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We explore theoretical uncertainties in the hydrodynamic description of relativistic heavy-ion collisions by
examining the full nonlinear causality conditions and quantifying the second-order transport coefficients’ role
on flow observables. The causality conditions impose physical constraints on the maximum allowed values of
inverse Reynolds numbers during the hydrodynamic evolution. Including additional second-order gradient terms
in the Denicol-Niemi-Molnár-Rischke (DNMR) theory significantly shrinks the casual regions compared to those
in the Israel-Stewart hydrodynamics. For Au+Au collisions, we find the variations of flow observables are small
with and without imposing the necessary causality conditions, suggesting a robust extraction of the quark-gluon
plasma’s transport coefficients in previous model-to-data comparisons. However, sizable sensitivity is present in
small p+Au collisions, which poses challenges to study the small systems’ collectivity.
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I. INTRODUCTION

Relativistic viscous hydrodynamics has been the most
successful model to provide a quantitative macroscopic de-
scription of heavy-ion collision dynamics at high energies
[1–7]. It is an efficient and effective phenomenological frame-
work to extract many-body properties of nuclear matter under
extremely hot and dense conditions. As the QCD macroscopic
properties emerge from the interactions among quarks and
gluons, the quark-gluon plasma (QGP) transport coefficients
can be extracted from the comparisons between the hydrody-
namic modeling and experimental data [8–13]. Hydrodynamic
simulations also provide detailed space-time evolution of rel-
ativistic heavy-ion collisions for studying the modification of
rare probes under a hot nuclear environment, such as enhanced
thermal electromagnetic radiation and suppression of QCD
jets [14–21].

Most phenomenological simulations ensure causality on
the linear level by choosing the relaxation times for the
shear and bulk viscosity to be larger than the linear causal-
ity conditions [22–25]. These conditions are “static,” i.e.,
the causality bounds purely depend on the transport coeffi-
cients as functions of temperature and chemical potentials.
There were attempts to go beyond the linear regime in
restricted in 1+1 dimensions or with strong symmetry condi-
tions [26,27]. Recently, the full nonlinear causality conditions
were derived in Ref. [28] for the Israel-Stewart (IS) and
Denicol-Niemi-Molnár-Rischke (DNMR) theories [29–32].
These more robust causality conditions directly involve the
dynamically evolved shear stress tensor and bulk viscous pres-
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sure. Therefore, the equation of motion of IS and DNMR
hydrodynamics alone cannot guarantee that a system will
always stay within the causality region during evolution.
Causalilty conditions need to be examined locally in each fluid
cell throughout the entire evolution.

The causality conditions can serve as physics constraints
on the sizes of the shear stress tensor πμν and bulk viscous
pressure �. The constraints on their sizes were introduced as
numerical regulators to stabilize the event-by-event numerical
simulations [33–35]. The causality conditions provide us with
useful theoretical guidance on these regulators’ numerical
choices in relativistic hydrodynamic simulations.

Recently, Bayesian inference techniques were applied
to systematically constrain multiple model parameters with
various experimental measurements [36–42]. The causality
conditions can provide additional constraints on the prior
ranges for the first- and second-order transport coefficients. At
the same time, ensuring the full nonlinear causality conditions
will reduce the theoretical uncertainty from the choices of
numerical regulators in the hydrodynamic simulations.

In this work, we will systematically examine the full
nonlinear causality conditions derived in Ref. [28] in event-
by-event simulations of relativistic heavy-ion collisions. We
will further quantify the role of additional second-order gra-
dient terms in the DNMR theory on flow observables.

II. THE HYDRODYNAMIC FRAMEWORK

The hydrodynamic equations of motion for the collision
system’s stress-energy tensor represent the energy-momentum
conservation as

∂μT μν = 0 . (1)
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TABLE I. The choice of second-order transport coefficients used in the restricted and full DNMR hydrodynamic theories [48,50].
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In the Israel-Stewart and the DNMR formalisms [29–32],
the out-of-equilibrium shear stress tensor and bulk viscous
pressure are treated as independent degrees of freedom, and
they evolve with the following relaxation type of equations,

τ��̇ + � = −ζ θ − δ���θ + λ�ππμνσμν, (2)

τπ π̇ 〈μν〉 + πμν = 2η σμν − δπππμνθ + ϕ7π
〈μ
α πν〉α,

− τπππ 〈μ
α σ ν〉α + λπ��σμν . (3)

Here A〈··〉 denotes symmetrized and traceless projections, θ =
∇μuμ is the expansion rate, and

σμν = 1
2

[∇μuν + ∇νuμ − 2
3�μν (∇αuα )

]
(4)

is the velocity shear tensor, with ∇μ = (gμν − uμuν )∂ν .
The first-order transport coefficients η and ζ are the
shear and bulk viscosity, respectively. The numerical val-
ues of all the other second-order transport coefficients
{τπ , τ�, δ��, λ�π, δππ , τππ , λπ�, ϕ7} are summarized in Ta-
ble I.

The nonlinear causality conditions for the DNMR theory
were derived in Ref. [28]. Here, we rewrite the causality
inequality equations in terms of unitless ratios of the vis-
cous pressure tensors over the enthalpy, ε + P. The nonzero
eigenvalues of the shear stress tensor are denoted as {�i}(i =
1, 2, 3). The traceless condition of the shear stress tensor
requires �1 + �2 + �3 = 0. We also define the unitless co-
efficients Cη = τπ (ε + P)/η and Cζ = τ�(ε + P)/ζ for the
ratios of the shear and bulk relaxation times to the shear
and bulk viscosity, respectively. The shear coefficient Cη is
often approximated as a constant from 5–7 in kinetic the-
ories [43,44] or (4 − 2 ln 2) in the stronglycoupled theory
[45,46]. In this work, we set Cη = 5. The bulk coefficient
Cζ ∝ 1/(1/3 − c2

s )α with α = 1 in the strongly coupled the-
ory [47–49] and α = 2 from the kinetic approach [25,32,50].
In this work, we will examine hydrodynamic evolution with
the following two choices for the bulk relaxation time:

τ�,1 = Cζ ,1
ζ

ε + P
= 1

14.55
(
1/3 − c2

s

)2

ζ

ε + P
(5)

and

τ�,2 = Cζ ,2
ζ

ε + P
= Cη

7
(
1/3 − c2

s

) ζ

ε + P
. (6)

The first choice τ�,1 was derived in kinetic theory
[50] and was widely used in hydrodynamic simulations
[12,35,36,38,40,51]. The parametric form of the second
choice τ�,2 is motivated from the strongly coupled theory
[25,47,48].

According to Ref. [28] the necessary conditions for causal-
ity can be written as

n1 ≡ 2

Cη

+ λπ�

τπ

�

ε + P
− τππ

2τπ

|�1|
ε + P

� 0, (7)

n2 ≡ 1 − 1

Cη

+
(

1 − λπ�

2τπ

)
�

ε + P
− τππ

4τπ

�3

ε + P
� 0, (8)

n3 ≡ 1

Cη

+ λπ�

2τπ

�

ε + P
− τππ

4τπ

�3

ε + P
� 0, (9)

n4 ≡ 1 − 1

Cη

+
(

1 − λπ�

2τπ

)
�

ε + P

+
(

1 − τππ

4τπ

)
�a

ε + P
− τππ

4τπ

�d

ε + P
� 0, (a �= d ),

(10)

n5 ≡ c2
s + 4

3

1

Cη

+ 1

Cζ

+
(

2

3

λπ�

τπ

+ δ��

τ�

+ c2
s

)
�

ε + P

+
(

3δππ + τππ
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s

)
�1

ε + P
� 0, (11)

n6 ≡ 1 −
(

c2
s + 4

3

1

Cη

+ 1

Cζ

)

+
(

1 − 2

3

λπ�

τπ

− δ��
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− c2
s

)
�

ε + P

+
(

1 − 3δππ + τππ

3τπ

− λ�π

τ�

− c2
s

)
�3

ε + P
� 0. (12)

The original necessary conditions n5 and n6 in Ref. [28] are
simplified with the condition ( δππ

τπ
+ τππ

3τπ
+ λ�π

τ�
+ c2

s ) > 1 in
Eqs. (11) and (12) according to the values of second-order
transport coefficients in Table I [50]. The sufficient causality
conditions can be found in the Appendix. We first examine
the causality constraints with different functional forms of
Cζ in the absence of viscous corrections, at which � = �i =
0 (i = 1, 2, 3). In this case, both the necessary and sufficient
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FIG. 1. The causal region for two choices of relaxation time of
bulk viscosity as a function of the square of the speed of sound c2

s in
the absence of viscous corrections, � = �i = 0 (i = 1, 2, 3).

causality conditions reduce to

0 � nstatic ≡ c2
s + 4

3Cη

+ 1

Cζ

� 1. (13)

Figure 1 shows the value of nstatic as a function of the speed
of sound squared for the two choices of Cζ . At the conformal
limit c2

s goes to 1/3, Cζ approaches +∞ and nstatic approaches
(Cη + 4)/(3Cη ) = 0.6 when Cη = 5. The Cζ ,1 from the ki-
netic theory with relaxation time approximation [50] has a
quadratic dependence on c2

s , which leads to a rapid increase
of nstatic at small c2

s values. With the coefficient 14.55 in Cζ ,1,
the nstatic exceeds the causality bound for c2

s < 0.13. Although
the minimum c2

s in the lattice QCD EoS at zero net baryon
density is around 0.15 [shown in Fig. 2(a) below], this choice
of Cζ ,1 leads to a strong restriction on the sizes of the viscous
stress tensor πμν and � near the smooth crossover region
where c2

s ≈ 0.15. If the EoS has a soft point c2
s → 0 at some

finite baryon density, Cζ ,1 will be ruled out by the causality
conditions. To ensure 0 � nstatic � 1 for 0 � c2

s � 1/3, the
quadratic c2

s parametrization requires the coefficient to be less
than 9 − (12/Cη ) = 6.6 for Cη = 5. On the other hand, the
strongly coupled theory suggests a linear dependence of c2

s
in 1/Cζ . Figure 1 shows that nstatic with Cζ ,2 increases much
more slowly than that with Cζ ,1.

Figure 2 shows the speed of sound squared from a lattice
QCD EoS [52,53] and the transport coefficients that will be
used to simulate relativistic heavy-ion collisions. We use the
specific shear and bulk viscosity from Ref. [35]. The two
choices of the bulk relaxation time τ� are shown in Fig. 2(c).
We will examine event-by-event hydrodynamic simulations
for Au+Au collisions and p+Au collisions at the top Rela-
tivistic Heavy Ion Collider (RHIC) energy. We expect a longer
hydrodynamic phase at higher Large Hadron Collider (LHC)
energies, which will reduce the flow observables’ sensitivity
to the choice of the bulk relaxation time compared to those at
the RHIC.

Table I summarizes the numerical values of all the
second-order transport coefficients that we will use in this
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FIG. 2. (a) The square of the speed of sound from a lattice
QCD–based EoS as a function of temperature. [(b), (c)] The specific
shear and bulk viscosity and their relaxation times as functions of
temperature used in this work. The region in yellow represents the
phase ascribed to UrQMD in this work.

work. We refer to the simulations with nonzero values
{τππ , λπ�, λ�π, ϕ7} as the DNMR theory, while the restricted
DNMR theory, which is close to the original Israel-Stewart
hydrodynamics, only includes the relaxation times for shear
and bulk viscosity and δππ and δ�� terms in the equations of
motion.

In hydrodynamic simulations, it is practical to track the
evolution of the inverse Reynolds numbers for the shear stress
tensor,

Rπ ≡
√

πμνπμν

ε + P
, (14)

and for the bulk viscous pressure,

R� ≡ �

ε + P
. (15)
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FIG. 3. Causal regions as functions of the inverse Reynolds numbers for the shear and bulk viscosity. The restricted and full DNMR
hydrodynamic theories with two different forms of the bulk relaxation time are presented.

From the similarity transformation, the inverse Reynolds
number Rπ is related to the eigenvalues of the shear stress
tensor by

Rπ =
√(

�1

ε + P

)2

+
(

�2

ε + P

)2

+
(

�3

ε + P

)2

. (16)

Using the tracelessness condition for the shear stress tensor,
we can derive the following inequality,

√
6

2

�max

ε + P
� Rπ �

√
2

�max

ε + P
, (17)

where �max ≡ max{|�1|, |�2|, |�3|} is the maximum abso-
lute eigenvalue of πμν .

III. RESULTS

A. Visualizing the causal regions with inverse Reynolds numbers

Before examining the causality conditions in event-by-
event hydrodynamic simulations, we first identify the causal
region in terms of the inverse Reynolds numbers.

Figure 3 demonstrates the causal regions with different
choices of second-order transport coefficients listed in Table I.

We test both the necessary and sufficient causality conditions
in a five-dimensional space of {c2

s ,�1,�2,�3,�}, where c2
s

varies between 0.15 to 1/3 and {�i} and � varies from 0
to ε + P. Here, we present the causal regions in terms of
the shear and bulk inverse Reynolds numbers. These two
variables represent how far a fluid cell is out of equilibrium
at a given space-time position. The red regions in the Fig. 3
violate the necessary causality conditions. Fluid cells in this
region violate causality for sure. The yellow bands indicate
a mixed region, where some fluid cells satisfy the necessary
causality conditions and some are acausal, depending on exact
values of c2

s and the shear {�i}. Fluid cells with Rπ and R� in
the green areas satisfy the necessary causality conditions but
violate the sufficient conditions. The light blue region contains
a mixture of fluid cells that satisfy or violate the sufficient
conditions. The current causality conditions are not sufficient
to determine whether fluid cells are causal or not in yellow,
green, and light blue regions. Finally, the dark blue regions
show the inverse Reynolds numbers allowed by the sufficient
causality conditions in which fluid cells are causal.

The causality conditions impose maximum allowed values
for the inverse Reynolds numbers Rπ and |R�| during the hy-
drodynamic evolution. Because the bulk viscous pressure acts
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against the local expansion rate θ = ∂μuμ, its value relaxes
to the negative Navier-Stokes value � ∼ −ζθ , and so R� is
negative in most cases. Figure 3 show that the necessary
causality conditions require Rπ < 1 and |R�| < 1 when R� <

0 for the DNMR hydrodynamics. The sufficient conditions
require extremely small viscous corrections, Rπ � 0.1, when
the bulk viscous pressure is negative.

Comparing Figs. 3(a) and 3(b), we find that the bulk re-
laxation time τ�,2 allows a larger causal region than that
with τ�,1, which is consistent with the static conditions nstatic

shown in Fig. 1. The mixed zone is large for τ�,1 because of
its fast quadratic dependence on c2

s . For Israel-Stewart theory,
the causal region becomes bigger when R� > 0, when the
terms with R� give opposite contributions in Eqs. (7)–(12)
compared to those with the shear stress tensor.

Comparing Figs. 3(a) [3(b)] with Figs. 3(c) [3(d)], we
find the allowed causal region shrinks significantly, especially
for R� > 0 for the full DNMR theory. Because the sign
for (1 − 2

3
λπ�

τπ
− δ��

τ�
− c2

s ) in Eq. (12) flips from positive to
negative with λπ�/τπ = 6/5, regions with large positive R�

values are not allowed anymore. Figures 3(a) [3(b)] versus
3(c) [3(d)] visually show that the nonzero second-order trans-
port coefficients {τππ , λπ�, λ�π } set strong restrictions on the
size of shear stress tensor πμν and bulk viscous pressure �.
With these additional second-order transport coefficients, the
inverse Reynolds numbers need to be smaller than 0.5 for both
choices of bulk relaxation time.

In practice, numerical simulations were found to be sta-
ble when Rπ � 1 and |R�| � 1 with a grid spacing dx =
0.067 fm [35]. These stability conditions are less demanding
compared to the causal regions shown in Fig. 3.

B. Examining realistic hydrodynamic simulations

After identifying the causal regions in terms of inverse
Reynolds number, we would like to find the limits on Rπ and
R� to ensure all fluid cells in hydrodynamic simulations are
within the causal region. Those limits would be handy when
performing large-scale event-by-event simulations.

It is instructive to first study the inverse Reynolds numbers’
distributions as functions of the evolution time in relativistic
hydrodynamic simulations. We analyze typical hydrodynamic
evolution for 30–40% Au+Au and 0–5% p+Au collisions
at the top RHIC energy using the IP-Glasma + MUSIC
+ UrQMD framework [35]. In this hybrid framework, the
system’s initial energy-momentum tensor is generated by
the impact parameter dependent Glasma initial condition
model (IP-Glasma). It is coupled with hydrodynamic sim-
ulations solved by the MUScl for Ion Collisions (MUSIC)
code package, which is based on the MUScl-type (Monotonic
Upstream-centered Schemes for Conservation Laws) finite
volume method. As the system evolves to dilute densities,
fluid cells are converted to particles and further propagate in a
hadronic transport model, Ultra relativistic Quantum Molecu-
lar Dynamics (UrQMD). Figure 4 shows the time-dependent
and time-integrated distributions of Rπ and R� for fluid cells
with temperature T � 145 MeV.

The maximum of the shear inverse Reynolds number
reaches around one at the starting time of hydrodynamics τ0 =

100 101
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RΠ

10−3 10−1 101

P (R)

FIG. 4. The distributions of fluid cells’ inverse Reynolds num-
bers as a function of the longitudinal proper time for one 30–40%
Au+Au collision (a) and one 0–5% p+Au collision (b) at the top
RHIC energy. The right panels show the time-integrated probability
distributions of the inverse Reynolds numbers.

0.4 fm/c. Most of the fluid cells have an average Rπ ≈ 0.3
during the first fm/c of the hydrodynamic evolution in 30–
40% Au+Au and 0–5% p+Au collisions. The bulk inverse
Reynolds numbers start with positive values (0.05–0.15) at
τ0 = 0.4 fm/c to compensate for the difference between the
trace anomaly in lattice QCD EoS and the traceless energy
stress tensor from the IP-Glasma phase [35,54]. As the bulk
viscous pressure evolves towards its Navier-Stokes limit −ζθ ,
most of the fluid cells’ R� evolve to negative values during the
first 0.5 fm/c and reach their minima around τ = 1.5–2 fm/c.
Since the more compact 0–5% p+Au collision develops a
larger expansion rate than that in 30–40% Au+Au collisions,
the R� distribution has a peak around −0.2 in central p+Au
collisions while most of the fluid cells have |R�| < 0.1 in
30–40% Au+Au collisions. For τ > 2 fm/c, the absolute val-
ues of Rπ and R� decrease with τ because the local velocity
gradients decrease with the evolution time.

Figure 5 shows the probability distribution of each causal-
ity measure in Eqs. (7) to (12) in realistic hydrodynamic
simulations [35]. We find that there are 3.8% of the fluid cells
in 30–40% Au+Au collisions violate the necessary causality
conditions. The fraction of violating fluid cells increases to
17% in 0–5% p+Au collisions. The strong pressure gradients
in the p+Au collision lead to fast expansion and drive the
system out of equilibrium. Hence, simulating small systems
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FIG. 5. Probability distributions for the necessary causality mea-
sures in fluid cells with temperature above 145 MeV in a typical
Au+Au collision at 30–40% centrality (a) and a 0–5% p+Au col-
lision (b) at 200 GeV. Hydrodynamic evolution is simulated with the
DNMR equation of motion and the bulk relaxation time τ�,1. During
the evolution, we restrict Rπ � 1 and |R�| � 1.

is more challenging than large collision systems as they can
evolve further away from local thermal equilibrium.

We find that the necessary causality conditions n1, n3, n5,
and n6 effectively constrain the sizes of inverse Reynolds

numbers in the DNMR hydrodynamics. Among them, the
condition n6 in Eq. (12) imposes the strongest constraint.
Table II summarizes the fractions of fluid cells that violate
necessary or sufficient causality conditions for different trans-
port coefficient choices in hydrodynamic simulations. We note
that there are significant fractions of fluid cells that satisfy
the necessary conditions but violate the sufficient causality
conditions. The current causality conditions cannot determine
whether they violate causality. As shown in Fig. 3, we would
need to impose very strong constraints Rπ � 1 and |R�| � 1
to ensure all fluid cells to satisfy the sufficient conditions,
which significantly limits simulating viscous effects in rel-
ativistic hydrodynamic evolution. We note that Fig. 5 and
Table II here summarize the overall fraction of fluid cells
violate the necessary and sufficient causality conditions. Be-
cause the inverse Reynolds numbers are large during the early
time of the evolution as shown in Fig. 4, the violation of
causality could potentially play a substantial role during the
first few fm/c of the hydrodynamic evolution. A quantitative
time differential analysis was presented in a recent work [55].

To regulate all fluid cells that violate the necessary causal-
ity conditions, we need to impose restrictions on inverse
Reynolds number sizes during hydrodynamic evolution. In
Fig. 6, we find that imposing Rπ �

√
2P/(ε + P) and |R�| �

P/(ε + P) can ensure all the fluid cells in the 30–40% Au+Au
and 0–5% p+Au collisions at 200 GeV stay within the
necessary causal region for the restricted DNMR hydrody-
namics with τ�,1. By setting the transport coefficients λπ�

and τππ to zero, the necessary condition measures n1 and
n3 reduce to static inequalities that only depend on the Cη

value. The condition n6 imposes the dominant constraints.
In Eq. (17), the inverse Reynolds number of the shear stress
tenor Rπ �

√
2�max/(ε + P). If we choose �max = P, then

Rπ �
√

2P/(ε + P). Condition |R�| � P/(ε + P) is equiva-
lent to |�|/P � 1, making sure that the thermal pressure is
larger than the bulk viscous pressure and the total pressure
is positive. Therefore, this condition avoids the formation of
unstable cavitation regions during the evolution [56–59].

We further examine the sufficient conditions after imposing
the restrictions on the inverse Reynolds numbers and find the
fractions of violating fluid cells remain almost unchanged as
those in Table II. The detailed analysis is represented in the
Appendix.

With the second choice of bulk relaxation time τ�,2, the
necessary causality conditions allow for larger values of the

TABLE II. The fractions of cells violate necessary or sufficient causality conditions in 30–40% Au+Au and 0–5% p+Au collisions at
200 GeV with different choices of transport coefficients. We restrict the inverse Reynolds numbers Rπ � 1 and |R�| � 1.

Collision system Transport coefficients Violate necessary conditions Violate sufficient conditions

Restricted DNMR with τ�,1 1.8% 33%
30–40% Au+Au

DNMR with τ�,1 3.8% 22%
Restricted DNMR with τ�,1 9% 66%

0–5% p+Au
DNMR with τ�,1 17% 48%

Restricted DNMR with τ�,2 0.1% 14%
30–40% Au+Au

DNMR with τ�,2 1.7% 16%
Restricted DNMR with τ�,2 0.2% 25%

0–5% p+Au
DNMR with τ�,2 7% 40%
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FIG. 6. Similar probability distributions as those in Fig. 5 but
for hydrodynamic evolution simulated with the restricted DNMR
equation of motion and the bulk relaxation time τ�,1. During the
evolution, we restrict Rπ �

√
2P/(ε + P) and |R�| � P/(ε + P).

inverse Reynolds numbers during the hydrodynamic simula-
tions than those with the τ�,1. We find that requiring Rπ and
|R�| to be smaller than 0.6 can ensure all the fluid cells within
the causal region, shown in Fig. 7. Condition n5 in Eq. (11)
imposes the dominant constraints on the inverse Reynolds
numbers in this case.

We find that with the bulk relaxation time τ�,2, most of the
fluid cells that violate the necessary causality conditions are
at the first few time steps of the evolution, shown in Fig. 4.
Because the early-stage heavy-ion collisions are far out of
equilibrium, the necessary causality conditions set restrictions
on when we can apply the relativistic viscous hydrodynamic
description. Before applying the hydrodynamic framework to
the system, we need to rely on effective kinetic theory to drive
the system to be close enough to the local thermal equilibrium
[60–63].

We note that choosing a slowly varying function for co-
efficient Cζ (c2

s ) allows larger viscous corrections during the
hydrodynamic evolution. In the simulations with the bulk
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FIG. 7. Similar probability distributions as those in Fig. 5 but
for hydrodynamic evolution simulated with the restricted DNMR
equation of motion and the bulk relaxation time τ�,2. During the
evolution, we restrict Rπ � 0.6 and |R�| � 0.6.

relaxation time τ�,1, a group of fluid cells near the transition
region, where the square of sound speed is near 0.15, also
violates the necessary causal conditions. Figure 1 shows that
there is little room left for the dynamically evolving viscous
tensor when c2

s ≈ 0.15.

C. Effects of regulating viscous stress tensor with causality
constraints on flow observables

Finally, we study the effects of imposing these restrictions
on the inverse Reynolds numbers on flow observables.

Figure 8 shows the averaged transverse momentum 〈pT 〉 of
pions compared with the PHENIX and STAR measurements
in Au+Au collisions at the top RHIC energy [64,65] and
the pT -differential anisotropic flow coefficients v2,3{2}(pT ) in
30–40% centrality [66,67]. We first discuss the effects from
the second-order transport coefficients {τππ , λπ�, λ�π, ϕ7} on
the flow observables. Comparing the black curves with red
dashed lines, we find that these second-order terms in the
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FIG. 8. The averaged transverse momentum 〈pT 〉 (a) and pT -
differential flow coefficients vn(pT ) (b) in Au+Au collisions at
200 GeV [64–67].

hydrodynamic equations of motion have negligible effects on
particle’s averaged transverse momentum and pT -differential
anisotropic flow coefficients. Further imposing restrictions
on the inverse Reynolds numbers, Rπ �

√
2P/(ε + P) and

|R�| � P/(ε + P), we ensure all the fluid cells satisfy the
necessary causality conditions. We find negligible effects on
the pT -differential anisotropic flow coefficients. The pions’
mean pT increases by 5–10% in the peripheral centrality bins.
With the second choice of the bulk relaxation time τ�,2, the
inverse Reynolds numbers are allowed to reach up to 0.6.
Comparing the flow results from the two relaxation times,
we see that the elliptic flow coefficient v2{2}(pT ) is ≈10%
smaller with τ�,2 than the results from simulations with τ�,1

for pT � 1 GeV. We checked that the additional second-order
terms in the DNMR theory have less than 5% effects on
observables in the simulations with bulk relaxation time τ�,2.

Figure 9 shows the same flow observables for p+Au col-
lisions at 200 GeV. Comparing the black and red curves,
we find that the effects from the additional second-order
transport coefficients in the DNMR theory remain negligi-
ble in the calculations. For p+Au collisions, restricting the
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FIG. 9. The averaged transverse momentum 〈pT 〉 (a) and pT -
differential flow coefficients vn(pT ) (b) in p+Au collisions at
200 GeV.

inverse Reynolds numbers (green dash-dotted curves) leads
to an ≈20% larger mean pT for pions. We also find that
these conditions result in 20–30% larger anisotropic flow co-
efficients v2,3. These variations in observables are the direct
consequence of restricting the viscous corrections in the sim-
ulations. The smaller shear and bulk viscous tensors allow
for stronger anisotropic and radial flow during the hydrody-
namic evolution, respectively. With the second choice of the
bulk relaxation time, larger viscous corrections are allowed in
the hydrodynamic evolution than those simulations with τ�,1.
With the necessary causality conditions fulfilled, the simu-
lations with the relaxation time τ�,2 have 20–30% smaller
v2,3(pT ) for pT < 2 GeV than those with τ�,1.

IV. CONCLUSIONS

This work analyzes the full nonlinear necessary and
sufficient causality conditions [28] in the relativistic hy-
drodynamic description of heavy-ion collisions. We vi-
sualize the causal regions as functions of the system’s
inverse Reynolds number for the restricted and full DNMR

064901-8



EXPLORING THEORETICAL UNCERTAINTIES … PHYSICAL REVIEW C 103, 064901 (2021)

hydrodynamic theories. We find the second-order trans-
port coefficients {τππ , λπ�, λ�π } derived from kinetic theory
with the 14-moment approximation set strong constraints on
the maximum allowed inverse Reynolds numbers to satisfy
causality. We explore simulations with two classes of bulk
relaxation time derived from kinetic and strongly coupled
theories.

We examine the causality conditions in the hydrodynamic
evolution for a typical 30–40% Au+Au collision and a 0–5%
p+Au collision at the top RHIC energy. We find that the
conditions n5 and n6 in Eqs. (11) and (12) impose dominant
constraints on the inverse Reynolds numbers’ size. For re-
stricted DNMR hydrodynamics with the bulk relaxation time
τ�,1 in Eq. (5), we find that Rπ �

√
2P/(ε + P) and |R�| �

P/(ε + P) can effectively ensure all fluid cells stay within the
causal region. For simulations with the bulk relaxation time
τ�,2 in Eq. (6), the necessary causality conditions allow for
inverse Reynolds numbers up to 0.6. Hence, larger shear and
bulk viscosity can be used in hydrodynamic simulations with
τ�,2 than those in the simulations with τ�,1.

We study how experimental flow observables are affected
when imposing the necessary causality constraints on the in-
verse Reynolds numbers during hydrodynamic simulations.
We find that the variations are within 10% for the pion’s
mean pT - and pT -differential anisotropic flow coefficients
for Au+Au collisions at 200 GeV. Therefore, the previous
results with Rπ � 1 and |R�| � 1 remain reliable, although
about 4% of the fluid cells violates causality. For the smaller
p+Au collisions, sizable effects are present when we use the
bulk relaxation time τ�,1 in the simulations. Restricting the
size of viscous stress tensor leads to 20% larger mean pT

and v2,3(pT ). The bulk relaxation time τ�,2 allows for larger
viscous corrections in numerical simulations, and the results
are close to those in Ref. [35] while ensuring all fluid cells
satisfy the necessary causality conditions.

Finally, we emphasize that numerical hydrodynamic codes
should build in checks for causality conditions during the
evolution. They are crucial for future large-scale Bayesian in-
ference studies to extract the QGP transport coefficients from
experimental measurements. On the one hand, the causality
conditions limit the maximum allowed shear and bulk vis-
cosity and their relaxation times in the prior of Bayesian
calibration. On the other hand, our results suggest that regulat-
ing simulations with the necessary causality conditions could
introduce a 20% theoretical uncertainty in Bayesian analy-
sis with flow observables in peripheral AA and pA systems.
Moreover, the causality conditions also limit when relativistic
hydrodynamics can be applied at early time and request re-
alistic pre-equilibrium dynamics. The free-streaming model
used in previous Bayesian analysis [36–42] drives the col-
lision system further away from local thermal equilibrium
and increases shear stress tensor’s size [68]. A long free-
streaming time would drive fluid cells’ inverse Reynolds
number

√
πμνπμν/P → √

6/2 [68], which increases the vi-
olation of sufficient causality conditions and the theoretical
uncertainty from regulating them at the beginning of the
hydrodynamic phase. Therefore, it is essential to employ a
realistic pre-equilibrium evolution based on effective kinetic
theories, such as KøMPøST [60,61], to drive the collision
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FIG. 10. Probability distributions for the sufficient causality
measures in fluid cells with temperature above 145 MeV in a typ-
ical Au+Au collision at 30–40% centrality (a) and a 0–5% p+Au
collision (b) at 200 GeV. Hydrodynamic evolution is simulated with
the restricted DNMR equation of motion and the bulk relaxation
time τ�,1. During the evolution, we restrict Rπ �

√
2P/(ε + P) and

|R�| � P/(ε + P).

system to the causal region before starting hydrodynamic
simulations [55,62,63].
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APPENDIX: SUFFICIENT CONDITIONS
FOR CAUSALITY

Following Ref. [28], the sufficient conditions for causality
can be rewritten as follows:

s1 ≡ 1 − 1

Cη

− |�1|
ε + P

+
(

1 − λπ�

2τπ

)
�

ε + P
− τππ

2τπ

�3

ε + P
� 0, (A1)

s2 ≡ 1

Cη

+ λπ�

2τπ

�

ε + P
− τππ

2τπ

|�1|
ε + P

� 0, (A2)

s3 ≡ 6
δππ

τπ

− τππ

τπ

� 0, (A3)

s4 ≡ λ�π

τ�

+ c2
s − τππ

12τπ

� 0, (A4)

s5 ≡
(

1 + �

ε + P

)(
1 − c2

s

) −
[

4

3

1

Cη

+ 1

Cζ

+
(

2

3

λπ�
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+ δ��

τ�
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�

ε + P
+
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δππ
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s6 ≡ 1
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s8 ≡ 4
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Because the conditions s3 and s4 do not depend on the dynamical evolution shear stress tensor and bulk viscous pressure, we do
not need to check them during the hydrodynamic evolution.

In Fig. 10, we show the probability distributions of sufficient causality conditions’ measures for 30–40% Au+Au and 0–5%
p+Au collisions at 200 GeV. Most of the violating fluid cells fail the conditions s5 and s8 in Eqs. (A5) and (A8). Here, we
already restrict the inverse Reynolds number Rπ �

√
2P/(ε + P) and |R�| � P/(ε + P) to ensure all the fluid cells fulfill the

necessary causality conditions. However, these restrictions on Rπ and R� do not reduce the fractions of fluid cells that violate
the sufficient conditions.
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