27)

where �1,�2, and �3 are the three eigenvalues of �i j .
Therefore, a sufficient condition for the existence of a well-

behaved maximum entropy solution is given by

� + λ� > |min(γ1, γ2, γ3)|, (28)

where γ1, γ2, and γ3 denote the diagonal values of the matrix
γi j in the same frame.

These conditions, which have been motivated by the re-
quirement that the distribution function be positive definite
and without divergences, should be satisfied whenever the
energy density and physical pressures satisfy ε > 0 and
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min(T xx, T yy, T zz ) > 0. In practice, we will not try compute
the maximum entropy distribution for situations in which the
viscous part of the energy momentum tensor is larger than the
ideal part (for inverse Reynolds numbers larger than one). This
can be considered to constrain the possible stress tensors T μν

for which we know that the maximum entropy distribution can
be calculated with the methods proposed.

We note that for Maxwell-Boltzmann particles (θ = 0) the
nonequilibrium entropy density of our system admits a ther-
modynamic expression in terms of the hydrodynamic fields
and their conjugate variables. In this case, the entropy density
in the local rest frame s is given by

s = �ε + �i jP
i j + n, (29)

where n is the particle density and we’ve defined the pressure
tensor Pi j by

Pi j ≡
∑

h

gh

(2π )3

∫
d3 p

p0
pi pj fh, (30)

which contains both the equilibrium pressure peqδ
i j and vis-

cous corrections. A more general thermodynamic relation
which holds for Bose-Einstein and Fermi-Dirac statistics as
well can be defined by introducing a generating function Z .

The expression is given by

s = �ε + �i jP
i j + Z (�,�i j ), (31)

where the generating function Z

Z ≡
∑

h

gh

(2π )3

∫
d3 p

1

θ
ln (1 + θ fh) (32)

is defined such that its derivatives generate the hydrodynamic
fields,

∂Z
∂�

= −ε,
∂Z
∂�i j

= −Pi j . (33)

Our distribution function is expressed in terms of seven
unknown Lagrange multipliers � and �i j (or, covariantly, �,
u · λ, and γ〈μν〉 ≡ uαγ α

〈μν〉) which must be chosen to match
the energy density, total isotropic pressure, and shear-stress
tensor, respectively. To solve for these coefficients, we write
down the seven required matching conditions (14)–(16) in
terms of LRF momenta and components as follows:

ε =
∑

h

gh

(2π )3

∫
d3 p p0

[
e�p0 exp

(
�i j

pi pj

p0

)
− θ

]−1

, (34)

P =
∑

h

gh

(2π )3

∫
d3 p

p0

p2

3

[
e�p0 exp

(
�i j

pi pj

p0

)
− θ

]−1

, (35)

π i j =
∑

h

gh

(2π )3

∫
d3 p

p0

(
pi pj − 1

3
p2δi j

)

×
[

e�p0 exp

(
�kl

pk pl

p0

)
− θ

]−1

. (36)

Note that, since we only introduced a single Lagrange multi-
plier for each constraint, i.e., we maximized the LRF entropy
density only subject to the information given to us directly

through the energy momentum tensor, the maximum en-
tropy distribution (20) automatically distributes the shear and
bulk viscous flows “democratically” [20] across the hadron
species h.

III. LINEARIZING THE MAXIMUM ENTROPY
DISTRIBUTION

In this section we solve for the Lagrange multipliers in the
limit of small dissipative flows. We calculate the maximum
entropy distribution self-consistently to leading order in the
viscous stresses � and πμν , and find that it reproduces ex-
actly the Chapman-Enskog distribution in the relaxation-time
approximation. We begin by noting that for vanishing viscous
stresses (ideal fluids) the constraint (34) is solved by set-
ting �i j ≡ 0 and � = β, the equilibrium inverse temperature.
The leading order expressions can therefore be obtained by
expanding the maximum entropy distribution (20) to linear
order in �i j and the difference �− β. For simplicity we will
assume Maxwell-Boltzmann statistics (θ = 0) throughout this
section. We also introduce the compact notation

∫
p
(· · · ) ≡

∑
h

gh

(2π )3

∫
d3 p

p0
(· · · ), (37)

where p0 =
√

p2 + m2
h. (Note that the shorthand

∫
p includes a

sum over species h.)
Let us consider Eq. (20) and for notational convenience

define the traceless and purely spatial (in the LRF) rank two-
tensor γαβ (x) = γ〈αβ〉(x) ≡ uμ(x)γ μ

〈αβ〉(x). The maximum-
entropy distribution (20) is then expressed as

fh = exp

(
−� u · p + λ�

p〈μ〉 p〈μ〉

u · p
− γ〈μν〉

p〈μ pν〉

u · p

)
. (38)

This distribution depends on the hadron species h only
through the mass dependence of the on-shell energy. The
local-equilibrium distribution is given by

feq,h = e−β(u·p). (39)

Let us now consider the relation between �, λ�, γ〈μν〉,
and β provided by the energy matching condition Eq. (34)
discussed at the end of the preceding section and expand it
around λ� = γ 〈μν〉 = 0:

�(β, λ�, γ 〈μν〉) = �(β, 0, 0) + cλλ� + cμνγ
〈μν〉 + · · · .

(40)
Here, �(β, 0, 0) = β, the coefficients cλ and cμν are in gen-
eral functions of β, and the ellipses denote neglected terms of
second or higher order in λ� and γ μν . To linear order in the
Lagrange multipliers the distribution function fh can thus be
written

fh ≈ e−β(u·p)

[
1 − (cλλ� + cμνγ

〈μν〉)(u · p)

+ λ�

p〈μ〉 p〈μ〉

u · p
− γ 〈μν〉 p〈μ pν〉

u · p

]
. (41)
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The matching conditions for the shear and bulk stresses can
be compactly written as∫

p
pμ pν δ fh = −��μν + πμν, (42)

where δ fh is defined in Eq. (3). Using the linearized form
(41) and introducing the shorthand cλλ� + cμνγ

〈μν〉 ≡ C this
becomes

−C
∫

p
(u · p) pμ pν feq,h + λ�

∫
p

pμ pν p〈α〉 p〈α〉

u · p
feq,h − γ〈αβ〉

∫
p

pμ pν pα pβ

u · p
feq,h = −��μν + πμν. (43)

To calculate the left-hand side we use the following tensor decomposition for n = 4:∫
p

pμ1 pμ2 · · · pμn

(u · p)r
feq,h = Ir

(n,0)u
μ1 uμ2 · · · uμn + Ir

(n,1)[�
μ1μ2 uμ3 · · · uμn + �μ1μ3 uμ2 uμ4 · · · uμn + permutations] + · · ·,

where the moments Ir
(n,q) are defined as

Ir
(n,q) ≡ 1

(2q + 1)!!

∫
p
(u · p)n−2q−r (p〈α〉 p〈α〉)q feq,h. (44)

Note that the authors of Ref. [8] used a similar definition,
albeit for a single hadron species. Labeling the moments used
in [8] as Ir,h

(n,q) for a given species h, the two definitions are

simply related by Ir
(n,q) = ∑

h Ir,h
(n,q).

After tensor decomposition we find∫
p

(u · p) pμ pν feq,h = I−1
(2,0)u

μuν + I−1
(2,1)�

μν, (45)∫
p

pμ pν p〈α〉 p〈α〉

u · p
feq,h = 3I1

(4,1)u
μuν + 5I1

(4,2)�
μν, (46)

γ〈αβ〉
∫

p

pμ pν pα pβ

u · p
feq,h = 2I1

(4,2) γ
〈μν〉. (47)

In the last line we used that γ 〈μν〉 is symmetric, traceless and
transverse to the flow velocity uμ. Substituting this back into
Eq. (43) yields

−��μν+π 〈μν〉 = (−CI−1
(2,0) + 3λ�I1

(4,1)

)
uμuν

+ (−CI−1
(2,1) + 5λ�I1

(4,2)

)
�μν − 2I1

(4,2)γ
〈μν〉.

(48)

Using the mutual orthogonality of the tensors uμuν , �μν , and
π 〈μν〉 we find the following three relations:

−CI−1
(2,0) + 3λ�I1

(4,1) = 0, (49a)

−CI−1
(2,1) + 5λ�I1

(4,2) = −�, (49b)

−2I1
(4,2)γ

〈μν〉 = π 〈μν〉. (49c)

With the help of Eqs. (8, 11, 12, 22) in Ref. [8] for a
single hadron species, remembering that here Ir

(n,q) = ∑
h Ir,h

(n,q)

as well as βπ = ∑
h βπ,h (where βπ,h ≡ βI1,h

(4,2) was defined in
[8]), we find

I−1
(2,0) = I0

(3,0), I−1
(2,1) = I0

(3,1), I1
(4,1) = I0

(3,1), (50a)

I1
(4,2) ≡ βπ/β, I0

(3,1) = −(ε + p)/β, (50b)

I0
(3,1)/I0

(3,0) = −d peq/dε ≡ −c2
s . (50c)

In the last equation we used d peq = ∑
h d peq,h and dε =∑

h dεh, as well as d peq,h = I0,h
(3,1)dβ and dεh = −I0,h

(3,0)dβ,
such that c2

s = −I0
(3,1)/I0

(3,0).
Putting everything together we find the following relations

between the Lagrange multipliers, coefficients and dissipative
stresses:

C = −3λ�c2
s , γ μν = −βπμν/(2βπ ), (51a)

λ� = − β �

3
[

5
3βπ − (ε + p)c2

s

] ≡ −β �

3β�

, (51b)

where, similar to the corresponding definition in [8],

β� = 5
3βI1

(4,2) − (ε+peq )c2
s . (52)

Using these results in Eq. (41) yields for the linearized
maximum-entropy viscous correction δ fh the expression

δ fh

feq,h
=

(
3c2

s (u · p) + p〈α〉 p〈α〉

u · p

)
λ� − pμ pνγ

〈μν〉

u · p

= β

3β�

((
1−3c2

s

)
(u · p)2 − m2

h

)
�

u · p
+ β

2βπ

pμ pνπ
μν

u · p
.

(53)

For a single hadron species this matches exactly with Eq. (27)
in Ref. [8] which was derived by solving the first-order
Chapman-Enskog correction with a relaxation-time approxi-
mation collision kernel.

IV. MATCHING WITHOUT SHEAR STRESS

We now consider the case in which we match an energy-
momentum tensor with vanishing shear-stress, πμν = 0. This
implies that the associated Lagrange multiplier γ〈μν〉 = 0
and that the distribution (20) is isotropic in the LRF. Us-
ing LRF momenta (i.e., p0 = u · p) to evaluate the matching
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integrals (34)–(35) we obtain

ε = 4π

(2π )3

∑
h

gh

∫ ∞

mh

d p0 p2
0

√
p2

0−m2
h

[
exp

(
�p0 + λ�

p0

(
p2

0−m2
h

)) − θ

]−1

, (54)

P = peq + � = 4π

(2π )3

1

3

∑
h

gh

∫ ∞

mh

d p0
(
p2

0−m2
h

)3/2
[

exp

(
�p0 + λ�

p0

(
p2

0−m2
h

)) − θ

]−1

. (55)

Examining the expression for the distribution function

f =
[

exp

(
�p0 + λ�

p0

(
p2

0−m2
h

)) − θ

]−1

, (56)

where � > 0, we note that existence of a solution requires
λ� � −�. Since large values of |λ�| signal large bulk viscous
stresses, we restrict our solution to the case |λ�| � |�|.1

To solve Eqs. (54) and (55) numerically we use a realistic
hadron resonance gas (HRG) which includes all resonances
that can be propagated in the ultrarelativistic quantum molec-
ular dynamics (UrQMD) [21,22] hadronic afterburner. We
solve these coupled equations for � and λ� as follows: First,
we choose a regular grid of values for both � and λ�. Then,
for each pair of values (�i, λ�, j ) we evaluate the integrals
in Eqs. (54) and (55) by numerical quadrature. This yields a
grid of values ε(�i, λ�, j ) and P(�i, λ�, j ). These grids are
then interpolated with splines to obtain smooth approxima-
tions ê(�,λ�) and P̂(�,λ�). Finally, given known values of
energy density and isotropic pressure, � and λ� can be found
using a two-dimensional root finding routine.

We now compare the maximum-entropy distribution with
the linear Chapman-Enskog RTA distribution and the local-
equilibrium distribution, all in the local rest frame. The
linear Chapman-Enskog RTA viscous correction is given by
[8,11,15,23]

δ fCE = feq f̄eq

[
�

β�

(
(u · p)F

T 2
− p · � · p

3(u · p)T

)]
, (57)

where the coefficients F and β� are given by thermodynamic
integrals of the hadron gas:

F ≡ −T 2 ε + peq

J(3,0)
, β� ≡ F ε + peq

T
+ 5J(3,2)

3T
, (58)

where the moments J(n,q) are defined by

J(n,q) ≡ 1

(2q + 1)!!

∫
p
(u · p)n−2q(p〈α〉 p〈α〉)q feq,h f̄eq,h. (59)

For our comparison we consider a hadron resonance gas at
temperature T = 0.15 GeV. We assume a moderately large,
negative bulk pressure with magnitude of one-third of the
hadron resonance gas equilibrium pressure at this temper-
ature: � = −peq/3. For a bulk pressure of this magnitude
the Chapman-Enskog RTA linear bulk correction becomes
larger than the ideal part, |δ fh,CE| � fh,eq, already at moderate
values of momentum |p| ∼ 1 GeV. In practice, when doing

1Technically we ensure this by, instead of λ�, using ρ ≡ λ�/� and
restricting ρ to the range [−1, 1].

particlization in simulations of heavy ion collisions, the vis-
cous correction must be regulated by hand. This is required
to maintain positivity of the distribution function, which is
interpreted as a probability distribution from which particles
and their momenta are sampled. A typical procedure is to
replace

δ fCE → sign(δ fCE) min( feq, |δ fCE|) ≡ δ f̃CE, (60)

which we will call the ‘regulated Chapman-Enskog viscous
correction’. We note that, in practice, this regulation breaks
the exact matching of the dissipative part of the stress-tensor:

δT μν =
∫

p
pμ pνδ fh,CE 
=

∫
p

pμ pνδ f̃h,CE. (61)

Restoring the exact matching condition would require re-
calculating the coefficients F and β� using the regulated
Chapman-Enskog RTA correction form in the integrands.

In Fig. 1 we compare the maximum-entropy distribu-
tion with the regulated CE RTA distribution and the local
equilibrium distribution. The deviations from the equilibrium
distribution are large. For pions, the viscous corrections are

FIG. 1. The particle spectra in the local fluid rest frame for the
local equilibrium (solid), maximum-entropy (ME, dashed lines) and
linear Chapman-Enskog RTA (CE, dotted lines) distributions, for
pions (blue lines), and protons (red lines). The bottom panel displays
the ratio of these spectra to the local equilibrium spectra.
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FIG. 2. Top: Particle densities in the local rest frame, normalized
by their equilibrium values, for the maximum-entropy distribution
(ME, dashed) and linear Chapman-Enskog RTA distribution (CE,
dotted lines), for pions (blue lines, decreasing), and protons (red
lines, increasing), as functions of the normalized bulk viscous pres-
sure −�/peq. Bottom: The corresponding mean particle momenta in
the local rest frame, normalized by their equilibrium values.

negative, except at very low momenta p < 50 MeV. The CE
RTA and ME distributions agree well at low momenta but
disagree dramatically at p > 1 GeV where the (unregulated)
CE RTA distribution goes negative. For the heavier protons,
the bulk viscous corrections are much larger and switch sign
at intermediate momenta (p ∼ 0.7−0.9 GeV), being positive
at lower and negative at larger momenta. Significant discrep-
ancies between the two viscous distributions are observed for
protons over the entire momentum range; at p = 0, the ME
proton distribution is about 20% larger than the CE RTA dis-
tribution and more than a factor 2 larger than the equilibrium
distribution.

In Fig. 2 we plot the local rest frame particle densities and
mean momentum magnitudes, both normalized by their equi-
librium values, for pions and protons as functions of the bulk
inverse Reynolds number −�/peq. We see that for protons
the maximum-entropy distribution yields smaller bulk viscous
corrections to the particle density than the regulated linear
Chapman-Enskog RTA result. For pions the bulk viscous cor-
rections to the particle densities have the opposite sign and
are much larger, but the predictions of the ME and regulated
CE RTA distributions agree well with each other, even for
large values of the bulk viscous pressure. The same is not
true for the pion and proton mean momenta which, for large
bulk inverse Reynolds numbers, differ significantly, in oppo-
site directions, between the maximum-entropy and regulated
Chapman-Enskog viscous distributions. The differences in the
proton yields and pion and proton mean momenta between

these two different ansätze for the bulk viscous distribution
functions are large enough to have the potential of signifi-
cantly affecting the bulk viscosity inferred from model-to-data
comparisons.

As a final note we observe that the maximum-entropy
distribution can naturally handle very large bulk inverse
Reynolds numbers. Physically, the bulk inverse Reynolds
number may grow large near the pseudo-critical tempera-
ture Tc ∼ 150 MeV where the quark-gluon plasma turns into
hadrons [24–26]. Since the maximum-entropy method is not
based on a near-equilibrium expansion, it does not require the
dissipative stresses to be small for self-consistency.

V. MATCHING WITH SHEAR STRESS

A. The relationship between the shear stress and its
Lagrange multipliers

In this section, we again consider the simpler case of
Maxwell-Boltzmann particles (θ = 0). We return to the
matching condition (16) for the shear stress tensor and write
it in the local rest frame:

π i j = �
i j
kl

∫
p

pk pl exp

(
−�p0 − λ�

p0
p2

)
exp

(
−γrs pr ps

p0

)
.

(62)
Latin tensor indices run over the spatial directions in the LRF.

The matching condition (62) establishes a highly nonlinear
relationship between the given shear stress in the LRF, π i j ,
and the associated symmetric and traceless 3 × 3 matrix of
Lagrange multipliers, γ i j . We now proceed to show that these
two matrices share a common set of eigenvectors. This will
be seen to decisively simplify the task of determining the
Lagrange multipliers γ i j from the shear stress π i j .

Let us Taylor expand the second exponential in Eq. (62),

exp

(
−γrs pr ps

p0

)
=

∞∑
n=0

(
−γi j pi pj

p0

)n

, (63)

and consider truncating this series at some finite order. Trun-
cating at n = 0 yields π

i j
(0) = 0. At truncation order n = 1 we

get

π
i j
(1) = −�

i j
klγab

∫
p

1

p0
pk pl pa pb exp

(
−�p0 − λ�

p0
p2

)

= −�
i j
klC1,0(�,λ�) γ kl , (64)

where C1,0(�,λ�) is a scalar function. In Cr,s, the first index
r denotes the total number of tensors γ following the coeffi-
cient while the second index s denotes how many of these γ

tensors have their indices mutually contracted to form scalars.
(This will become clearer below.) At n = 2 we encounter the
integral

�
i j
klγab γcd

∫
p

1

p2
0

pk pl pa pb pc pd exp

(
−�p0 − λ�

p0
p2

)

= �
i j
kl C2,0(�,λ�) (γ2)kl , (65)

where (γ2)kl = γ k
c γ cl . (Note that the term C2,1γ

kl γ a
a vanishes

because γ is traceless.) The integral over the n = 3 term in the
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series yields

−�
i j
kl (C3,0 (γ3)kl + C3,2 γ kl γ 2), (66)

where we introduced γ n ≡ tr(γn), and the n = 4 term simi-
larly integrates to

�
i j
kl (C4,0 (γ4)kl + C4,2 (γ2)kl γ 2 + C4,3 γ kl γ 3). (67)

It is clear that the nth order introduces one new term

(−1)n �
i j
kl C(n,0)(γ

n)kl (68)

while all other terms have the same tensor structure as lower
order terms. For example, when we truncate Eq. (63) at order
n = 4 we obtain

π
i j
(4) = �

i j
kl

(−c(4)
1 γ + c(4)

2 γ2 − c(4)
3 γ3 + c(4)

4 γ4
)kl

(69)

with the coefficients

c(4)
1 = C1,0 + C3,2γ

2 + C4,3γ
3,

c(4)
2 = C2,0 + C4,2γ

2, c(4)
3 = C3,0, c(4)

4 = C4,0.

The scalar coefficients ci are functions of �, λ�, and scalar
contractions of γ .

Summed to all orders the series for π i j thus becomes

π i j = �
i j
kl

( ∞∑
n=1

c̃n (−γ )n

)kl

, (70)

where the coefficients c̃n include contributions c(i)
n from all or-

ders 1 � i � ∞. Note that although γ i j is traceless, products
of γ i j’s are not. The operator �

i j
kl projects out the trace part of

such products. For example,

�
i j
kl (γ2)kl = γ i

a γ a j − δi j

3
γ a

b γ b
a = (γ2)i j − δi j

3
γ 2. (71)

Equation (70) can be written in matrix notation as

π = � − 1
3 tr(�) I, (72)

where I is the 3 × 3 identity matrix and

� ≡
∞∑

n=1

(−1)nc̃n γn. (73)

Since any power of a matrix commutes with itself, [γ, γn] =
0, it follows that [γ,π] = 0. Therefore, the shear stress tensor
π and its associated tensor of Lagrange multipliers γ are
simultaneously diagonalizable.

At any spacetime point x, the hydrodynamic energy-
momentum tensor T μν (x) provides us (after transformation to
the LRF at x) with the full matrix π. Finding the eigenvalues
and eigenvectors of the given π is straightforward. As a real,
symmetric and traceless matrix, π has two independent real
eigenvalues, associated with three orthonormal eigenvectors.
[It is easy to show that orthogonality and normalization allow
to characterize the three eigenvectors by three real parameters
(Euler angles). Together with the two independent eigenvalues
we thus recover the five independent shear stress degrees of
freedom.] The matrix C of orthonormal eigenvectors can be
used to rotate π into diagonal form

π = CT πDC. (74)

Here, πD ≡ diag(π1, π2,−π1−π2) is the diagonalized shear
stress, with eigenvalues π1, π2, and π3 = −(π1 + π2). From
the arguments above it follows that γ is diagonalized by the
same transformation

γ = CT γ
D
C. (75)

This implies that three of the five independent Lagrange mul-
tipliers can be determined easily from the eigenvectors of
the shear stress. Since the rotation matrix C is known from
the diagonalization (74) of the given shear stress π, the full
Lagrange multiplier matrix γ is easily computed from Eq. (75)
once the two independent diagonal elements of γ

D
have been

determined. The only nonlinear part of the problem is the
computation of the two independent eigenvalues of γ from
those of π. These statements hold irrespective of the value of
the bulk viscous pressure. They greatly simplify the numerical
task of finding the Lagrange multiplier matrix γ that matches
the given shear stress π.2

B. Solution for a massless gas

In this section we illustrate the determination of the La-
grange multipliers γ i j in the maximum-entropy distribution
(20),(21) from π i j for the case of a massless Maxwell-
Boltzmann gas with nonzero shear stress but vanishing bulk
viscous pressure. By keeping the discussion initially general
we show that the future generalization of this solution to a
general gas mixture of massive hadronic resonances charac-
terized by nonzero values for both shear and bulk viscous
stresses will be straightforward.

Let us return to the generating function Z from Eq. (32),
now expressed covariantly and specifically for Maxwell-
Boltzmann particles:

Z (�,λ�, γαβ ) ≡
∫

p
(u · p) exp[−�(u · p)]

exp

[
λ�

p · � · p

u · p

]
exp

[
−γαβ

p〈α pβ〉

u · p

]
.

(76)

According to Eq. (33), the energy density, total isotropic pres-
sure and shear stress from Eqs. (14)–(16) are then given by the
following derivatives with respect to the Lagrange multipliers:

ε = −∂Z
∂�

, P = −1

3

∂Z
∂λ�

, πμν = − ∂Z
∂γμν

. (77)

Note that in the generating functional (76) we do not impose
tracelessness and transversality on γαβ , i.e., when taking the
derivatives (77) we consider, in particular, all three eigenval-
ues γ1, γ2, and γ3 as independent. In the last equation (77),
the correct symmetries of πμν are ensured by the spatial and
transverse projection implied by the angular parentheses in the
factor p〈α pβ〉 in Eq. (76).

2The idea to simplify the solution of the matching conditions by
computing the hydrodynamic moments of the anisotropic distribu-
tion function in a frame which diagonalizes the shear tensor was also
exploited in Ref. [19].
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As before, we will work out these expressions in the local
rest frame. However, to simplify the last factor in Eq. (76)
we will rotate the LRF integration momentum variables with
the matrix C that diagonalizes γ . The integration measure

∫
p

and the first three factors under the integral (76) are invariant
under this rotation. Writing �q = C �p as well as q ≡ |�q|, q0 =√

q2+m2, and computing

γ〈i j〉 p〈i pj〉 = γ1q2
1 + γ2q2

2 + γ3q2
3 − q2

3
(γ1 + γ2 + γ3) (78)

(the tracelessness condition γ3 = −(γ1+γ2) will only be im-
plemented at the end), the generating function (76) takes the
form

Z =
∑

h

gh

(2π )3

∫ ∞

0
q2dq e−�q0 exp

[
q2

q0

(
γ1+γ2+γ3

3
−λ�

)]

×
∫

�q

exp

[
−q2

q0
(sin2 θq(cos2φqγ1+sin2φqγ2)+ cos2θqγ3)

]
.

(79)

Here, (θq, φq) are the polar and azimuthal angles of �q,
with standard integration measure d�q = sin θqdθqdφq. From
Eq. (79) the generating function Z can be calculated numer-
ically. Taking its derivatives (77) with respect to the four
independent Lagrange multipliers on which it depends and
solving the resulting matching conditions iteratively may be
a difficult task whose full solution will be left to future work.
In the following two subsections we work out the generating
function semi-analytically for the simpler case of a massless
Boltzmann gas (where m=0 and q0 = q = |�q|) and then eval-
uate the matching conditions in this simplified setting.

1. Evaluation of Z for a massless Boltzmann gas

For a single-species Boltzmann gas of spinless and mass-
less particles the generating function (79) reduces to

Z =
∫ ∞

0

q2dq

(2π )3
e−�̄q

∫ 1

−1
dz e−qγ3z2

×
∫ 2π

0
dφq e−q(1−z2 )(cos2φqγ1+sin2φqγ2 ), (80)

with z = cos θq and �̄= �+ λ� − 1
3 (γ1 + γ2 + γ3). The az-

imuthal integral yields a modified Bessel function∫ 2π

0
dφq(· · · ) = 2πe−q(1−z2 )(γ1+γ2 )/2 I0

(
q(1−z2)

γ1−γ2

2

)
.

Hence,

Z =
∫ ∞

0

q2dq

(2π )2

∫ 1

−1
dz e−q�′(z)I0(qα(z)), (81)

where �′(z) ≡ �̄ + 1
2 (1−z2)(γ1+γ2) + z2γ3 and α(z) ≡

1
2 (1−z2)(γ1−γ2). The q integral is done using∫ ∞

0
dx x2 e−�′x I0(αx) = 2(�′)2 + α2

[(�′)2 − α2]5/2
, (82)

leaving us with the following one-dimensional polar-angle
integral for the generating function

Z (�,λ�, γ1, γ2, γ3) =
∫ 1

0

dz

2π2

2(�′(z))2 + α2(z)

[(�′(z))2 − α2(z)]5/2
. (83)

Its derivatives with respect to �, λ�, γ1, and γ2 yield a coupled
set of four matching conditions, with the right-hand sides
given by one-dimensional integrals of the structure (83).3 This
is certainly easier than working from Eq. (79) which involves
three-dimensional integrals over more complex integrands.
We will explore in the next subsection an alternate approach
based on series expansions.

2. Alternate method

The following approach uses a series expansion that allows
to perform the angular integrals even in the general case of
a gas mixture of massive hadrons. Writing the exponential
under the angular integral in Eq. (79) as

e−(q2
1γ1+q2

2γ2+q2
3γ3 )/q0

=
∑

n1,n2,n3

1

n1!

(−γ1q2
1

q0

)n1 1

n2!

(−γ2q2
2

q0

)n2 1

n3!

(−γ3q2
3

q0

)n3

,

(84)

where q1 = q sin θq cos φq, q2 = q sin θq sin φq, and q3 =
q cos θq, the angular integrals over each term can be done:∫

d� (cos φ)2n1 (sin φ)2n2 (cos θ )2n3 (sin θ )2(n1+n2 ) ≡

A(n1, n2, n3) = 2
�

(
n1 + 1

2

)
�

(
n2 + 1

2

)
�

(
n3 + 1

2

)
�

(
ns + 3

2

) , (85)

where we introduced ns ≡ n1 + n2 + n3 for brevity. This
yields the following form for the generating function:

Z =
∑

h

gh

(2π )3

∫
q2dq e−�q0−(λ�− 1

3 (γ1+γ2+γ3 ))q2/q0
∑

n1,n2,n3

A(n1, n2, n3)

n1! n2! n3!
(−γ1)n1 (−γ2)n2 (−γ3)n3

(
q2

q0

)ns

. (86)

3This is the point where we set γ3 = −(γ1+γ2).

064902-9



EVERETT, CHATTOPADHYAY, AND HEINZ PHYSICAL REVIEW C 103, 064902 (2021)

This expression is still valid for a massive gas mixture with classical Boltzmann statistics and can thus form the basis for future
generalizations of what we derive below. Please note that we have not yet used the zero-trace condition γ1 + γ2 + γ3 = 0; as
before, we only implement it at the end.

We now restrict our attention again to the simpler case of massless particles (q0 = q) for which the momentum integral is
easily performed:

Z = 1

(2π�̄)3

∑
n1,n2,n3

A(n1, n2, n3)

n1! n2! n3!
(ns + 2)!(−1)ns

(γ1

�̄

)n1
(γ2

�̄

)n2
(γ3

�̄

)n3

. (87)

Here, �̄ = � + λ� − 1
3 (γ1 + γ2 + γ3). By keeping a sufficient number of terms in the series given above, we have checked that

both Eqs. (87) and (83) yield identical results for Z for a given set of Lagrange parameters. The derivative with respect to the
eigenvalue γ1 (γ2) of the Lagrange multiplier tensor γ yields the eigenvalue π1 (π2) of the shear stress tensor:

π1 = − ∂Z
∂γ1

= − 1

(2π )3�̄4

∑
n1,n2,n3

A(n1, n2, n3)

n1! n2! n3!
(ns + 2)!(−1)ns

(γ1

�̄

)n1
(γ2

�̄

)n2
(γ3

�̄

)n3
(

1 + ns

3
+ n1

�̄

γ1

)
, (88)

π2 = − ∂Z
∂γ2

= − 1

(2π )3�̄4

∑
n1,n2,n3

A(n1, n2, n3)

n1! n2! n3!
(ns + 2)!(−1)ns

(γ1

�̄

)n1
(γ2

�̄

)n2
(γ3

�̄

)n3
(

1 + ns

3
+ n2

�̄

γ2

)
. (89)

The energy density and total isotropic pressure are given by

ε = −∂Z
∂�

= 1

(2π )3�̄4

∑
n1,n2,n3

A(n1, n2, n3)

n1! n2! n3!
(ns + 3)!(−1)ns

(γ1

�̄

)n1
(γ2

�̄

)n2
(γ3

�̄

)n3

, (90)

P = peq(ε) + � = −1

3

∂Z
∂λ�

= 1

3(2π )3�̄4

∑
n1,n2,n3

A(n1, n2, n3)

n1! n2! n3!
(ns + 3)!(−1)ns

(γ1

�̄

)n1
(γ2

�̄

)n2
(γ3

�̄

)n3

. (91)

All of these expressions are to be evaluated at γ3 = −(γ1+γ2)
and �̄ = � + λ�. The series in the last two equations are
seen to be related by P = ε/3 which [with the equation of
state for a massless gas peq(ε) = ε/3] yields � = 0, as it
should: in a massless gas the bulk viscous pressure vanishes.
Correspondingly, λ� = 0 for this system.

C. Results for a massless Boltzmann gas

This leaves us with the coupled equations (88)–(90), eval-
uated at �̄ = � and γ3 = −(γ1+γ2). They can be inverted
numerically with a three-dimensional root solving method4 to
find (�, γ1, γ2) from (ε, π1, π2). Initializing the root solver
with a guess given by the linearized CE RTA expressions (51)
was found to reduce the number of iterations needed.

The algorithm and root solver were tested in a blind test
where one of the authors selected a value of � and a matrix γ

of shear stress Lagrange multipliers in the LRF, without any
symmetry restrictions, used Eqs. (34) and (36) (with λ� = 0)
to generate the corresponding energy density ε and the full
LRF shear stress tensor π i j for a massless Boltzmann gas,
and handed these to another author who then diagonalized
π i j , used Eqs. (88)–(90) to reconstruct (�, γ1, γ2) and, finally,
the complete Lagrange multiplier tensor γ from Eq. (75). The
reconstructed Lagrange multipliers agreed with the originally
selected ones to a precision that can be systematically im-
proved by truncating the numerical series at higher orders.5

4The code used in this section can be found in [27].
5For an inverse shear Reynolds number of 0.2 we found per mille

agreement by truncating at ni = 10 (i = 1, 2, 3).

In Figs. 3 and 4 we plot the momentum distribution in the
local rest frame for two simple cases. In both cases, we take an
energy density which corresponds (for a massless Boltzmann
gas) to an equilibrium temperature of Tsw = 0.15 GeV.

In the first case, we assume the shear stress is isotropic
in (x, z) but anisotropic in (x, y), taking π xx = π zz = peq/5
(where peq is the equilibrium pressure) and off-diagonal com-
ponents zero. It follows that π yy = − 2

5 peq. Figure 3 shows the
resulting variation of the maximum-entropy distribution as a
function of the azimuthal angle φp for particles with momenta
of average thermal magnitude p = 3Tsw. Also shown is the

FIG. 3. The maximum-entropy (ME, blue dashed lines) and lin-
ear Chapman-Enskog RTA (CE, red dotted lines) distributions in the
LRF as functions of the azimuthal momentum angle φp for a diagonal
shear stress with (x, z) isotropy, taking π xx = π zz = peq/5. Both are
normalized by the equilibrium distribution.
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FIG. 4. The maximum-entropy (ME, blue dashed lines) and lin-
ear Chapman-Enskog RTA (CE, red dotted lines) distributions in
the local rest frame as functions of polar momentum angle θp (top)
and momentum magnitude (bottom) for a diagonal shear stress with
(x, y) isotropy, taking π xx = π yy = peq/5. Both are normalized by
the equilibrium distribution.

linear Chapman-Enskog RTA distribution, with viscous cor-
rection given by Eq. (53).

In the second case, we take a shear stress tensor which is
again diagonal but now isotropic in (x, y), given by π xx =
π yy = peq/5. It follows that π zz = −2peq/5. In Fig. 4 the
maximum-entropy and linear Chapman-Enskog RTA distribu-
tions are plotted for particles with average thermal momentum
p = 3T as a function of polar angle (top panel), and for fixed
direction θp = π/2, φp = 0 as functions of the momentum
magnitude (bottom panel).

Finally, in Fig. 5 we plot the evolution of the Lagrange mul-
tiplier γ1 (the first eigenvalue of γ) with the associated shear
stress eigenvalue π1/peq (which is related to the inverse shear
Reynolds number), for two choices of the second shear stress
eigenvalue, π2/peq = 0 and 0.3, respectively. It is compared
with the corresponding CE RTA coefficient which is linear in
π1 and independent of π2. In both cases the energy density
is fixed by the equilibrium energy density of the massless
Maxwell-Boltzmann gas at a temperature T = β−1 = 0.15
GeV. For π2 = 0, the two coefficients agree very well, even
for large inverse Reynolds numbers. However, agreement in

FIG. 5. The normalized Lagrange multiplier γ1/β (where β is
the inverse equilibrium temperature) as a function of the first shear
stress eigenvalue π1, for two choices of its second eigenvalue π2,
π2 = 0 (blue dashed lines) and π2/peq = 0.3 (green dashed lines),
respectively. Also shown for comparison is the corresponding CE
RTA coefficient (orange dotted) which is independent of π2.

the coefficients should not be interpreted as agreement in the
predicted distributions: their functional forms are different
(exponential momentum dependence in the ME distribution,
polynomial dependence in the linearized RTA CE distribu-
tion). The green dashed line in Fig. 5 illustrates that for
nonzero π2 the coefficients γ1/β and π1/(2βπ ) differ and
do not agree with each other even for very small π1. This
is a direct manifestation of the non-linear coupling between
the eigenvalues γ1 and γ2 in the ME matching of the shear
stress. Moreover, we note that the evolution of the Lagrange
multiplier is smooth and monotonic under changes in the shear
stress.

Although the method for finding the Lagrange multipli-
ers (�, γ〈μν〉) from a given energy-momentum tensor with
shear stress were here demonstrated numerically only for a
massless Maxwell-Boltzmann gas, the framework for doing
so for a general gas mixture of massive hadron resonances
with Boltzmann statistics has been provided in this work,
and its generalization to account in the generating function Z
for Bose-Einstein or Fermi-Dirac statistics should be straight-
forward. However, a more efficient numerical routine for
evaluating the momentum integrals in the massive particle
case needs to be developed.

VI. CONCLUSIONS AND OUTLOOK

We have worked out the maximum-entropy distribution
function as an alternative prescription for particlizing a fluid
in a heavy-ion collision. For a general gas mixture of mas-
sive hadron resonances, we were able to solve numerically
for the distribution function in the case that there was a
nonzero bulk viscous pressure while the shear stress vanished.
By comparing with the linear Chapman-Enskog RTA pre-
scription we found that the maximum-entropy method yields
significantly different particle momentum distributions and
yields which can have non-negligible consequences for the
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theoretical interpretation of experimental data. For a gas
of massless Maxwell-Boltzmann particles we demonstrated
an algorithm for finding the maximum-entropy distribution
when particlizing a fluid with vanishing bulk viscous pres-
sure but non-zero shear stress. A full numerical solution of
the maximum-entropy distribution for a massive hadron res-
onance gas in which both bulk and shear viscous stresses are
nonzero is outstanding but of high value for phenomenologi-
cal modeling of heavy-ion collisions.

Although in the present work we have not included
any conserved charges such as net baryon number and
strangeness, the generalization of the maximum-entropy
prescription to include related dissipative effects (such as non-
vanishing baryon and strangeness diffusion currents) should
be straightforward. In general, this method allows to match
the distribution function at particlization to any macroscopic
quantity of which we have prior knowledge on the particliza-
tion surface.

Modern phenomenological studies of experimental heavy-
ion collision data aim at reconstructing from the data, with
quantified uncertainties, key parameters characterizing the
evolving hot and dense medium (see, e.g., Refs. [3,28–30] for
very recent examples of this type of approach). This is done
within a Bayesian statistical framework in which the inferred
probability distribution for the model parameters of interest
(the “posterior”) is obtained as the product of a “prior” distri-
bution for the parameters (accounting for any prior knowledge
that we might possess before performing the model-data com-
parison) and a “likelihood” which accounts for how well, for a
given parameter choice, the model predictions agree with the
measurements.

An important consideration in Bayesian inference is to
avoid introducing uncontrolled physics models in the likeli-
hood that bias the parameter estimates. If assumptions made
about the microscopic physics are not well justified, the
resulting model parameters will not be either. The maximum-
entropy distribution introduced in this work provides a
functional form for the unknown distribution of particles that
implements all of, and only the information given to us by
the hydrodynamic theory describing the dynamical evolution
preceding the particlization process. In this sense it is the least
biased choice that can be made in the absence of a trustworthy
microscopic theory of the hadron gas close to the pseudo-
critical temperature. Any other choice introduces additional
information (“theoretical prejudice”) into the particlization
process that, as far as we know, cannot be compellingly justi-
fied theoretically.
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