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In Phys. Rev. C 98, 041603 (2018) it was demonstrated that the noncoplanar degrees of freedom (or
azimuthal angle �c �= 00), including higher-multipole deformations βλi (λ = 2, 3, 4; i = 1, 2), and the compact
orientations θci are the most essential set of parameters in the dynamical cluster-decay model (DCM), in
order to study heavy-ion reactions. In this work, we study the comparison between the coplanar (� = 0◦)
and noncoplanar (�c �= 0◦) configurations, including higher multipole deformations, for 196Pt∗ formed via the
132Sn + 64Ni reaction. This reaction was earlier studied [M. K. Sharma et al., J. Phys. G: Nucl. Part. Phys. 38,
055104 (2011)] by one of our collaborators but only with � = 0◦, including quadrupole deformations, β2i alone
having “optimum” orientations (θopt.), with the result of noncompound nucleus [nCN, equivalently quasi-fission
(qf)] contribution at higher energies. The only parameter of the DCM is the neck length �R, whose value for
the nuclear proximity potential used here remains within its range of validity (≈2 fm). The evaporation residues
(ERs) and fission cross section (σ f f ) are calculated in reference to available experimental data at near- and
sub-barrier energies for 196Pt∗. As a result of inclusion of �c �= 0◦, the nCN contribution approaches zero at
higher energies and corresponds to PCN = 1, which is rather significant for the � = 0◦ configuration. Secondly,
in this attempt we have tried to explore the evolution of the neck-length parameter (�R), which will help us to
estimate the cross sections of unobserved decay channels.

DOI: 10.1103/PhysRevC.103.064615

I. INTRODUCTION

The main focus of this work is to study the effect of non-
coplanar degrees of freedom along with the higher-multipole
deformations βλi (λ = 2, 3, 4; i = 1, 2), and compact orienta-
tions θci in the study of heavy-ion reactions. Next, we would
like to scrutinize the capability of the neck-length parame-
ter (�R or reaction time) to estimate (or predict) the cross
sections of unobserved decay channels using the dynamical
cluster-decay model (DCM) of Gupta and collaborators (see,
e.g., the reviews [1,2]). We use the available experimental data
of 196Pt∗ formed via 132Sn + 64Ni, where the experimental
data for evaporation residues (σER) and fission cross sections
(σ f f ) [3] are at different center-of-mass energies (Ec.m.). The
experimental data are available at eleven center-of-mass ener-
gies for the evaporation residues, while the fission channel is
explored at only five energies. To analyze the capability of �R
to estimate the cross section for unobserved decay channels,
we have taken Ec.m. = 167.2 MeV, where only σER has been
measured and in this work our calculations correspond to the
estimated cross section σ f f . We have taken only one energy
(Ec.m. = 167.2 MeV) to explore the strength of �R to predict
(more correctly estimate) the cross sections of unobserved
decay channels, because only this energy is missing from
the group of five energies [Ec.m. = 195.2, 183.7, 175.2, 171,
(167.2), 165.5 MeV] where σ f f is not given experimentally.

So, this energy could give more strength to the predictability
of �R in the case of unobserved decay channels after follow-
ing the same trend as at the other energies.

In the previous study of 196Pt∗ [4] within the DCM, for
the set of parameters [coplanar degrees of freedom, � = 0◦,
quadrupole deformations (β2i alone), and “optimum” orien-
tations (θopt.)], the noncompound nucleus [nCN, equivalently
quasifission (qf)] contribution for the σ f f at higher two ener-
gies is very high with best fitted σER at all energies. So, first
we would like to study the nCN cross section (σnCN ) at higher
energies, where σ f f shows significant nCN contribution. We
have two purposes to study 196Pt∗ using �c �= 0◦: (i) to check
the impact of �c �= 0◦ on nCN contribution and (ii) to explore
the possibility for existence of un-observed decay channels
in the reaction dynamics. We have aimed to exercise the
predictability of decay cross sections of unobserved channels.

Interestingly, 196Pt∗ is a pure CN (nCN = 0) at all energies,
for noncoplanar degrees of freedom (�c �= 0◦), including
higher-multipole deformations βλi (λ = 2, 3, 4; i = 1, 2) and
compact orientations θci. However, there is a significant non-
compound nucleus contribution (nCN �= 0) at higher two
energies for � = 0◦ (coplanar) along with two different set of
parameters, given as (i) quadrupole deformations (β2i alone),
θopt.; (ii) higher-multipole deformations including up to hex-
adecupole deformations (β2–β4) and compact orientations θci.
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Note that the above calculations refer to the in-built prop-
erty of the DCM, i.e., “barrier modification” related to the
reaction timescale (�R), which will be most of the time lower
in the case of �c �= 0◦ than in � = 0◦, i.e., the parameter
�R for the nCN contribution is smaller and hence the re-
action time larger than for the CN decay process. We have
also agreed with the general aspect of the presence of the
quasifission contribution at higher energies but experimentally
196Pt∗ is a pure compound nucleus at all energies. However,
we are taking experimental cross sections as reference be-
cause these data have been reproduced via coupled-channel
calculations by including nuclear deformation and inelastic
excitation, which makes the experimental data trustworthy.
Secondly, the main interest here is to highlight the relevance
of noncoplanar degrees of freedom along with the higher-
multipole deformations. The higher-multipole deformations
βλi (λ = 2, 3, 4; i = 1, 2) together with noncoplanar �c �= 0◦
configuration provide important additional degrees of free-
dom for approximate address of a compound nucleus fusion
reaction. We have studied [5] very significant results using
the noncoplanar degree of freedom (� = 0◦), in the case of
heavy-ion reactions (HIR) at low energy within the framework
of the dynamical cluster-decay model. There are a few reasons
to take this configuration as a significant one; e.g., in the case
of 105Ag∗ formed in the 12C + 93Nb reaction at below barrier
energies for the � = 0◦ case, PCN and Psurv show different
variations with respect to Ec.m., but for �c �= 0◦ both PCN and
Psurv of 105Ag∗ are decreasing functions of Ec.m., and hence
belong to the category of weakly fissioning nuclei, whereas
for the case of � = 0◦ the PCN is an increasing function of
Ec.m., as in strongly fissioning superheavy nuclei. In the case
of CN 220Th∗, we have found that the outcome remain the
same in both the cases � = 0◦ and �c �= 0◦: the 3n and 5n
decays are always pure CN decays and the 4n decay is mainly
of nCN content.

In our recent published work [5], we showed that �c �= 0◦
(with β2–β4, θci) is a compound-nucleus-specific degree of
freedom. The result will not diverge from the real output of
a nuclear reaction; in fact it is the most probable configuration
to study the compound nucleus decay process. We have no-
ticed a large amount of nCN contribution from the previously
studied cases of Pt isotopes; i.e., in the case of 196Pt∗, with β2i

alone and “optimum” configuration (� = 0◦), at higher two
energies we found 48% and 15% nCN contribution in σ f f .
However, σER is perfectly fitted with the experimental data,
and with deformations β2–β4 and compact orientations θci

the constitution of nCN component becomes negligibly small
and CN-fusion probability PCN increases once we move from
� = 0◦ to �c �= 0◦.

The paper is organized as follows. Section II gives a brief
description of the dynamical cluster-decay model (DCM). Our
calculations for the 132Sn + 64Ni reaction, using deformed and
noncoplanar oriented nuclei, are given in Sec. III. A com-
parison is also carried out with the case of coplanar nuclei.
Finally, a summary and conclusions of our work are presented
in Sec. IV. Brief contributions from this work were made
at the International Conference on Nuclear Physics, March
15–18, 2017, at the Department of Physics, Panjab University,
Chandigarh.

FIG. 1. Two unequal nuclei (here one β2 deformed and the other
up to β4), oriented at angles θ1 and θ2, with their principal planes
X ′Z ′ and XZ forming an azimuthal angle �. The angle � is shown
by a dashed line, since it is meant to be an angle coming out of plane
XZ . Nucleus 2 is in the XZ plane and for the out-of-plane nucleus
1 another principal plane Y ′Z ′, perpendicular to X ′Z ′, is also shown.
Only lower halves of the two nuclei are shown. This figure is based
on Fig. 1 of Ref. [6].

II. THE DYNAMICAL CLUSTER-DECAY MODEL (DCM)

The dynamical cluster-decay model (DCM) assumes that
the compound nucleus is formed (in the entrance channel)
with transmission probability T�. Its decay is studied in
terms of collective coordinates of mass (and charge) asym-
metries η (and ηZ ) [η = (A1 − A2)/(A1 + A2) [7], ηZ = (Z1 −
Z2)/(Z1 + Z2) [8]] and relative separation R, with multipole
deformations βλi (λ = 2, 3, 4; i = 1, 2), orientations θi, and
the azimuthal angle � between the principle planes of two
nuclei (see Fig. 1, where only lower halves of the two nuclei
are shown; for other details, see also Refs. [5,6]). In DCM,
the dynamical fragmentation theory characterizes (i) the nu-
cleon division (or exchange) between outgoing fragments and
(ii) the transfer of kinetic energy of the incident channel
to internal excitation (total excitation or total kinetic energy
(TXE or TKE) of the outgoing channel, at which the process
is calculated, depending also on temperature T . This energy
transfer process follows the relation

E∗
CN + Qout (T ) = Ec.m. + Qin = TKE(T ) + TXE(T ). (1)

The CN excitation energy E∗
CN is related to temperature T (in

MeV) via the relation

E∗ = Ec.m. + Qin = 1

a
AT 2 − T (T in MeV), (2)

with level density parameter, a = 9 or 10, respectively, for
intermediate mass or superheavy systems. In this case we have
taken a = 9 and Qin is the entrance channel Q value.

The DCM defines the CN decay cross section in terms of �

partial waves, for each pair of fragments (A1, A2), as

σ(A1,A2 ) = π

k2

�max∑
�=0

(2� + 1)P0PT�, k =
√

2μEc.m.

h̄2 , (3)
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with T� = 1 for � � �max, and zero otherwise. Here, the rela-
tive preformation probability P0 refers to η motion and P, the
penetration probability, refers to the R motion. P and P0 both
are dependent on angular momentum � and temperature T .

The formula (3), with T� = 1, is also applicable to σnCN ,
which is calculated as the qf decay channel where P0 = 1.
Since for qf the fragments are considered not to lose their
identity, the P is calculated only for the incoming channel ηic:

σnCN = π

k2

�max∑
�=0

(2� + 1)Pηic . (4)

Note that the DCM does not account for the noncompound
emission of particles, but gives only the empirically estimated
nCN contribution in the CN (total) fusion cross section. Since
Eq. (3) is defined in terms of the exit/decay channels alone,
i.e., both the formation P0 and then their emission via barrier
penetration P are calculated only for decay channels (A1, A2),
it follows from Eq. (1) that

σER =
4 or 5∑
A2=1

σ(A1,A2 ) or =
4 or 5∑
x=1

σxn (5)

and

σ f f = 2
A/2∑

A/2−x

σ(A1,A2 ), (6)

where σCN = σER + σ f f . Equation (6) is applicable to the fis-
sion cross section (σ f f ) in the region A/2 ± 22, and according
to Eq. (6) we can calculate the cross section of one side
(A/2 − 22) and then multiply by 2 to get the cross section
of the complete fission region A/2 ± 22.

The nCN contribution, obtained empirically as the dif-
ference between the experimentally measured fusion cross
section and our calculated pure-CN components, i.e., σ

emp.

nCN =
σ

Expt.
fusion − σ Cal.

CN , where the CN fusion cross-section σCN is the
sum of evaporation residue (ER) cross-section σER and fusion-
fission (ff) cross section (σ Cal.

CN = σ Cal.
ER + σ Cal.

f f ), and σ Cal.
fusion =

σ Cal.
CN + σ Cal.

nCN , which further allow us calculate the CN fusion
probability PCN, defined as

PCN = σ Cal.
CN

σ Cal.
fusion

= 1 − σ
emp.

nCN

σ Cal.
fusion

. (7)

P0 is the solution of the stationary Schrödinger equation in η,
at a fixed R = Ra:{

− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ V (R, η, T )

}
ψν (η) = E νψν (η),

(8)
with ν = 0, 1, 2, 3, . . . referring to ground-state (ν = 0) and
excited-states solutions. Then, the probability is given by

P0(Ai ) =| ψ (η(Ai )) |2 √
Bηη

2

A
, (9)

where, for a Boltzmann-like function,

|ψ |2 =
∞∑

ν=0

|ψν |2 exp(−E ν/T ). (10)

For the position R = Ra, the first turning point for calculating
the penetration P, in the decay of a hot CN, we use the
postulate [9–11]

Ra(T ) = R1(α1, T ) + R2(α2, T ) + �R(η, T ),

= Rt (α, η, T ) + �R(η, T ), (11)

with radius vectors

Ri(αi, T ) = R0i(T )

[
1 +

∑
λ

βλiY
(0)
λ (αi)

]
, (12)

and temperature-dependent nuclear radii R0i(T ) for the equiv-
alent spherical nuclei [12],

R0i = [
1.28A1/3

i − 0.76 + 0.8A−1/3
i

]
(1 + 0.0007T 2). (13)

The only parameter of the model �R(T ), the neck-length
parameter, is T dependent, defining the first turning point
Ra in Eq. (11). �R(η, T ) assimilates the deformation and
neck formation effects between two nuclei, introduced within
the extended model of Gupta and collaborators [13–15].
This method of introducing a neck-length parameter �R is
similar to that used in both the scission-point [16] and saddle-
point [17,18] statistical fission models.

The choice of the parameter Ra (equivalently, �R) in
Eq. (11), for a best fit to the data, allows us to relate in a simple
way the V (Ra, �) to the top of the barrier VB(�) for each �, by
defining their difference �VB(�) as the effective “lowering of
the barrier”:

�VB(�) = V (Ra, �) − VB(�). (14)

Note, �VB for each � is defined as a negative quantity since the
actually used barrier is effectively lowered. This is illustrated
in Fig. 2 for the �max value, fixed for light-particles [here, e.g.,
x neutrons, xn, x = 1–(4 or 5)] cross-section σxn(�) → 0 (or
the penetrability starts to contribute, i.e., P0 > 10−10 for the
example studied here; see Fig. 4). Thus, the fitting parameter
�R controls the “barrier lowering” �VB.

The collective fragmentation potential VR(η, T ) in Eq. (15),
that brings in the structure effects of the CN into the formal-
ism, is calculated according to the Strutinsky renormalization
procedure (B = VLDM + δU ; B is binding energy), as

VR(η, T ) = −
2∑

i=1

[VLDM (Ai, Zi, T )] +
2∑

i=1

[δUi] exp

(
−T 2

T 2
0

)

+VP(R, Ai, βλi, θi,�, T )+VC (R, Zi, βλi, θi,�, T )

+ V�(R, Ai, βλi, θi,�, T ), (15)

where VC , VP, and V� are the Coulomb, nuclear proximity
and angular momentum dependent potentials for deformed,
oriented (coplanar or noncoplanar) nuclei, all T dependent.
δU are the “empirical” shell corrections of Myers and Swiate-
cki [19] for spherical nuclei, also made T dependent to
vanish exponentially with T0 = 1.5 MeV [20], and VLDM is the
T -dependent liquid drop energy of Davidson et al. [21] with
its constants at T = 0 refitted by some of us [10,11,22] to
give the experimental binding energies of Audi et al. [23].
Thus, in fact, we are using experimental binding energies, split
into VLDM and δU components. The mass parameters, Bηη,
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FIG. 2. The �-dependent scattering potential V (R) for 196Pt +1n,
in the decay of 196Pt∗ formed in the 132Sn + 64Ni reaction at Ec.m. =
167.2 MeV. The concept of barrier lowering �VB = V (Ra) − VB is
also shown in this figure for the �max = 153h̄ value. The first and
second turning points Ra and Rb are also labeled.

used are the smooth classical hydrodynamical masses [24],
since at large T values the shell effects are almost completely
washed out. For smaller T (<1.5 MeV), in principle, the shell
corrected masses should be used, like the cranking masses
which depend on the underlying shell model basis.

To calculate the cross sections for noncoplanar nuclei (� �=
0◦), we use the same formalism as for � = 0◦ (see Ref. [25]),
but for the out-of-plane nucleus (i = 1 or 2) we replace the
corresponding radius parameter Ri(αi ) with its projected ra-
dius parameter RP

i (αi ) in both the Coulomb and proximity
potentials [6]. For the Coulomb potential radius parameter
enters via Ri(αi ) itself and for the proximity potential via the
definitions of both the mean curvature radius R̄ and the short-
est distance s0, i.e., compact configurations with orientations
θci and �c [26,27]. For compact configurations the interaction
radius is smallest and the barrier is highest.

The RP
i (αi ) is determined by defining, for the out-of-plane

nucleus, two principal planes X ′Z ′ and Y ′Z ′, respectively, with
radius parameters Ri(αi ) and Rj (δ j ), such that their projec-
tions into the plane (XZ) of the other nucleus are (see Fig. 1)

RP
i (αi ) = Ri(αi ) cos �, i = 1 or 2, (16)

and

RP
j (δ j ) = Rj (δ j ) cos(� − δ j ), j = i = 1 or 2. (17)

Then, maximizing Rj (δ j ) in angle δ j , we get

RP
i (αi ) = RP

i (αi = 0◦) + RP
i (αi �= 0◦)

= RP
j

(
δmax

j

) + Ri(αi �= 0◦) cos �, (18)

with δmax
j given by the condition (for fixed �),

tan(� − δ j ) = −R′
j (δ j )

Rj (δ j )
. (19)

Thus, the � dependence of the projected radius vector RP
i (αi )

is also contained in maximizing RP
j (δmax

j ). For further details,
see [6]. Then, for the nuclear proximity potential—denoted by
V 12

P , the potential for the nucleus 1 to be out of plane, and by
V 21

P , the potential for the nucleus 2 to be out of plane—the
effective nuclear proximity potential is

VP = 1
2

[
V 12

P + V 21
P

]
. (20)

The penetrability P in Eq. (3) or (4) is the WKB integral,

P = exp

(
−2

h̄

∫ Rb

Ra

{2μ[V (R, T ) − Qeff ]}1/2dR

)
, (21)

solved analytically [28,29], with the second turning point Rb

(see Fig. 2) satisfying

V (Ra) = V (Rb) = Qeff . (22)

As the � value increases, the Qeff (T ) increases and hence
V (Ra, �) also increases. Thus, Ra acts like a parameter through
�R(η, T ) and we define that Ra is the same for all � values,
i.e., V (Ra) = Qeff (T, � = 0). This is required because we do
not know how to add the � effects in the binding energies.

III. CALCULATIONS AND RESULTS

In this section, we present our calculations on the inves-
tigation the role of noncoplanar degrees of freedom � on
calculated evaporation residues σ Cal.

ER and fission cross sec-
tions σ Cal.

fission, of 196Pt∗ formed in the 132Sn + 64Ni reaction,
at five center-of-mass energies Ec.m.. As we mentioned in
the Introduction, the experimentally observed decay channels
for these reactions are the evaporation residues (ER) and the
fission region (ff). The earlier calculations for � = 0◦ (copla-
nar nuclei, with “optimum” configuration only) [4], showed a
considerable amount of noncompound nucleus (nCN) content
in the σ Cal.

fission at two higher energies and the major contribution
of A/2 ± 22 comes from the asymmetric fragments; however,
the σ Cal.

ER was addressed at all energies. Therefore, following
the prescription of Ref. [27] we first calculated the compact
orientations θci and �c for all the possible fragments (A1, A2),
to study the effect of noncoplanarity on the nCN contribution
for 196Pt∗. In the following, we show that inclusion of the �

degree of freedom modifies the result of 196Pt∗ (� = 0◦, β2

alone) in a significant manner, which [4] shows the contribu-
tions of nCN of almost 48% and 15% in the fission region at
two higher energies.

Table I presents the DCM-calculated CN cross section σ Cal.
CN

and the nCN contribution σ
emp.

nCN (calculated as σ
Expt.
fusion − σ Cal.

CN )
for both cases �c = 0◦ and �c �= 0◦. Earlier calculations [4]
using the � = 0◦ configuration, including quadrupole de-
formations (β2i alone) and “optimum” orientations (θopt.),
showed a noticeable amount of nCN at higher energies of the
fission region. In this work we checked the effect of higher
multipole deformations (β2 − β4) using co-planar and non-
coplanar configurations and found some interesting outcomes.
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TABLE I. DCM-calculated evaporation residues (ERs) and fusion-fission (ff region = A/2 ± 22) cross sections for best fitted �R’s,
compared with experimental data taken from (Ref. [4]), with the included β2–β4 deformations for both the configurations �c = 0◦ and �c �= 0◦.

σ Cal.
CN σ

emp.

nCN

�c = 0◦ �c �= 0◦ �c = 0◦ �c �= 0◦

Decay �R σ Cal.
ER, f f �R σ Cal.

ER, f f σ Expt. σ
emp.

nCN σ
emp.

nCN

channel (fm) (mb) (fm) (mb) (mb) (mb) (mb)

Ec.m. = 195.2 MeV
ER 1.6895 259 1.6556 258 259 0 0
ff 1.1599 392 1.251 542 544 152 0

Ec.m. = 183.7 MeV
ER 1.6764 251 1.6605 251 251.4 0 0
ff 1.1365 322 1.1425 370 371 49 0

Ec.m. = 175.2 MeV
ER 1.6558 264 1.6864 265 264.8 0 0
ff 1.079 232 1.0970 232 232.9 0 0

Ec.m. = 171 MeV
ER 1.6984 218 1.6513 218 218 0 0
ff 0.993 138.2 1.0483 138 138 0 0

Ec.m. = 165.5 MeV
ER 1.6922 184 1.6434 184 184 0 0
ff 0.8906 31.4 0.9077 31.2 31.2 0 0

For the case �c = 0◦ there was significant disagreement
among the calculated and experimental fission cross sections,
which on the other hand improved remarkably after using
the �c �= 0◦ configuration. It means the configuration of non-
coplanar degrees of freedom along with the higher multipole
deformations provides a better set of parameters to study the
heavy-ion reactions. This viewpoint of our study guided us
to calculate the estimated value for unobserved fission for the
same CN 196Pt∗, at Ec.m. = 167.2 MeV, where experimental
data are only available for σER and σ f f is missing. Note, the
�R or reaction time is the only parameter of the DCM.

Figure 3 shows the calculated mass fragmentation poten-
tial V (A2) for the best fitted �R values for both ER and ff
cross sections at Ec.m. = 195.2 MeV (T = 1.9944 MeV) for
�max = 158h̄ and � = 0. σ Cal.

ER is fitted (≡ σ
Expt.
ER ) for 196Pt∗ in

both cases (�c = 0◦ and �c �= 0◦). The �max value is fixed via
Fig. 4, where the calculated P0 is plotted as a function of � for
the illustrative ER channels. For �max, the corresponding ER
cross sections go to zero, i.e., the contribution of P0 becomes
negligible (<10−10). We notice in Fig. 4 that the 1n channel
has the largest preformation probability as compared to the
other three LP channels (2n, 3n, 4n). Compared to the case
of �c = 0◦ in Ref. [4], we find that �max increases in going
from �c = 0◦ to �c �= 0◦, i.e., from 122h̄ to 158h̄ at Ec.m. =
195.2 MeV, and the fragmentation potential V (A2) of certain
fragments (Fig. 3 ) changes due to the nonzero �c value.

Figure 5 shows the preformation probability P0 as an
function of fragment mass number A2. In the DCM P0 is a
statistical quantity which gives the structural information of a
compound nucleus; according to this factor 196Pt∗ shows the
asymmetrical distribution of fission fragments. This factor ex-
plains the probable structural aspects of a compound nucleus.
In this figure, one can clearly check that at � = 0 light particles
or ERs and at � = 158h̄ heavy mass fragments and the fission

fragments marked as A2 = 51–73 (22 decay fragments from
the ff region) are the most probable decay channels.

Next, Fig. 6, shows that three different types of configura-
tions result in different percentages of the compound nucleus

FIG. 3. Mass fragmentation potential minimized in the charge-
asymmetry coordinate ηZ for the decay of 196Pt∗ formed in the
132Si + 64Ni reaction at Ec.m. = 195.2 MeV and at � = 0 and � =
158h̄.

064615-5



SAHILA CHOPRA et al. PHYSICAL REVIEW C 103, 064615 (2021)

FIG. 4. Preformation probability P0 as a function of angular mo-
mentum � for ER decays of 196Pt∗ formed in the 132Sn + 64Ni reaction
at Ec.m. = 195.2 MeV. P0 ≈ 10−10 for �max = 158h̄.

FIG. 5. Preformation probability P0 as a function of fragment
mass number for the decay of 196Pt∗ formed in the 132Si + 64Ni
reaction at Ec.m. = 195.2 MeV and at � = 0 and � = 158h̄ values.

FIG. 6. The DCM-calculated CN cross section, with all three
configurations. The experimental data taken from [4] for σ

Expt.
fusion are

also shown in the plot.

contributions. The coplanar configuration with only θopt. and
β2i alone shows the largest contribution of nCN at higher
energies, then this percentage decreases after the inclusion
of β2–β4, but finally the gap between experimental data and
the DCM-calculated cross section gets filled only after the
inclusion of noncoplanar degrees of freedom along with the
higher multipole deformations (β2–β4).

Table II presents the DCM-calculated compound nucleus
formation probability PCN, which shows pure compound nu-
cleus at all energies for the �c �= 0◦ case and for �c = 0◦ the
PCN < 1 at two higher energies.

Figure 7 depicts the possibility for the prediction of the
cross section of unobserved decay fragments. This figure
shows the best fitted cross-section values of the fission region
and evaporation residues. Panel (a) shows that the σ f f is
exactly matched with the experimental data, whereas in (b) at
Ec.m. = 167.2 MeV we have only σER, and we have calculated
the approximate value of unobserved σ f f . Our calculations

TABLE II. The comparison of the �c �= 0◦ case with �c = 0◦ of
DCM-calculated CN formation probability PCN [30] for 196Pt∗.

�c = 0◦ �c �= 0◦

Ec.m.(MeV) PCN PCN

195.20 0.914 1
183.78 0.811 1
175.20 1 1
171.00 1 1
167.20 1 1
165.50 1 1
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FIG. 7. The DCM-calculated (a) σ Cal.
f f and (b) σ Cal.

ER , for the
132Sn + 64Ni → 196Pt∗ reaction, using the �c �= 0◦ case with θci and
higher multipole deformations β2–β4, plotted as a function of Ec.m.,
compared with experimental data. In panel (a) we show the DCM-
estimated cross section at Ec.m. = 167.2 MeV. In panel (b) σ Cal.

ER

exactly fitted with experimental data.

provide a good result about unobserved channels, i.e., the
estimated number is very close to the measured data and lies
on the same curve of other observed channels. In this work we
showed that the calculated value of �R for unobserved decay
channels (in the fission region) is the well founded number
which we have calculated simultaneously along with the valid
�R of σER.

Finally, we have estimated the not-yet-observed ff cross
section in the chosen reaction at a particular energy where
only σER is given, which strongly supports the possibility to
find the neck-length parameter to calculate the cross section
for the unobserved decay channels. After using the set of
parameters (θci, β2–β4, and �c �= 0◦) within the DCM, we
look forward to experimental validation of predicted cross
sections.

IV. SUMMARY AND CONCLUSIONS

In conclusion, in this paper we have extended the ear-
lier work of Ref. [4] on the decay of 196Pt∗ formed in the
132Sn + 64Ni reaction at five energies, using the proximity
nuclear interaction potential of Blocki et al. for coplanar
(�c = 0◦) and noncoplanar (�c �= 0◦) nuclear configurations.
The objective was to see the effect of noncoplanar degrees
of freedom on the large noncompound nucleus (nCN) com-
ponent in the calculated σ f f for both configurations, i.e.,
coplanar (�c = 0◦) and noncoplanar (�c �= 0◦), especially at
two higher energies. Our calculations are performed with de-
formation effects included up to hexadecapole with compact
orientations of the hot fusion process. The only parameter
of the model is the neck-length parameter �R, which varies
smoothly with the CN excitation energy or temperature of the
system, and whose values stay within the nuclear proximity
limits of ≈2 fm. Another important result is the estimation of
the cross section, which seems to follow the trend of measured
data. Most of the calculations are carried out using the dynam-
ical cluster-decay model in reference to experimental data, but
we have predicted cross sections for a certain nucleus, as we
have done in this work at Ec.m. = 167.2 MeV, which could be
verified via further experiments. It is concluded that the higher
order deformations and noncoplanar degrees of freedom are
important tools to address the adequate dynamical evolution
of nuclear reactions.
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