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Scattering matrix pole expansions for complex wave numbers in R-matrix theory
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In this followup article to Ducru et al. [Phys. Rev. C 103, 064608 (2021)], we establish new results on
scattering matrix pole expansions for complex wave numbers in R-matrix theory. In the past, two branches
of theoretical formalisms emerged to describe the scattering matrix in nuclear physics: R-matrix theory and
pole expansions. The two have been quite isolated from one another. Recently, our study of Brune’s alternative
parametrization of R-matrix theory has shown the need to extend the scattering matrix (and the underlying
R-matrix operators) to complex wave numbers. Two competing ways of doing so have emerged from a historical
ambiguity in the definitions of the shift S and penetration P functions: the legacy Lane and Thomas’s “force
closure” approach versus analytic continuation (which is the standard in mathematical physics). The R-matrix
community has not yet come to a consensus as to which to adopt for evaluations in standard nuclear data
libraries, such as ENDF. In this article, we argue in favor of analytic continuation of R-matrix operators.
We bridge R-matrix theory with the Humblet-Rosenfeld pole expansions, and discover new properties of the
Siegert-Humblet radioactive poles and widths, including their invariance properties to changes in channel radii
ac. We then show that analytic continuation of R-matrix operators preserves important physical and mathematical
properties of the scattering matrix—canceling spurious poles and guaranteeing generalized unitarity—while still
being able to close channels below thresholds.
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I. INTRODUCTION

Myriad nuclear interactions have been modeled with R-
matrix theory, with applications to many branches of nuclear
physics, from nuclear simulation, radiation transport, astro-
physics, and cosmology, and extending to particle physics or
atomistic and molecular simulation [1–8]. Our current nu-
clear data libraries are based on R-matrix evaluations (ENDF
[9], JEFF [10], BROND [11], JENDL [12], CENDL [13],
TENDL [14,15]). The R-matrix scattering model takes dif-
ferent incoming particle waves and lets them interact through
a given Hamiltonian to produce different possible outcomes.
R-matrix theory studies the particular two-body-in–two-body-
out model of this scattering event, with the fundamental
assumption that the total Hamiltonian is the superposition of
a short-range, interior Hamiltonian, which is null after a given
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channel radius ac, and a long-range, exterior Hamiltonian,
which is well known (free particles or Coulomb potential,
for instance) [2,16–18]. R-matrix theory can then parametrize
the energy dependence of the scattering matrix in different
ways. The Wigner-Eisenbud parametrization is the historical
standard, because its parameters are real and well defined,
though some are arbitrary (the channel radius ac and the
boundary condition Bc). To remove this dependence on an
arbitrary boundary condition Bc, the nuclear community has
recently been considering shifting nuclear data libraries to an
alternative parametrization of R-matrix theory [19–22].

In parallel, there is vast literature in mathematical physics
and nuclear physics on pole expansions of the scattering ma-
trix [23–27], starting with the well-known developments by
Humblet and Rosenfeld [28–35].

This article follows [22], precedes [36], and is thus the
second in our trilogy on pole parametrizations of R-matrix
theory (see Supplemental Material of Ref. [22]). In Sec. II,
we show how the Siegert-Humblet expansion into radioactive
states is the link between R-matrix theory and the scattering
matrix pole expansions of Humblet and Rosenfeld. In the
process, we unveil new relations between the radioactive poles
and residues and the alternative parametrization of R-matrix
theory, and establish for the first time the number of radioac-
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tive poles in wave-number space (Theorem 1) along with
their branch structure. Section III investigates the invariance
properties of Siegert-Humblet radioactive state parameters to
a change in channel radius ac. We demonstrate in Theorem 2
that invariance of the scattering matrix to ac sets a partial
differential equation on the Kapur-Peierls operator RL, which
in turn enables us to derive explicit transformations of the
Siegert-Humblet radioactive widths {r j,c} under a change of
channel radius ac. Section IV considers the continuation of
the scattering matrix to complex wave numbers in R-matrix
theory. We establish several new results. We show that the
legacy of Lane and Thomas to force-close channels below
threshold not only breaks the analytic properties of the scat-
tering matrix but also introduces nonphysical spurious poles.
Yet, we prove that these spurious poles are canceled out if one
performs analytic continuation of R-matrix operators instead
(Theorem 3). We also show that this analytic continuation of
R-matrix operators enforces the generalized unitarity condi-
tions described by Eden and Taylor [37] (Theorem 4). Finally,
in the case of massive particles, we propose a solution to the
conundrum of how to close the channels below thresholds,
by invoking both a quantum tunneling argument, whereby the
transmission matrix is evanescent below threshold (Theorem
5), and a physical argument based on the definition of the cross
section as the ratio of probability currents (Theorem 6). All
these results make us argue that, contrary to what Lane and
Thomas prescribed [2], the R-matrix parametrization should
be analytically continued to complex wave numbers kc ∈ C.
These considerations have practical implications on R-matrix
evaluation codes, such as EDA [38,39], SAMMY [40], and
AZURE [41], used to build our nuclear data libraries: ENDF
[9], JEFF [10], BROND [11], JENDL [12], CENDL [13],
TENDL [14,15]). We thus call for analytic continuation of
R-matrix operators to become the new standard for nuclear
cross section evaluations.

II. SIEGERT-HUMBLET POLE EXPANSION
IN RADIOACTIVE STATES

We here establish new R-matrix theory results concern-
ing the Siegert-Humblet expansion into radioactive states
(cf. Sec. IX.2.c–e, pp. 297–298, in Ref. [2]). These radioac-
tive state parameters express the energy dependence of the
scattering matrix into a simple sum of poles and residues.
We show this constitutes the link between R-matrix theory
and the scattering matrix pole expansions of Humblet and
Rosenfeld [28–35] (Sec. II F). In the wake, we show how to
obtain the radioactive state parameters (Sec. II A), link them to
the Brune alternative parametrization (Sec. II B), reveal their
branch structure (Theorem 1, Sec. II C), which emerges from
the wave number energy mapping (1),

ρc(E ) ←→ E , (1)

where ρc � ackc is the dimensionless wave-number variable
ρ � diag(ρc), ac is the arbitrary channel radius, and kc(E )
is the wave number of channel c, which is linked to the
energy E of the system (eigenvalue of the Hamiltonian of the
Schödinger equation) as explained in Sec. II.A of Ref. [22].

A. Definition of Siegert and Humblet parametrization

Following the notation of Ref. [22] (to which we refer
for further explanations), we here recall the essential relation
expressing the scattering matrix U as a function of R-matrix
operators:

U = O−1I + 2iρ1/2O−1RLO−1ρ1/2, (2)

where I and O are the incoming and outgoing wave functions,
which are subject to the following Wronksian condition: For
all channel c, wc � O(1)

c Ic − I (1)
c Oc = 2i, or with identity ma-

trix I (expression (7) in Ref. [22]) and denoting [ · ](1) the
diagonal channel c derivative with respect to ρc

w � O(1)I − I(1)O = 2iI (3)

and where RL is the Kapur-Peierls operator, defined as (see
Eq. (20) in Sec. II.D of Ref. [22])

RL � [I − R(L − B)]−1R = γTAγ . (4)

This Kapur-Peierls RL operator is at the heart of the Siegert-
Humblet parametrization, and its study is a core part of
this article. The Kapur-Peierls operator RL is a function of
the Wigner-Eisenbud R-matrix R, parametrized by the res-
onance parameters [energies e � diag(Eλ) and widths γ �
mat(γλ,c)]

R(E ) � γT(e − E I)−1γ (5)

as well as the arbitrary boundary condition B � diag(Bc)
and the reduced logarithmic derivative of the outgoing wave
function L � diag(Lc), defined as (cf. Sec. II.B of Ref. [22])

Lc(ρc) � ρc

Oc

∂Oc

∂ρc
(6)

and which admits the following Mittag-Leffler pole expansion
(Theorem 1 of Sec. II.B of Ref. [22]),

Lc(ρ)

ρ
= −�

ρ
+ i +

∑
n�1

1

ρ − ωn
, (7)

where {ωn} are the roots of the Oc(ρ) outgoing wave func-
tions: ∀n, Oc(ωn) = 0 (reported in Table II of Ref. [22] for
neutral particles).

Equivalently, the Kapur-Peierls operator RL can be ex-
pressed with the level matrix A (see Eqs. (17) and (18) in
Sec. II.C of Ref. [22]):

A−1 � e − EI − γ (L − B)γT. (8)

All these R-matrix operators are functions of the wave
numbers kc(E ) [or their corresponding dimensionless wave-
number variable ρ � diag(ρc)]. The Siegert-Humblet pole
expansion in radioactive states consists of analytically contin-
uing the Kapur-Peierls RL operator to complex wave numbers
kc ∈ C, thereby becoming a locally meromorphic operator.
The poles of this meromorphic operator can be assumed to
have a Laurent expansion of order one (i.e., simple poles),
as we will discuss in Sec. IV C. Since the Kapur-Peierls RL

operator is complex symmetric, its residues at any given pole
value E j ∈ C are also complex symmetric. For nondegenerate
eigenvalues E j ∈ C, the corresponding residues are rank 1 and
expressed as r jr j

T, while for degenerate eigenvalues E j ∈ C
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of multiplicity Mj , the corresponding residues are rank Mj and

expressed as
∑Mj

m=1 rm
j rm

j
T. On a given domain, the Mittag-

Leffler theorem [42,43] then states that RL locally takes the
form, in the vicinity W (E ) (neighborhood) of any complex
energy E ∈ C away from the branch points (threshold ener-
gies ETc ) of mapping (1), of a sum of poles and residues and a
holomorphic entire part HolRL (E ):

RL(E ) =
W (E )

∑
j�1

∑Mj

m=1 rm
j rm

j
T

E − E j
+ HolRL (E ), (9)

or, in the particular (but most common) case where E j is a
nondegenerate eigenvalue (with multiplicity Mj = 1),

RL(E ) =
W (E )

∑
j�1

r jr j
T

E − E j
+ HolRL (E ). (10)

This is the Siegert-Humblet expansion into so-called radioac-
tive states [44–48]—equivalent to Eq. (2.16) in Sec. IX.2.c.
of Ref. [2]—where we have modified the notation for greater
consistency (E j corresponds to Hλ of Ref. [2] and r j corre-
sponds to ωλ) since there are more complex poles E j than real
energy levels Eλ. The Siegert-Humblet parameters are then the
poles {E j} and residue widths {r j} of this complex resonance
expansion of the Kapur-Peierls operator RL.

The Gohberg-Sigal theory [49] provides a method for cal-
culating these poles and residues by solving the following
generalized eigenvalue problem—which we call the radioac-
tive problem:

R−1
L (E )|E=E j q j = 0, (11)

that is, finding the poles {E j} of the Kapur-Peierls operator,
RL, and their associated eigenvectors {qj}. The poles are com-
plex and usually decomposed as

E j � Ej − i
� j

2
. (12)

It can be shown (cf. Sec. IX.2.d, pp. 297–298, in Ref. [2], and
Sec. 9.2, Eq. (9.11), in Ref. [28]) that fundamental physical
properties (conservation of probability, causality, and time
reversal) ensure that the poles reside either on the positive
semiaxis of purely imaginary kc ∈ iR+—corresponding to
bound states for real subthreshold energies, i.e., Ej < ETc and
� j = 0—or that all the other poles are on the lower-half kc

plane, with � j > 0, corresponding to “resonance” or “radioac-
tively decaying” states. All poles enjoy the specular symmetry
property: If kc ∈ C is a pole of the Kapur-Peierls operator,
then −k∗

c is too.
Let Mj = dim(Ker(R−1

L (E j ))) be the dimension of the nulls
pace of the inverse of the Kapur-Peierls operator at pole value
E j , that is, Mj is the geometric multiplicity. We can thus write

Ker(R−1
L (E j )) = Span(q1

j , . . . , qm
j , . . . , qM j

j ). As we discuss
in Sec. IV C, it is physically reasonable to assume that the
geometric and algebraic multiplicities are equal (semisim-
plicity condition), which entails a Laurent development of
order 1 for the poles—i.e., no higher powers of 1

E−E j
in ex-

pansion (9). Since RL is complex symmetric, if we assume
we can find nonquasinull eigenvectors solutions to (11)—that

is, ∀ ( j, m) , qm
j

Tqm
j �= 0 so it is nondefective [50–56]—then

Gohberg-Sigal theory can be adapted to the case of complex-
symmetric matrices to normalize the rank-Mj residues of RL

matrix as
Mj∑

m=1

rm
j rm

j
T =

Mj∑
m=1

qm
j qm

j
T

qm
j

T( ∂R−1
L

∂E

∣∣
E=E j

)
qm

j

. (13)

The residue widths {rm
j }, here called radioactive widths, can

thus directly be expressed as

rm
j = qm

j√
qm

j
T( ∂R−1

L
∂E

∣∣
E=E j

)
qm

j

, (14)

where ∂R−1
L

∂E |
E=E j

can readily be calculated by means of the
following property,

∂R−1
L

∂E

∣∣∣∣
E=E j

= ∂R−1

∂E
(E j ) − ∂L

∂E
(E j ), (15)

where the R-matrix R is invertible at the radioactive poles
{E j}, with

∂R−1

∂E
(E ) = −R−1γT(e − EI)−2γR−1. (16)

In practice, we are most often presented with nondegener-
ate states where Mj = 1, meaning the kernel is an eigenline
Ker(R−1

L (E j )) = Span(q j ), which entails rank 1 residues nor-
malized as

r jrT
j = q jqT

j

q j
T
( ∂R−1

L
∂E

∣∣
E=E j

)
q j

(17)

or equivalently

rT
j

(
∂R−1

L

∂E

∣∣∣∣
E=E j

)
r j = 1; (18)

thus, for clarity of reading and without loss of generality, we
henceforth drop the superscript “m” and summation over the
multiplicity, unless it is of specific interest.

The radioactive poles, {E j}, and radioactive widths,
{rm

j = [rm
j,c1

, . . . , rm
j,c, . . . , rm

j,cNc
]T}, are the Siegert-Humblet

parameters. They are complex and locally untangle the en-
ergy dependence into an expansion sum of poles and residues
(9). Additional discussion on these poles and residues can
be found in Ref. [2], Secs. IX.2.c–e, pp. 297–298, or in
Refs. [44–46,48].

The Kapur-Peierls matrix RL is invariant to a change in
boundary conditions Bc—cf. Eqs. (25) and (26) of Sec. II.F
of Ref. [22]—this entails that the radioactive poles {E j} and
widths {r j} are independent of the boundary condition Bc.

B. Level matrix A(E ) approach to Siegert
and Humblet expansion

An alternative approach to calculating the Siegert-Humblet
parameters {ac, E j, rm

j,c, ETc} from the Wigner-Eisenbud ones
{ac, Bc, γλ,c, Eλ, ETc} is through the level matrix A. We search
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for the poles and eigenvectors of the level matrix operator A,

A−1(E )|E=E j b j = 0, (19)

from (8); this means solving for the eigenvalues {E j} and
associated eigenvectors {bj} that satisfy

[e − γ (L(E j ) − B)γT]b j = E jb j . (20)

This problem is analogous to the alternative parametriza-
tion of R-matrix theory, but with replacing the shift factor S
with the outgoing-wave reduced logarithmic derivative L (cf.
Ref. [22]).

Again, the same hypotheses as for the Kapur-Peierls op-
erator RL in Sec. II A allow us to adapt the Gohberg-Sigal
theory to the case of complex-symmetric operators to yield the
following local Mittag-Leffler expansion of the level matrix
(with normalized residues):

A(E ) =
W (E )

∑
j�1

∑Mj

m=1 am
j am

j
T

E − E j
+ HolA(E ). (21)

In the most frequent case of nondegenerate eigenvalues to
(19), this yields rank-1 residues as

A(E ) =
W (E )

∑
j�1

a jaT
j

E − E j
+ HolA(E ). (22)

Again, under nonquasinull eigenvectors assumption bm
j

Tbm
j �=

0, Gohberg-Sigal theory ensures the residues are normalized
as

am
j am

j
T = bm

j bm
j

T

bm
j

T( ∂A−1

∂E

∣∣
E=E j

)
bm

j

, (23)

which is readily calculable from

∂A−1

∂E
(E j ) = −I − γ

∂L
∂E

(E j )γ
T. (24)

Plugging (21) into (4) and invoking the unicity of the complex
residues imply the radioactive widths (14) can be obtained as

rm
j = γTam

j . (25)

This is an interesting and novel way to define the Siegert-
Humblet parameters, which is similar to the alternative
parameters definition of Ref. [22]. From this perspective,
the alternative parameters appear as a special case that
leave the Siegert-Humblet level-matrix parameters invariant
to boundary condition Bc. Indeed, one could search for the
Siegert-Humblet expansion of the alternative parametrization
of R-matrix theory, by simply proceeding as in Eq. (34) in
Sec. III.A of Ref. [22], but replacing the level matrix A with
the alternative level matrix Ã (defined in Eqs. (30) and (33) in
Sec. III.A of Ref. [22]):

Ã
−1

(E )|E=E j b̃ j = 0. (26)

The exact same Gohberg-Sigal procedure can then be applied
to the Mittag-Leffler expansion of the alternative level ma-
trix Ã, in the vicinity W (E ) of E ∈ C away from branch

points {ETc},

Ã(E ) =
W (E )

∑
j�1

∑Mj

m=1 ãm
j ãm

j

T

E − E j
+ HolÃ(E ), (27)

yielding the normalized residue widths,

ãm
j ãm

j

T = b̃m
j b̃m

j

T

b̃m
j

T(
∂Ã

−1

∂E

∣∣
E=E j

)
b̃m

j

, (28)

where (24) can be combined to Eq. (33) of Ref. [22],

γTAγ = γ̃TÃγ̃,

to calculate the energy derivative. Then, plugging (28) into
the same Eq. (33) of Ref. [22], we obtain the relation between
the alternative R-matrix parameters and the Siegert-Humblet
radioactive state parameters:

rm
j = γ̃

Tãm
j . (29)

This relation (29) is especially enlightening when com-
pared to (25) from the viewpoint of invariance to boundary
condition Bc. Indeed, we explained that the Siegert-Humblet
parameters {E j, rm

j } are invariant with a change of boundary
condition Bc → B′

c. This is, however, not true of the level
matrix residue widths {am

j } from (23). Thus, we can formally
write this invariance by differentiating (25) with respect to Bc

and noting that
∂rm

j

∂B = 0, yielding

0 = ∂γT

∂B
am

j + γT
∂am

j

∂B
. (30)

This new relation links the variation of the Wigner-Eisenbud
resonance widths γλ,c at level values Eλ (resonance energies)
under a change of boundary conditions Bc′ , to the variation
of the level matrix residue widths am

j,c at pole values E j under
change of boundary condition Bc′ . Since transformations (26)
and (27) of Sec. II.F in Ref. [22] detail how to perform ∂γT

∂B ,
Eq. (30) could be used to update am

j under a change Bc → Bc′ .
Another telling insight from relation (30) is when we apply

it to the relation between the alternative parameters and the
Siegert-Humblet radioactive widths (29). Since the alternative
parameters γ̃ are invariant to Bc (that is their main purpose),
the same differentiation as in Eq. (30) now yields zero deriva-
tives,

0 = γ̃
T ∂ ãm

j

∂B
. (31)

This is obvious from the fact that the alternative level ma-
trix Ã is invariant under change of boundary condition. Yet
invariance (31) is insightful as it presents the alternative pa-
rameters {Ẽi, γ̃ } as the ones which, when transformed to
Siegert-Humblet radioactive state parameters {E j, r j} though
(29), leave the level residue widths {ã j} invariant to Bc.

Conversely, the Kapur-Peierls pole expansion (10) extends
the alternative parametrization in that it generates boundary
condition Bc independent poles {E j} and radioactive widths

{r j} that explicitly invert the alternative level matrix Ã to yield
(27).
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C. Siegert-Humblet radioactive pole expansion
branch structure

Section II A introduced the Siegert-Humblet parametriza-
tion as the solutions of radioactive problem (11), where the
R(E ) matrix (5) is a function of the energy E , while L(ρ) is
a function of the dimensionless wave number ρc � ackc(E ).
Thus, radioactive problem (11) can be solved either in energy
space or in momentum space, both of which are linked by
the ρ(E ) mapping (1). This mapping induces a multisheeted
Riemann surface, which introduces branch points and sheets
we now unveil in Theorem 1.

Theorem 1. SIEGERT-HUMBLET RADIOACTIVE POLE EXPAN-
SION BRANCH STRUCTURE.

Let the radioactive poles {E j} be the solutions of the ra-
dioactive problem (11) and {ETc} denote the threshold energies
and branch points of the ρc(E ) wave-number energy mapping
(1); then

(1) In the neighborhood W (E ) of any complex energy E
away from branch points {ETc}, there exists a series
of complex matrices {cn} such that the Mittag-Leffler
expansion (10) takes the analytic form

RL(E ) =
W (E )

∑
j�1

r jrT
j

E − E j
+
∑
n�0

cnEn. (32)

(2) The radioactive poles {E j} are complex and live on the
multisheeted Riemann surface of kc(E ) wave-number
energy mapping (1):

{E j,+,+,−, · · · ,+,−}. (33)

(3) Let NL be the number of solutions to the radioactive
problem (11) in wave-number ρ space. For every sheet
of the of the wave-number energy mapping (1), each
pole of the R-matrix (resonance energy Eλ level) yields
two radioactive poles, and each pole of the outgoing
wave function reduced logarithmic derivative operator
Lc(ρc) (the ωn of Mittag-Leffler expansion (7) estab-
lished in Theorem 1 of Sec. II.B and documented in
Tables I and II of Ref. [22]) yields another additional
pole.

(4) For neutral particles, denoting NETc �=ETc′
the number

of channels with different thresholds, this entails the
number NL of radioactive poles is

NL =
(

2Nλ +
Nc∑

c=1

�c

)
× 2

(NETc �=ETc′
−1)

. (34)

(5) For charged particles, this entails an infinite number
(countable) of radioactive poles: NL = ∞.

Proof. Away from the branch points {ETc}, the holomor-
phic part of Mittag-Leffler expansion (10) can be analytically
expanded in series as (32)—we here assumed the nondegen-
erate case of rank-1 residues (multiplicity Mj = 1) though it
is readily generalizable to (9).

When solving radioactive problem (11) or (20) to ob-
tain the Siegert-Humblet poles {E j} and residues {r j}, or
{a j}, it is necessary to compute the L0 matrix function

L0(E ) � L0(ρ(E )) for complex energies E ∈ C. As discussed
in Ref. [22] (cf. Secs. II.A, II.B, III.B, and III.C of Ref. [22]),
mapping (1) generates a multisheeted Riemann surface with
2Nc branches (with the threshold values ETc as branch points),
corresponding to the choice for each channel c, of the sign of
the square root in ρ(E ). This means that when searching for
the poles, one has to keep track of these choices and specify
for each pole E j on what sheet it is found. Every pole E j

must thus come with the full reporting of these Nc signs, i.e.,
{E j,−,+,+, · · · ,−,+} as (33).

When searching for these radioactive poles in wave-
number space, the RL Kapur-Peierls operator (4) is continued
to complex wave numbers by meromorphic continuation of
L(ρ), where the reduced logarithmic derivative of the out-
going wave function (6) takes the Mittag-Leffler expansion
described in Eq. (13) of Theorem 1, Sec. II.B, of Ref. [22].
There are more radioactive poles {E j} than Wigner-Eisenbud
levels {Eλ}—as was the case for the alternative parameters (cf.
Theorems 2 and 3 in Sec. III.C of Ref. [22]). For massive
neutral particles, we can proceed in an analogous fashion
as for the proof of Theorem 3 in Sec. III.C of Ref. [22],
and apply the diagonal divisibility and capped multiplicities
lemma (Lemma 3 in Sec. III.C of Ref. [22]) to the determinant
of the Kapur-Peierls operator RL in Eq. (11)—but this time in
ρc space—and then look at the order of the resulting rational
fractions in ρc and the number of times one must square the
polynomials to unfold all ρc = ∓√· sheets of mapping (1).
We were thus able to establish that the number NL of poles
in wave-number ρ space is 2Nλ + ∑Nc

c=1 �c poles per sheet,
capped by the level multiplicities (cf. Eq. (50) of Ref. [22]):

NL/2
(NETc �=ETc′

−1) = Nλ +
∑

Lc multiplicity
capped at Nλ

�c, (35)

which in practice falls back to (34) over all sheets (there
are rarely fewer levels than the number of different channels
that have the exact same Lc(ρc) function), where NETc �=ETc′
designates the number of different thresholds (including the
obvious ETc = 0 zero threshold) and thus the number of
sheets.

In the charged particles case, Lc(ρc) has a countably in-
finite number of poles, which in turn induces an infinite
number (countable) of solutions to the radioactive prob-
lem (11), though the discussion after the proof of Theorem
1 in Sec. II.B of Ref. [22] shows most of these poles
are far-away poles, and only �c ones are within a closer
range. �

It is important to grasp the meaning of the Mittag-Leffler
expansion (10)—or (21) and (27). These are local expressions:
They do not hold for all complex energies E ∈ C because of
the branch-point structure of the Riemann sheet. However,
in the neighborhood W (E ) of any complex energy point
E ∈ C away from the branch points (thresholds {ETc}), the
Mittag-Leffler expansion (10) is true, and its holomorphic
part admits an analytic expansion HolRL (E ) �

∑
n�0 cnEn.

This has two major consequences for the Siegert-Humblet ex-
pansion. First, contrary to the alternative parameters {Ẽi, γ̃i,c}
discussed in Ref. [22], the Siegert-Humblet set of radioactive
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poles and widths {E j, r j,c} do not suffice to uniquely de-
termine the energy behavior of the scattering matrix U (E ):
One needs to locally add the expansion coefficients [cn]c,c′

of the entire part HolRL (E ) �
∑

n�0 cnEn. Second, since the
set of coefficients {cn} is a priori infinite (and so is the set
of poles in the Coulomb case), this means that numerically
the Siegert-Humblet expansion can only be used to com-
pute local approximations of the scattering matrix, which
can nonetheless reach any target accuracy by increasing the
number of {E j} j∈�1,NL� poles included and the order of the
truncation NW (E ) in {cn}n∈�1,NW (E )�. In practice, this means
that to compute the scattering matrix one needs to provide the
Siegert-Humblet parameters {E j, r j,c}, cut the energy domain
of interest into local windows W (E ) away from threshold
branch points {ETc}, and provide a set of local coefficients
{cn}n∈�1,NW (E )� for each window.

As discussed in Ref. [22] (cf. Lemmas 1 and 2 in
Sec. III.B and Theorems 2 and 3 of Sec. III.C of Ref. [22]), the
definition of the shift and penetration functions for complex
wave numbers is ambiguous (in particular, purely imagi-
nary wave numbers yield negative or subthreshold energies),
which in turn entail various possible alternative parameters.
When solving radioactive problem (11) to find the Siegert-
Humblet radioactive poles and residues {E j, r j,c}—or (20)
equivalently—there are no such ambiguities on the defini-
tion of L: The Kapur-Peierls operator is simply analytically
continued to complex wave numbers. The unicity of analytic
continuation thus entails that the Siegert-Humblet parameters
are uniquely defined, as long as we specify for each channel
c what sheet of the Riemann surface from mapping (1) was
chosen, as in Eq. (33).

The {E j,+,+, · · · ,+,+} sheet is called the physical
sheet, and we here call the poles on that sheet the principal
poles. All other sheets are called nonphysical and the poles
laying on these sheets are called shadow poles. Often, the
principal poles are responsible for the resonant behavior, with
shadow poles only contributing to background behavior, but
cases have emerged where the shadow poles contribute sig-
nificantly to the resonance structure, as reported in Ref. [57],
and Hale there introduced a quantity called strength of a pole
(cf. Eq. (7) in Ref. [57], and the paragraph after Eq. (2.11)
in Sec. XI.2.b, p. 306, and Sec. XI.4, p. 312 in Ref. [2]) to
quantify the impact a pole E j will have on resonance behavior,
by comparing the residue r j,c to the Wigner-Eisenbud widths
γλ,c.

Result (34) is quite instructive: One can observe that the
number NL of Siegert-Humblet poles adds up to the number of
levels Nλ and the number of poles of L (which is

∑Nc
c=1 �c for

neutral massive particles and is infinite in the Coulomb case;
cf. discussion after Theorem 1 in Sec. II.B of Ref. [22]). More-
over, NL is duplicated with each new sheet of the Riemann
surface from mapping (1) that is associated to a new threshold,
and hence the NETc �=ETc′

. Interestingly, after comparing NL from
(34) with the number NS of alternative analytic poles from
Eq. (49) in Theorem 3 of Sec. III.C of Ref. [22]—which are
in E space and must thus be doubled to obtain the number
of ρ-space poles—we note that the analytic continuation of
the shift factor S (cf. Lemma 2 in Sec. III.B of Ref. [22])
adds a virtual pole for each pole of L when unfolding the
sheets of mapping (1), because it is a function of ρ2

c (E ).

This can readily be observed in the trivial case of a p wave
(� = 1) channel with one resonance (one level Nλ = 1), where
S(E ) = − 1

1+ρ2(E ) introduces two poles at ρ(E ) = ±i, while

L(E ) = −1+iρ(E )+ρ2 (E )
1−iρ(E ) only counts one pole, at ρ(E ) = i.

As for Eq. (50) of Theorem 3 in Sec. III.C of Ref. [22],
one should add the precision that in the sum over the channels
in Eq. (34), the multiplicity of possible Lc(ρc) repeated over
many different channels Lc(ρc) = Lc′ �=c(ρc′ ) is capped by Nλ,
which in practice would only occur in the rare cases where
only one or two levels occurs for many channels with same
angular momenta (and, of course, total angular momenta and
parity Jπ ).

Numerically, solving the generalized eigenvalue problems
(11) or (20) falls into the well-known class of nonlinear eigen-
value problems, for which algorithms we direct the reader
to Chap. 115 in The Handbook of Linear Algebra [58]. We
will just state that instead of the Rayleigh-quotient type of
methods expressed in Ref. [58], it can sometimes be compu-
tationally advantageous to first find the poles {E j} by solving
the channel determinant problem, det(R−1

L (E )|E=E j
) = 0, or

the corresponding level determinant one, det(A−1(E )|E=E j
) =

0, and then solve the associated linear eigenvalue problem.
Methods tailored to find all the roots of this problem were in-
troduced in Ref. [59] and in Eqs. (200) and (204) of Ref. [60].
Notwithstanding, from a numerical standpoint, having the two
approaches is beneficial in that solving (11) will be advan-
tageous over solving (20) when the number of levels Nλ far
exceeds the number of channels Nc and vice versa. Nonethe-
less, the multisheeted nature of the radioactive problem makes
it harder to solve, as one must search each sheet of mapping
(1) to find all the poles.

D. Xenon isotope 134Xe evidence of radioactive state parameters

In our previous article [22], we observed the first evidence
of shadow poles in the alternative parametrization of R-matrix
theory in xenon isotope 134Xe spin-parity group Jπ = 1/2(−),
showing how they depend on the choice of continuation
to complex wave numbers. We here document in Table I
the Siegert-Humblet radioactive state parameters (poles and
residues of the Kapur-Peierls RL operator) for these same
p-wave resonances of 134Xe spin-parity group Jπ = 1/2(−).
As shown in Fig. 1, both the radioactive state parameters
and the R-matrix parameters yield an identical Kapur-Peierls
RL(E ) operator, and therefore exactly reconstruct the scatter-
ing matrix U (E ) of the nuclear interactions, as reported in
Fig. 2. Note there are NL = 5 radioactive poles, as predicted
by (34) in Theorem 1: two for each resonance energy Eλ

level and �c for each Lc(ρc) channel. Indeed, we here have
only one threshold (at zero) so that NETc �=ETc′

= 1, and there
is only one channel, for which �c = 1 (p wave). As such,
we observe in Table I that for each resonance energy Eλ, there
are two nearby radioactive poles, each on one sheet of the
Riemann surface energy–wave-number mapping (1), and both
close to (but not exactly) complex conjugates of one another.
Also, the additional radioactive pole (the first in Table I) is
close to the corresponding pole of the reduced logarithmic
derivative of the outgoing operator Lc(ρc): For neutral particle
p waves, we have ω�=1

1 = −i (see Table I of Ref. [22]), which
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TABLE I. Radioactive state parameters [Siegert-Humblet poles and residue widths of the Kapur-
Peierls RL (E ) operator] of the two p-wave resonances of 134Xe, spin-parity group Jπ = 1/2(−),
converted from ENDF/B-VIII.0 evaluation (MLBW) to multipole representation using Reich-Moore
level matrix (8), that is, Definition (58) of Ref. [22].

Nuclear data

z = √
E with E in (eV)

A = 132.7600

ρ0 = Aac

√
2mn

h
A+1 in (

√
eV

−1
), so that ρ(z) � ρ0z

with
√

2mn
h = 0.002196807122623 in units [1/(10−14m

√
eV)]

R-matrix parameters

ac = 5.80 : channel radius (Fermis)
E1 = 2186.0 : first resonance energy (eV)
�1,n = 0.2600 : neutron width of first resonance
(not reduced width), i.e., �λ,c = 2Pc(Eλ)γ 2

λ,c

�1,γ = 0.0780 : eliminated capture width (eV)
E2 = 6315.0 : second resonance energy (eV)
�2,n = 0.4000 (eV)
�2,γ = 0.0780 (eV)
gJπ = 1/3 : spin statistical factor
Bc = −1

Radioactive state parameters (rounded to five digits)

Radioactive poles Radioactive residue Level-matrix residue
{E j, ±} from (20) widths r j from (25) widths aj from (22)
(eV), sheet of (1) (

√
eV) (dimensionless)

{−6.2694 × 10+5

−i1.0238 × 10−4, +
}

9.1193 × 10−8

−i1.4762 × 10+0

⎡⎢⎢⎣
2.7683 × 10−9

−i4.4744 × 10−2

1.5345 × 10−9

−i2.4964 × 10−2

⎤⎥⎥⎦
{

2.1838 × 10+3

+i9.0757 × 10−2, −
}

8.6799 × 10−4

−i2.5113 × 10+1

⎡⎢⎢⎣
4.444 × 10−5

−i9.995 × 10−1

−1.7608 × 10−5

−i2.9849 × 10−4

⎤⎥⎥⎦
{

2.1838 × 10+3

−i1.6868 × 10−1, +
}

8.6814 × 10−4

+i2.5113 × 10+1

⎡⎢⎢⎣
4.444 × 10−5

+i9.995 × 10−1

−1.7597 × 10−5

+i2.9849 × 10−4

⎤⎥⎥⎦
{

6.3130 × 10+3

+i1.6025 × 10−1, −
}

2.4919 × 10−3

−i1.4085 × 10+1

⎡⎢⎢⎣
8.5974 × 10−5

+i8.5696 × 10−4

2.3534 × 10−5

−i9.9984 × 10−1

⎤⎥⎥⎦
{

6.3130 × 10+3

−i2.3822 × 10−1, +
}

2.4916 × 10−3

+i1.4085 × 10+1

⎡⎢⎢⎣
8.5964 × 10−5

−i8.5697 × 10−4

2.3534 × 10−5

+i9.9984 × 10−1

⎤⎥⎥⎦

entails a radioactive pole close to ( i
ρ0

)
2 ≈ −6.0673 × 10+5.

Incidentally, note that if there were only one level Nλ = 1, but
two channels Nc = 2, both with the same angular momentum
(say, p waves) and the same ρc(E ) mapping, then we would
need to cap the multiplicity of the number of poles induced by
these identical Lc(ρc) to Nλ = 1, according to Eq. (35). This
is rare in practice.

The exact reconstruction of the scattering matrix U (E )
shown in Fig. 2 is made possible because 134Xe spin-parity

group Jπ = 1/2(−) has only a neutron channel with zero
threshold (ETc = 0). In the particular case of neutral parti-
cles with zero threshold, the outgoing wave-function reduced
logarithmic derivative operator L(ρ) is a rational function
in

√
E : This can be seen from Mittag-Leffler expansion (7)

with a finite amount of poles {ωn} (reported in Theorem 1 of
Sec. II.B and Table II of Ref. [22]). Therefore, the trans-
formation z �

√
E unfolds the Riemann surface of mapping

(1): Searching for solutions to the radioactive problem (11)
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Radioactive state
parameters

Radioactive state
parameters

Radioactive state
parameters

Radioactive state
parameters

FIG. 1. Kapur-Peierls RL (E ) operator (4) of 134Xe two p-wave
resonances in spin-parity group Jπ = 1/2(−). Dimensionless RL (E )
is computed using radioactive state parameters from Table I in
expression (40) or using the R-matrix parameters from Table I in
Reich-Moore level matrix (8)—that is, definition (58) of Ref. [22]—
yielding identical real and imaginary parts.

Radioactive state 
parameters

Radioactive decayRadioactive state 
parameters

Radioactive state 
parameters

Radioactive state 
parameters

FIG. 2. Scattering matrix U (E ) of 134Xe two p-wave resonances
in spin-parity group Jπ = 1/2(−), from Eq. (2). Dimensionless U (E )
is computed using outgoing waves O(E ) from Table I of Ref. [22]
and conjugacy relations (71), combined with radioactive state param-
eters from Table I in expression (40), or R-matrix parameters from
Table I in Reich-Moore level-matrix (8)—that is, definition (58) of
Ref. [22]—yielding identical moduli and arguments.
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in z space is equivalent to searching on both sheets of
the ±√

E Riemann surface from mapping (1). Moreover,
a study of the numerator and denominator of the inverse
level matrix A−1(z) from (8) then shows that the level ma-
trix A(z) is rational function of degree −2 in z space,
with NL poles from (34) with only one sheet (no other
thresholds than zero), so that its Mittag-Leffler expansion
(22) is actually a partial fraction decomposition in sim-
ple z poles, without constant or holomorphic parts (cf.
Sec. II.F of Ref. [36] for more in depth discussion of this
process):

A(E ) =
NL∑
j=1

a j aT
j

2
√

E j√
E − √E j

. (36)

Note that the nullity of the constant term entails the following
remarkable property:

NL∑
j=1

a jaT
j

2
√E j

= 0. (37)

Since from (25) we have r j = γTa j (assuming nondegener-
ate states), the latter properties on the level matrix can be
transcribed into the following exact pole expansion for the
Kapur-Peierls operator (4):

RL(E ) =
NL∑
j=1

r j rT
j

2
√

E j√
E − √E j

, (38)

which is equivalent to Eq. (106) of Ref. [36], and the null
constant relations (37) entails the remarkable property on the
radioactive state parameters (cf. Eq. (108) of Ref. [36]):

NL∑
j=1

r jrT
j

2
√E j

= 0. (39)

By setting a choice of sheet in z = ±√
E , the latter equations

can be written as

RL(E ) =
NL∑
j=1

r jrT
j

E − E j
+

NL∑
j=1

r j rT
j

2
√

E j√
E + √E j︸ ︷︷ ︸

HolRL (E )

, (40)

where −√E j is not a pole, and therefore the second term is
the exact holomorphic part HolRL (E ) from (10).

E. Comparing radioactive, traditional, and alternative
R-matrix parameters

This case of 134Xe shows the general merits of the radioac-
tive state parameters: In contrast with the R-matrix resonance
parameters, the radioactive poles E j are independent of both
the arbitrary boundary parameter Bc and the channel radius
ac, while the radioactive widths r j are independent of the
boundary parameters Bc and depend on the channel radius in
a systematic way (provided by Theorem 2 below). Moreover,
in this specific neutral particles with zero-threshold case, the
Kapur-Peierls RL(E ) operator pole expansions (38) and (40)

are exact (cf. Fig. 1) and therefore can fully reconstruct the
R-matrix model scattering matrix, as can be seen in Fig. 2.

Nonetheless, this example also shows the limitations of
the radioactive state parameters pole expansion approach (32)
of Theorem 1. Just as the alternative parameters of Brune in
Ref. [22], the radioactive state parameters entangle the energy
dimension with the wave-number one, meaning one now has
to specify with each radioactive pole E j its sheet (33) on the
Riemann surface of mapping (1), for each threshold branch,
as specified in Theorem 1. In contrast, though they depend
on the arbitrary boundary parameters Bc and channel radii
ac, the traditional Wigner-Eisenbud R-matrix parameters have
the truly remarkable (and seldom appreciated) property of de-
entangling the energy dimension from the wave-number one.
The Wigner-Eisenbud resonance parameters are real and well
defined in energy space, without any need to map to the wave
number and therefore specify where the resonance energies Eλ

dwell on the multisheeted Riemann surface of mapping (1).
Another significant limitation of the radioactive state pa-

rameters is that they are in general incomplete, meaning that
the knowledge of the radioactive poles and residues is not
sufficient to fully parametrize the RL(E ) Kapur-Peierls op-
erator: One also needs to parametrize the holomorphic part
HolRL (E ) in Mittag-Leffler expansion (32). In the general case
of charged particles or thresholds, there is no simple way
of parametrizing this holomorphic part [though it is known
exactly for zero-threshold neutral particles, as Eq. (40) spec-
ifies]. Moreover, even if the holomorphic part were known,
in the general case of charged particles and thresholds there is
an infinite number of radioactive poles (NL = ∞), all of which
are necessary to exactly reconstruct the scattering matrix. This
means the radioactive state parameters alone are not very
well suited for evaluations in standard nuclear data libraries.
Nonetheless, the radioactive poles have recently been used to
constitute an alternative nuclear data library—the windowed
multipole library—with the goal of achieving significant com-
putational performance gains in nuclear simulations, as we
explain in our followup article [36]: The final in the xenon
trilogy on pole parametrizations of R-matrix theory [22,36].

For comparison, the alternative parameters proposed by
Brune in Ref. [20] combine some merits and drawbacks of
both the radioactive and the traditional (Wigner-Eisenbud)
parameters. Like the radioactive state parameters, the alter-
native parameters are independent of the arbitrary boundary
condition Bc, though they still depend on arbitrary channel
radii ac. Like the Wigner-Eisenbud resonance parameters, the
alternative parameters are always complete: With the knowl-
edge of Nλ alternative poles, one can fully reconstruct the
scattering matrix (cf. Theorem 4 of Ref. [22]). On the other
hand, unlike the Wigner-Eisenbud resonance parameters, the
alternative parameters entangle the energy dimension with
the wave-number one: As for the radioactive poles, one must
specify on which sheet of the Riemann surface (1) are the
alternative poles (cf. Theorems 2 of Ref. [22]). However,
proper analytic continuation will unfold the sheets of Riemann
surface (1) and thus render such specification useless, as we
show in Theorem 3 of Ref. [22]—this is another strong argu-
ment in favor of analytic continuation of R-matrix operators,
in particular the shift Sc(ρc) and penetration Pc(ρc) functions
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(contrarily to “force closure” legacy of Lane and Thomas).
Moreover, in practice this is not as much of a limitation, as
we showed in Theorem 4 of Ref. [22] that we can always
choose the first Nλ resonant alternative poles of the physical
sheet {E ,+}. Nonetheless, all Reich-Moore and subthreshold
alternative parameters still change depending on whether the
shift Sc(E ) and penetration Pc(E ) functions are analytically
continued (Theorem 3 of Ref. [22]) or “force closed” as de-
fined by Lane and Thomas (Theorem 2 of Ref. [22]): We here
argue that the physically and mathematically correct way is to
perform analytic continuation of the shift Sc(ρc) and penetra-
tion Pc(ρc) functions, and provide many more arguments for
this in Sec. IV.

Note that a commonly alleged advantage of the alterna-
tive poles Ẽλ is that they correspond to the peak of the
resonances—actually of the Kapur-Peierls operator RL(E )
since the cross section has an additional 1

|kc (E )|2 modulating
term (see Ref. [36] for more discussion on this). Though this
is true in the case of full R-matrix equations (where the res-
onance energies are real) for resonant poles above threshold
(not the shadow poles discovered in Ref. [22]), this ceases
to be true for channel-eliminated Reich-Moore evaluations
(where the resonance energies are in effect complex Eλ − i �λ,γ

2
as explained in Sec. II.A.4 of Ref. [36]). Indeed, the alterna-
tive poles Ẽλ are then complex (cf. Sec. IV.A of Ref. [22]),
and neither analytic continuation nor Lane and Thomas force
closure will entail their real parts exactly correspond to the
Kapur-Peierls operator RL(E ) resonance peaks. The exact
peaks of the RL(E ) resonances are actually the real parts of
the radioactive poles Re[E j], and the widths are the imaginary
parts Im[E j], which we here document in Table I and show
in Fig. 1 for the two p-wave resonances of 134Xe spin-parity
group Jπ = 1/2(−). In practice, though, the real part of the
alternative poles Re[Ẽλ] are close (but not identical) to the
real part of the radioactive poles Re[E j] (one needs to go to
more digits to see the discrepancy between values of Table VI
in Ref. [22] to our Table I here), and as such are much closer
to the peak of the resonances than are the Wigner-Eisenbud
resonance energies Eλ.

Another important characteristic of the radioactive state
parameters is that they are the bridge between the R-matrix
theory parametrizations of nuclear reactions, and the scatter-
ing matrix pole expansions of Humblet and Rosenfeld, as we
now explain in Sec. II F.

F. Radioactive state parameters link R-matrix theory
to the scattering matrix pole expansions

So far, we have started from the R-matrix Wigner-Eisenbud
parameters {Eλ, γλ,c} to construct the poles and residues of the
Kapur-Peierls operator RL, through (11) and (14). We here
show that these Siegert-Humblet radioactive state parameters
are the link between R-matrix theory (cf. Refs. [2,17,18]) and
the scattering matrix pole expansions of Humblet-Rosenfeld
and others (cf. Refs. [23–25,28–35]).

Indeed, plugging in the Kapur-Peierls RL operator expan-
sion (10) into the expression of the scattering matrix (2) then

yields the Mittag-Leffler expansion of the scattering matrix:

U (E ) =
W (E )

w
∑
j�1

ujuT
j

E − E j
+ HolU (E ), (41)

where w � 2iI is the Wronskian (3), and the scattering
residue widths uj are defined as

uj � [ρ1/2O−1]E=E j r j . (42)

In writing (41), we have used the fact that all the resonances
of the scattering matrix U (E ) come from the Kapur-Peierls
radioactive poles {E j}—indeed, we demonstrate in Theorem
3, Sec. IV D, that the poles {ωn} of the outgoing wave function
O(E ) cancel out in Eq. (2) and are thus not present in the
scattering matrix. Cauchy’s residues theorem then allows us
to evaluate the residues at the pole value to obtain Eq. (42).
As for (10), if a resonance were to be degenerate with multi-
plicity Mj , the residues would no longer be rank 1, but instead
the scattering matrix residue associated to pole E j would be∑Mj

m=1 um
j um

j
T, with um

j � [ρ1/2O−1]E=E j
rm

j .
Expression (41) exhibits the advantage that the energy

dependence of the scattering matrix U (E ) is untangled in
a simple sum. All the resonance behavior stems from the
complex poles and residue widths {E j, u j,c}, which yield the
familiar Breit-Wigner profiles (Cauchy-Lorentz distributions)
for the cross section. Conversely, all the threshold behavior
and the background are described by the holomorphic part
HolU (E ), which can be expanded in various forms, for in-
stance, analytically (43).

This establishes the important bridge between the R-matrix
parametrizations and the Humblet-Rosenfeld expansions of
the scattering matrix. More precisely, Mittag-Leffler expan-
sion (41) is identical to the Humblet-Rosenfeld expansions
(10.22a) and (10.22b) in Ref. [28] for the neutral particle case
and (5.4a) and (5.4b) in Ref. [31] for the Coulomb case. We
thus here directly connect the R-matrix parameters with the
Humblet-Rosenfeld resonances, parametrized by their partial
widths and real and imaginary poles, as described in Ref. [30].
In particular, the poles {E j} from (12), found by solving
(11), are exactly the ones defined by Eqs. (9.5) and (9.8)
in Ref. [28]. The scattering residue widths {u j,c}, calculated
from (42), then correspond to the Humblet-Rosenfeld com-
plex residues (10.12) in Ref. [28], from which they build
their quantities {Gc,n} appearing in expansions (10.22a) and
(10.22b) in Ref. [28] and (5.4a) and (5.4b) in Ref. [31].
Finally, the holomorphic part HolU (E ) corresponds to the reg-
ular function Qc,c′ (E ) defined between (10.14a) and (10.14b)
in Ref. [28].

Just as Humblet and Rosenfeld did with Qc,c′ (E ) in Sec.
10.2 of Ref. [28] and Sec. 4 of Ref. [31], we do not give here
an explicit way of calculating this holomorphic contribution
HolU (E ) other than stating that it is possible to expand it
in various ways. Far from a threshold, an analytic series in
energy space E can stand:

HolU (E ) =
W (E )

∑
n�0

snEn. (43)
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In the immediate vicinity of a threshold, the asymptotic
threshold behavior will prevail (for massive particles, Uc,c′ ∼
k�c+1

c k�c′
c′ , cf. Eq. (10.5) in Ref. [28] and Ref. [61]), yielding an

expansion in wave-number space of the form

HolU (E ) =
W (ETc )

∑
n�0

snkn
c (E ). (44)

Though there is no explicit way of linking these expansions
(44) or (43) to the R-matrix Wigner-Eisenbud parameters
{Eλ, γλ,c}, this means that the same approach as that discussed
in the paragraph following Theorem 1 can be taken: One
can provide a local set of coefficients {sn}W (E ) to expand
the holomorphic part of the scattering matrix HolU (E ), and
then calculate the scattering matrix from the Mittag-Leffler
expansion (41). This is at the core of the windowed multi-
pole representation of R-matrix cross sections established in
Ref. [36].

An important question is that of the radius of conver-
gence of the Mittag-Leffler expansion (41): In other terms,
how big can the vicinity W (E ) be? Humblet and Rosenfeld
analyze this problem in Sec. 1.4 of Ref. [28] and perform
the Mittag-Leffler expansion (1.50). In the first paragraph on
p. 538, they state that Humblet demonstrated in his Ph.D.
thesis that the Mittag-Leffler series will converge for M � 1
for U (k), though this does not investigate the multichannel
case and thus the multisheeted nature of the Riemann surface
stemming from mapping (1). They assume at the beginning of
Sec. 10.2 that this property stands in the multichannel case
and yet continue their discussion with a choice of M = 0
that would leave the residues diverging according to their
expansion (1.50). This is one reason why we chose in this
article to start from a local Mittag-Leffler expansion and then
search for its domain of convergence. General mathemati-
cal scattering theory shows that the Mittag-Leffler expansion
holds at least on the whole physical sheet (cf. Theorem 0.2 on
p. 139 of Ref. [24]). Moreover, in Ref. [62], Eden proves that
between the threshold values the scattering matrix elements
are analytic functions of the energies and momenta of the
incident particles’, though does not specify in which form
the Mittag-Leffler expansion will converge separately on each
sheet. In practice, this requirement is not needed since it is
often computationally more advantageous to break down an
energy region between two consecutive thresholds [ETc , ETc+1 ]
into smaller vicinities (a compression method for efficient
computation used in the windowed multipole library [36]).

As we see, by performing the Mittag-Leffler expansion
(41), we have traded a finite set of real, unwound, Wigner-
Eisenbud parameters {Eλ, γλ,c} that completely parametrize
the energy dependence of the scattering matrix through (2),
with an infinite set of complex Siegert-Humblet radioac-
tive state parameters {E j, r j,c} plus some local coefficients
{sn}W (E ) for the holomorphic part, all intricately intertwined
through radioactive problem (11), which makes them dwell on
a submanifold of the multisheeted Riemann surface of map-
ping (1). This additional complexity of the Siegert-Humblet
parameters comes at the gain of a simple parametrization of
the energy dependence for the scattering matrix: the pole and
residue expansion (41). For computational purposes, this may

sometimes be a trade-off worth doing: This is the basis for the
windowed multipole representation of R-matrix cross sections
[36].

III. RADIOACTIVE STATE PARAMETERS INVARIANCE
TO CHANNEL RADII

Section II provided new insights into the link between
the Humblet-Rosenfeld scattering matrix pole expansions and
both the Wigner-Eisenbud and Siegert-Humblet parametriza-
tions of R-matrix theory. Concerning invariance to arbitrary
parameters, we saw that the Siegert-Humblet parameters are
invariant under change of boundary condition Bc, but not
under change of channel radius ac—this is also true for the
alternative parameters discussed in Ref. [22]. This section
is dedicated to invariance properties of the Siegert-Humblet
radioactive state parameters to a change in channel radius ac.
This problem is less studied than that of the invariance to the
boundary conditions Bc. To the best of our knowledge, the
only previous results on this topic are the partial differen-
tial equations on the Wigner-Eisenbud {Eλ, γλ,c} parameters
Teichmann derived in his Ph.D. thesis (cf. Eqs. (2.29) and
(2.31) in Sec. III.2, p. 27, of Ref. [63]), a recent study of the
limit case ac → 0 in Ref. [64], as well as the general results
of the variations of the R matrix to any arbitrary parameter
by Mockel and Perez (cf. Eqs. (71) and (75) [65]). We here
focus on the Siegert-Humblet parameters {E j, r j,c}. Our main
result of this section resides in Theorem 2, which establishes
a way of converting the Siegert-Humblet radioactive state
parameters under a change of channel radius ac.

Theorem 2. RADIOACTIVE STATE PARAMETERS TRANSFOR-
MATION UNDER CHANGE OF CHANNEL RADIUS ac.

Let the radioactive poles {E j} be the solutions of the ra-
dioactive problem (11). Under a change of channel radius
a(0)

c → ac (or infinitesimal ∂·
∂ac

) the following hold:

(1) The Kapur-Peierls operator RL, defined in Eq. (4), is
subject to the following partial differential equations:
for the diagonal elements,

ac
∂RLcc

∂ac
+ (1 − 2Lc)RLcc − 1 = 0, (45)

and for off-diagonal ones,

ac
∂RLcc′

∂ac
+
(

1

2
− Lc

)
RLcc′ = 0. (46)

(2) The radioactive poles {E j} are invariant:

∂E j

∂ac
= 0. (47)

(3) The radioactive widths {r j,c} [widths of the Kapur-
Peierls RL operator residues (13)] are subject to the
following first-order linear partial differential equa-
tion:

ac
∂r j,c

∂ac
+
(

1

2
− Lc

)
r j,c = 0, (48)
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(4) which can be formally solved as

r j,c(ac) = r j,c
(
a(0)

c

)√a(0)
c

ac
exp

(∫ ac

a(0)
c

Lc(kcx)

x
dx

)
(49)

(5) and explicitly integrates to

r j,c(ac)

r j,c
(
a(0)

c
) = Oc(ρc(ac))

Oc
(
ρc
(
a(0)

c
))
√

a(0)
c

ac
. (50)

(6) Moreover, letting {ωn} be the roots of the outgoing

wave function {ωn | Oc(ωn) = 0}, the latter (50) can
take the following elemental product expansion:

r j,c(ac)

r j,c
(
a(0)

c
) =

√
a(0)

c

ac

(
a(0)

c

ac

)�

eikc (ac−a(0)
c )

×
∏
n�1

(
kcac − ωn

kca(0)
c − ωn

)
, (51)

where there are an infinite number of such roots {ωn} in
the Coulomb case, while for neutral particle channel c
with angular momentum �, there exists exactly � roots
{ωn}n∈�1,��, the exact and algebraically solvable values
of which are reported, up to angular momentum � = 4,
in Table II of Ref. [22].

Proof. We start by bringing forth the observation that the
scattering matrix U is invariant under change of channel ra-
dius ac; i.e., for any channel c we have

∂U
∂ac

= 0. (52)

Since Theorem 3 will show that the poles of the scattering
matrix are exactly the ones of the Kapur-Peierls operator RL,
which are the Siegert-Humblet poles {E j}, invariance (52)
entails that the radioactive poles are invariant under change
of channel radius ac, i.e., (47).

This is not the case for the radioactive widths {r j,c}. How-
ever, one can use invariance (52) to differentiate the scattering
matrix U expression (2). The L operator definition (6) and
ρc = kcac entail

∂ρ1/2
c O−1

c

∂ac
= 1

ac
ρ1/2

c O−1
c

[
1

2
− Lc

]
; (53)

this enables us to establish the partial differential equations
(45) and (46) on the Kapur-Peierls matrix operator RL ele-
ments, which can be synthesized into expression

a
∂RL

∂a
+
(

1

2
I − L

)
RL + I ◦

[(
1

2
I − L

)
RL − I

]
= 0,

(54)

where ◦ designates the Hadamard matrix product, and where
we used the notation[

∂RL

∂a

]
cc′

� ∂RLcc′

∂ac
. (55)

Equivalently, inverting the Kapur-Peierls operator in differen-
tial equation (55) yields the following Riccati equation:

a
∂R−1

L

∂a
− R−1

L

(
1

2
I−L

)
− I ◦

[
R−1

L

(
1

2
I − L

)
−R−2

L

]
= 0.

(56)

These first-order partial differential equations on the Kapur-
Peierls operator RL are equivalent to relations (71) and (75)
Mockel and Perez established for the R matrix in Ref. [65].
They are quite inconvenient to solve in that they are channel
dependent and thus give rise to equations for each cross term.
Remarkably, this is not the case for the radioactive residues.

Having demonstrated the radioactive poles invariance (47),
Mittag-Leffler expansion (41) entails that uj from (42) sat-
isfies invariance: ∂u j

∂ac
= 0. Applying result (53) to the latter

then yields partial differential equation (48), the direct integra-
tion of which readily yields (49). Since Lc(ρc) � ρc

Oc (ρc )
∂Oc (ρc )

∂ρc
,

(49) integrates explicitly to (50). This result also stands for
any degenerate state of multiplicity Mj , where for each ra-
dioactive width rm

j we have

rm
j,c(ac)

rm
j,c

(
a(0)

c
) = Oc(ρc(ac))

Oc
(
ρc
(
a(0)

c
))
√

a(0)
c

ac
. (57)

Finally, the proof of (51) is the element-wise integration
of (49) using the Mittag-Leffler pole expansion (7) of Lc(ρ),
which we established in Theorem 1 of Ref. [22]—invoking
Fubini’s theorem to permute sum and integral. In the case
of neutral particles, there is a finite number of roots {ωn}
so that the product in Eq. (51) is finite. Note that in the
charged-particle case, there is an infinite number (countable)
of roots {ωn}, and the Weierstrass factorization theorem would
thus usually require (51) to be cast in a Hadamard canonical
representation with Weierstrass elementary factors. However,
in Eq. (51), the product elements tend toward unity as n goes
to infinity ( kcac−ωn

kca(0)
c −ωn

) −→
n→∞ 1, so that the infinite product in

Eq. (51) should still converge. �
Note that for neutral particles (massive or massless) s

waves (� = 0), the outgoing wave function is Oc(ρ(ac)) =
eikcac (cf. Table I of Ref. [22]), so that (50) yields r j,c(ac) =
r j,c(a(0)

c )
√

a(0)
c
ac

eikc (ac−a(0)
c ). Alternatively, directly integrating

(49) with the outgoing-wave reduced logarithmic derivative
expression Lc(ρ(ac)) = ikcac yields the same result. Thus, for
s-wave neutral channels subject to a change of channel radius,
the modulus of the radioactive widths decreases proportion-
ally to the inverse square root of the channel radius ac, at least
for real wave numbers kc ∈ R, i.e., real energies above the
channel threshold. Since the transition probability rates partial
widths can be defined as the square of the modulus of the
radioactive width (cf. Eq. (6) in Ref. [57]), this means these
transition partial widths decrease inversely to the channel

radius: | r j,c (ac )

r j,c (a(0)
c )

|2 = a(0)
c
ac

.

A striking property of the R-matrix parametrizations is
that they separate the channel contribution to each resonance,
meaning that to compute, for instance, the Rc,c′ element in
Eq. (5), one only requires the widths for each level of each
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channel, γλ,c, and not some new parameter for each specific
channel pair c, c′ combination. In this spirit, we show in
Theorem 2 that the Siegert-Humblet radioactive widths r j,c

play a similar role in that their transformation under a change
of channel radius only depends on that given channel.

Theorem 2 makes explicit the behavior of the radioactive
widths {r j,c} under a change of channel radius ac. Strikingly,
only the Kapur-Peierls matrix RL appears in this change of
variable. This means that the R-matrix R and the L0 matrix
function suffice to both compute the Siegert-Humblet param-
eters {E j, r j,c} from (11) and to change the radioactive widths
{r j,c} under a change of channel radius ac. This result portrays
the Siegert-Humblet parameters as allowing a simple energy
dependence to the scattering matrix (41)—albeit locally and
needing the expansion coefficients (43)—all the while being
boundary condition Bc independent and easy to transform
under a change of channel radius ac.

IV. SCATTERING MATRIX CONTINUATION
TO COMPLEX ENERGIES

In Sec. 5.2 of Ref. [28], Humblet and Rosenfeld continue
the scattering matrix to complex wave numbers kc ∈ C and
define corresponding open and closed channels. However,
they never point to the conundrum that this entails: In their
approach, the scattering matrix seemingly does not annul it-
self below threshold. This is contrary to the approach taken by
Lane and Thomas, where they explicitly annul the elements
of the scattering matrix below thresholds, as stated in the
paragraph between Eqs. (2.1) and (2.2) of Sec. VII.1, p. 289,
in Ref. [2]. Bloch ingeniously circumvents the problem by
explicitly stating after Eq. (50) in Ref. [18] that the scatter-
ing matrix is a matrix of the open channels only, meaning
its dimensions change as more channels open when energy
E increases past new thresholds E > ETc . In his approach,
subthreshold elements of the scattering matrix need not be
annulled; one simply does not consider them.

We dedicate this section to this question of how to extend
the scattering matrix to complex wave numbers kc ∈ C, while
closing the channels below threshold. We argue that analytic
continuation of R-matrix operators (Lemma 2 in Sec. III.B
of Ref. [22]) is the physically correct way of constructing
the scattering matrix for complex wave numbers. To support
this, we advance and demonstrate three arguments: Analytic
continuation cancels out spurious poles otherwise introduced
by the outgoing wave functions Oc (Theorem 3); analytic con-
tinuation respects generalized unitarity (Theorem 4); and, for
massive particles (not photons), analytic continuation of real
wave-number expressions to subthreshold energies naturally
sees the transmission matrix evanesce on the physical sheet
(Theorem 5), while always closing the channels by annulling
the cross section (Theorem 6).

A. Forcing subthreshold elements to zero:
The legacy of Lane and Thomas

To close the channels for real energies below threshold, the
simplest approach is the one proposed by Lane and Thomas in
Ref. [2]. The scattering matrix expressions (2) can be rewrit-
ten, for real energies above threshold, according to Sec. VII.1

Eq. (1.6b) in Ref. [2]:

U = �(I + wP1/2RLP
1/2)� (58)

with Wronskian w from (3) and the values defined for energies
above the thresholds in Sec. III.3.a, p. 271, of Ref. [2]:

� � O−1I,

P � ρO−1I−1. (59)

Let us note that the Mittag-Leffler expansion (10) of the
Kapur-Peierls matrix RL operator can still be performed.

The Lane and Thomas subthreshold channel force-closure
approach exploits the ambiguity in the definition of the shift
S(E ) and penetration P(E ) factors,

L = S + iP, (60)

for complex energies E ∈ C, as discussed in Sec. III.B of
Ref. [22] (of which we follow the notation). Lane and Thomas
choose the branch-point definitions for the shift S and pene-
tration P functions, made explicit in Lemma 1, Sec. III.B, of
Ref. [22]. Lane and Thomas do not specify how they would
continue the quantities (59) for negative energies, as they state
“we need not be concerned with stating similar relations for
the negative energy channels” [cf. paragraph after Eq. (4.7c),
p. 271], but they do specify that P = 0 below threshold ener-
gies and P = P above. This means that plugging in P in place
of P in Eq. (59) has the convenient property of automatically
closing the reaction channels below threshold, since in that
case Uc,c′ = 
c
c′ , which annuls the off-diagonal terms of the
cross section (the reaction channels c �= c′) when plugged into
Eq. (1.10) in Ref. [2] VIII.1, p. 291. Note that this approach
only annuls the off-diagonal terms of the scattering cross sec-
tion, leaving nonzero cross sections for the diagonal σcc(E ),
even below threshold. Indeed, Eq. (4.5a) in Sec. III.4.a,
p. 271, of Ref. [2] gives 
c = ei(ωc−φc ), while the cross section
is begotten by the amplitudes of the transmission matrix T (E ),
defined as Tcc′ � δcc′e2iωc − Ucc′ in (2.3), Sec. VIII.2, p. 292.
For subthreshold real energies, the diagonal term of the trans-
mission matrix is thus equal to Tcc = e2iωc (1 − e−2iφc ). This
means that in the Lane and Thomas approach, all channels
c′ �= c are force closed to zero below the incoming channel
threshold E < ETc , except for the c → c reaction, which is
tactfully overlooked as nonphysical.

Of course, this approach comes at the cost of sacrificing
the analytic properties of the scattering matrix U : Since Pc =
Im[Lc], the penetration factor is no longer meromorphic and
thus neither is U . This entails that in decomposition (58) of
the scattering matrix, if one “force closes” the channels using
the branch-point definition of Lane and Thomas—instead of
analytically continuing both P and � to complex wave num-
bers ρ ∈ C—the scattering matrix U (E ) cannot have poles,
as there is then no mathematical meaning to such notion. This
goes directly against a vast amount of literature on the analytic
properties of the scattering matrix [23,24,28–35,37,43,66,67].
This is the approach presently taken by the SAMMY code at
Oak Ridge National Laboratory [40] and upon which rest
numerous ENDF evaluations [9].

We would like to note that this might not actually have
been the approach intended by Lane and Thomas in Ref. [2].
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Indeed, Lane and Thomas never specify how to prolong the P
to subthreshold energies, and in Eq. (58) it is P that is present
and not P. They do, however, note in the paragraph between
Eqs. (2.1) and (2.2) of Sec. VII.1, p. 289, that “as there are
no physical situations in which the I−

c occur, the components
of the [scattering matrix] are not physically significant and
one might as well set them equal to zero as can be seen
from (1.6b). This may be accomplished without affecting
the [positive energy channels] by setting the negative energy
components of the Wronskian matrix to zero; w−

c = 0. (This
means that the O−

c and I−
c are not linearly independent.)”

The choice of wording is here important. Indeed, it says that
it is possible to set the Wronskian to zero to close channels
below the threshold, though it is not necessary. This is yet
another way of closing subthreshold channels that would
keep the analytic properties of the scattering matrix, with
P � ρO−1I−1 still analytically continued, albeit at the cost
of not knowing when in the complex plane the Wronskian
wc should be set to zero—perhaps only on R−, which would
then become a branch line.

We show in Theorem 3 (Sec. IV D) that as long as
the Wronskian relation (3) is guaranteed, the poles of the
outgoing scattering wave function Oc cancel out of the scat-
tering expressions (2) and (58). The Wronskian condition
(3) is conserved when keeping P from (59) analytically
continued—instead of the definition Pc � Im[Lc], which can-
not respect the Wronskian relation (3)—so that this approach
of setting the Wronskian to zero below threshold while an-
alytically continuing the penetration and shift factors would
indeed cancel out the spurious poles of the outgoing wave
functions Oc.

B. Analytic continuation of the scattering matrix

In opposition to the Lane and Thomas approach, an entire
field of physics and mathematics has studied the analytic con-
tinuation of the scattering matrix to complex wave numbers
kc ∈ C [23–35].

As we saw, there is no ambiguity as to how to continue the
L(ρ) matrix function to complex wave numbers (cf. Theorem
1 in Sec. II.B of Ref. [22]), and thus the RL Kapur-Peierls
operator (4). Indeed, the incoming Ic(ρc) and outgoing Oc(ρc)
wave functions can be analytically continued to complex wave
numbers kc ∈ C (cf. Theorem 1 in Sec. II.B of Ref. [22]), and
through the multisheeted mapping (1) to complex energies
E ∈ C. This naturally yields the meromorphic continuation
of the scattering matrix to complex energies (41). Since
many evaluations are performed using decomposition (58), in
practice performing analytic continuation of R-matrix opera-
tors thus means continuing (59) operators � and P, setting
P � P, and defining the shift Sc(ρc) and penetration Pc(ρc)
functions as analytically continued complex meromorphic
functions (that is definition (44) and Lemma 2 of Ref. [22]
as opposed to the Lane and Thomas “force closure” definition
(41) and Lemma 1 of Ref. [22]).

The shortcoming of this analytic continuation approach is
that it does not evidently annul the channel elements of the
scattering matrix for subthreshold energies E < ETc . Indeed,
analytic continuation (41) means the scattering matrix U is
a meromorphic operator from C to C on the multisheeted

Riemann surface of mapping (1). Unicity of the analytic con-
tinuation then means that if the scattering matrix elements are
zero below their threshold, Uc,c′ (E ) = 0 , ∀E − ETc ∈ R−,
then it is identically zero for all energies on that sheet of the
manifold: Uc,c′ (E ) = 0 , ∀E ∈ C. Thus, the analytic contin-
uation formalism cannot set elements of the scattering matrix
to be identically zero below thresholds {ETc}.

This apparent inability to close channels below thresholds
is the principal reason why the nuclear data community has
stuck to the legacy approach of Lane and Thomas (Lemma
1 in Sec. III.B of Ref. [22]), when computing the scattering
matrix in Eq. (2). This has been the subject of an ongoing
controversy in the field on how to continue the scattering
matrix to complex wave numbers.

C. Assuming semisimple poles in R-matrix theory

Before advancing our analytic continuation arguments
of channel closure (Sec. IV F) and generalized unitarity
(Sec. IV E), let us first start with a general note on high-
order poles in R-matrix theory (see the consequences for
analytic continuation in Sec. IV D). Being a high-order pole,
as opposed to a simple pole, can bear various meanings. In
our context, the three following definitions are of interest:
(a) Laurent order, the order of the polar expansion in the
Laurent development in the vicinity of a pole; (b) algebraic
multiplicity, the multiplicity of the root of the resolvant at a
pole value; and (c) geometric multiplicity, the dimension of
the associated null space.

From Eq. (9) and throughout the article, we have treated
the case of degenerate states where the geometric multiplicity
Mj > 1 was higher than one, leading to rank-Mj residues. We
have, however, always assumed the Laurent order to be one: In
Eq. (9), the residues might be rank Mj , but the Laurent order
is still unity (no 1

(E−E j )2 or higher Laurent orders).
In the general case, the Laurent order is greater than one

but it does not equal geometric or algebraic multiplicity. In
terms of Jordan normal form, if the Jordan cells had sizes
n1, ..., nmg , then the geometric multiplicity is equal to mg, the
algebraic multiplicity ma is the sum ma = n1 + · · · + nmg , and
the Laurent order is the maximum max{n1, ..., nm}.

Alternatively, these can be defined as follows: Let M(z)
be a complex-symmetric meromorphic matrix operator, with a
root at z = z0 (i.e., M(z0) is noninvertible). The algebraic mul-
tiplicity ma is the first nonzero derivative of the determinant,

i.e., the first integer ma ∈ N such that dma

dzma det(M(z))|
z=z0

�=
0; alternatively, using Cauchy’s theorem, the first integer
ma such that

∮
Cz0

M(z)
(z−z0 )ma dz = 0. The geometric multiplicity

mg is the dimension of the kernel (null space), i.e., mg =
dim(Ker(M(z0))). In general, the algebraic multiplicity is
greater than the geometric one: ma � mg.

M(z0) is said to be semisimple if its geometric and alge-
braic multiplicities are equal, i.e., ma = mg (cf. Theorem 2,
p. 120, in Ref. [68]). Semisimplicity can be established using
the following result: M(z0) is semisimple if and only if for
each nonzero v ∈ Ker(M(z0)), there exists w ∈ Ker(M(z0))
such that

vT

(
dM
dz

∣∣∣∣
z=z0

)
w �= 0. (61)
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If an operator M(z0) is semisimple at a root z0, then z0 is a
pole of Laurent order 1 for the inverse operator M−1(z) ∼

W (z0 )

M̃
z−z0

. For Hermitian operators, the semisimplicity property
is guaranteed. However, resonances seldom correspond to
Hermitian operators. In our case, the resonances correspond
to the poles of the scattering matrix U (E ), which is not self-
adjoint but complex symmetric UT = U (cf. Eq. (2.15), Sec.
VI.2.c, p. 287, in Ref. [2]). For complex-symmetric operators,
semisimplicity is not guaranteed in general, even when dis-
carding the complex case of quasinull vectors.

In the case of R-matrix theory, we were able to find cases
where the geometric multiplicity of the scattering matrix does
not match the algebraic one, thus R-matrix theory does not
always yield semisimple scattering matrices, and the Laurent
development orders of the resonance poles can be higher. For
instance, we can devise examples of nonsemisimple inverse
level matrices from definition (8) by choosing resonance pa-
rameters such that the algebraic multiplicity is strictly greater
than the geometric one.

However, one can also observe in these simple cases that
the space of parameters for which semisimplicity is broken is
a hyperplane of the space of R-matrix parameters. This gives
credit to the traditional physics arguments that the probability
of this occurring is quasinull: R-matrix theory can yield scat-
tering matrices with Laurent orders higher than one, but this is
extremely unlikely; a mathematical approach of generic sim-
plicity of resonances can be found in Chap. 4 of Ref. [23], in
particular, Theorems 4.4, 4.5, 4.7, and 4.39. In other terms, we
assume semisimplicity is almost always guaranteed through
R-matrix parametrizations.

Henceforth, we use this argument to continue assuming the
Kapur-Peierls matrix RL is usually semisimple, and thus the
Laurent order of the radioactive poles {E j} in Eq. (9) is, in
practice, one.

Let us be aware that in general scattering theory, the scat-
tering operator may exhibit high-order poles [23,24,69], and
efforts are being made to have these “exceptional points” of
second order arise in the specific case of nuclear interactions
[70,71]. The traditional R-matrix assumption where the poles
of the scattering matrix are almost always of Laurent order 1
is unable to describe these physical phenomena.

D. Scattering matrix poles are the Siegert-Humblet
radioactive poles

This section is dedicated to a remarkable property of
the Siegert-Humblet radioactive poles {E j}: In R-matrix the-
ory, these are exactly the poles of the scattering matrix
(Theorem 3).

Theorem 3. SCATTERING MATRIX POLES ARE THE SIEGERT-
HUMBLET RADIOACTIVE POLES.

In R-matrix theory, when the R-matrix operators (Kapur-
Peierls RL and incoming and outgoing wave functions I and
O) are analytically continued to complex energies E ∈ C
such as with respect to the Wronskian condition (3), then
the poles of the scattering matrix U are exactly the poles
of the Kapur-Peierls operator RL, i.e., the Siegert-Humblet

radioactive poles {E j} from (11) and (12). These poles are
almost always of Laurent order 1.

Section IV C gives the reasons to assume that the poles of
the Kapur-Peierls matrix RL are simple (i.e., Laurent order
1). For the rest of this theorem, we here give two proofs: a
first proof by reductio ad absurdum and a second constructive
proof.

Proof. Reductio ad absurdum. Since the radioactive poles
E j are not poles of the outgoing wave function, i.e.,
O−1ρ1/2(E j ) �= 0, expression (2) implies that all the poles E j

of the Kapur-Peierls RL(E ) operator are poles of the scattering
matrix U (E ). As first sight, expression (2) would suggest
the roots {ωn} of the outgoing wave functions (i.e., all such
that there exists a channel c for which Oc(ωn) = 0) are also
poles of the scattering matrix. However, when performing
analytic continuation of R-matrix operators while conserving
the Wronskian condition (3), expression (2) is equivalent to
Eq. (1.5) of Sec. VII.1 of Ref. [2], for which it is evident
that the roots {ωn} of the outgoing wave function Oc(ρc) are
not poles of the scattering matrix U [that is because in both
the Coulomb and the neutral-particle case the outgoing wave
functions Oc(ρc) are confluent hypergeometric functions with
simple roots {ωn} entailing that O(1)

c (ωn) �= 0]. Hence, the
poles of the scattering matrix U (E ) must be exactly all the
radioactive poles E j . �

Though this latter proof is correct, it does not explain
how the roots {ωn} of the outgoing wave function Oc(ρc)
cancel out of the scattering matrix in expression (2). It is
important to understand this because expression (2) defines
the potential cross section in standard nuclear data libraries,
which taken as is should thus count the {ωn} as poles. We use
this explicit cancellation of these spurious poles at the residue
level to establish the windowed multipole representation in
our followup article [36]. Moreover, if one uses the Lane and
Thomas “force closure” definitions, then expression (2) and
Eq. (1.5) of Sec. VII.1 of Ref. [2] are no longer equivalent
in the complex plane. In this case, not only is the scattering
matrix U (E ) no longer meromorphic, but it also diverges at
the {ωn} outgoing wave-function roots. Also, a constructive
proof requires a closer look at the behavior of specific poles
and residues and gives us an opportunity to explain in de-
tail different nontrivial assumptions usually made in nuclear
physics about radioactive states and other states’ degeneracy.
For all these reasons, we believe it of interest to here provide
a second, constructive proof of Theorem 3. It rests on the
following Lemma 1.

Lemma 1. DIAGONAL SEMISIMPLICITY. If a diagonal matrix
D−1(z) is composed of elements with simple roots {ωn}, then
its inverse is semisimple, i.e., when a pole ωn of a diagonal
matrix D(z) has an algebraic multiplicity Mn > 1 the Laurent
development order of the pole remains 1 while the associated
residue matrix is of rank Mn and can be expressed as

D(z) =
W (z=ωn )

D0 + Dn

z − ωn
,

Dn �
Mn∑

m=1

vnv
T
n

vT
n D−1

0
(1)

vn

. (62)
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Proof. Without loss of generality, a change of
variables can be performed so as to set ωn = 0.
Let D(z) = diag(d1(z), d2(z), . . . , d1(z), d j (z), dn(z))
be a diagonal meromorphic complex-valued op-
erator, which admits a pole at z = 0. D−1(z) =
diag(d−1

1 (z), d−1
2 (z), . . . , d−1

1 (z), d−1
j (z), d−1

n (z)) is well

known, and det(D−1)(z = 0) = d−1
1 (z)2 ∏

j �=1 d−1
j (z). Let

us assume only d−1
1 (z = 0) = 0, with a simple root, so

that d1(z) =
W (z=0)

d01 + R1
z . Then det(D−1(z))(z = 0) =

d−1
1 (z)2 ∏

j �=1 d−1
j (z) has a double root: The algebraic

multiplicity is thus 2. However, it is immediate to notice that

D(z) = diag(d1(z), d2(z), . . . , d1(z), d j (z), dn(z))

=
W (z=0)

diag(d01, d2(z), . . . , d01(z), d j (z), dn(z))

+ 1

z
diag(R1, 0, . . . , R1, 0, 0).

This means the Laurent development order remains 1, albeit
the algebraic multiplicity of the pole is 2 (or higher Mn).
It can thus be written that D(z) =

W (z=0)
D0 + D1

z . When solv-

ing for the nonlinear eigenproblem D−1(z)v = 0, the kernel
is no longer an eigenline, but instead spans (v1, v2), i.e.,
Ker(D−1

0) = Span(v1, v2), with v1 = a1[1, 0, . . . , 0, 0, 0]T

and v2 = a2[0, 0, . . . , 1, 0, 0]T. Then, following Gohberg-
Sigal’s theory [49], the fundamental property

D−1D = I

and the Laurent development around the pole

D−1(z) =
W (z=0)

D−1
0 + zD−1

0
(1) + O(z2)

yield the relations

D−1
0 D0 + D−1

0
(1)

D1 = I,

D−1
0 D1 = 0.

Constructing D1 to satisfy the latter then entails

D1 = v1v
T
1

vT
1 D−1

0
(1)

v1

+ v2v
T
2

vT
2 D−1

0
(1)

v2

,

where the transpose is used because the matrix is complex
symmetric. This reasoning immediately generalizes to expres-
sion (62). �

Let {ωn} be all the roots of the outgoing wave functions
(i.e., the poles of inverse outgoing wave O−1), which we can
find by solving the nonlinear eigenvalue problem:

O(ωn)wnm = 0. (63)

Looking at (2) shows that the roots of the outgoing wave
functions O could endow the scattering matrix with additional
poles, through O−1, and that these poles could potentially have
higher Laurent orders, since O−1 appears twice in expression
(2). Yet, because O is diagonal with simple roots, lemma 1 en-
tails O−1 is semisimple: The algebraic multiplicities are equal
to the geometric multiplicities, and thus the poles {ωn} all
have Laurent order 1. Situations can arise where same-charge

channels within the same total angular momentum Jπ will
carry same angular momenta �c = �c′ and equal channel radii
ac = ac′ . In that case, the geometric multiplicity Mn of pole
ωn will be equal to the number of channels sharing the same
functional outgoing waves Oc = Oc′ . Diagonal semisimplicity
lemma 1 then establishes that the residue of O−1 associated to
pole ωn is now a diagonal rank-Mn matrix, Dn, expressed as

Dn =
Mn∑

m=1

wnmwT
n m

wT
n mO(1)(ωn)wnm

, (64)

where O(1)(ωn) designates the first derivative of O, evaluated
at the pole value ωn. This establishes the existence of higher
rank residues associated to the inverse outgoing wave function
O−1. Notice that if the channel radii {ac} were chosen at
random, these high-rank residues would almost never emerge
(null probability). However, since ac is chosen arbitrarily in
the context of R-matrix theory, it is often the case that eval-
uators set ac to a fixed value for multiple different channels
and even across isotopes. This is because the scattering radius
is determined early on by the evaluator (and not varied after-
ward) based on the amount of potential scattering observed in
the experimental data, which is very similar for isotopes of the
same element. Therefore, in practice these high-rank residues
are not uncommon. Our constructive proof now establishes
how analytic continuation annuls these high-rank residues.

Proof. Constructive. Consider the scattering matrix ex-
pression U = O−1[I + 2iρ1/2RLO−1ρ1/2] from (2). Result
(64) entails that, in the vicinity of ωn (root of the outgoing
wave function O) the residue is locally given by

U (z) =
W (E=ωn )

U0(ωn)+ Dn[I + 2iρ1/2RLO−1ρ1/2]E=ωn

E − ωn
. (65)

We now notice that evaluating the Kapur-Peierls RL operator
(4) at the pole value ωn yields the following equality:

RLO−1(ωn)wnm = −[ρO(1)]−1(ωn)wnm. (66)

Plugging (66) into the residue of (65), and using the fact that
(64) guarantees Dn is a linear combination of wnmwT

n m, we
then have the following equality on the residues at poles ωn:

Dn[I + 2iρ1/2RLO−1ρ1/2]E=ωn = Dn[I − 2iO(1)−1
]E=ωn .

(67)

The right-most term is diagonal and independent from the
resonance parameters. Since the Wronskian matrix w of the
external region interaction (for Coulomb or free particles) is
constant (3), w = O(1)I − I(1)O = 2iI, evaluating at outgoing
wave-function root ωn, one finds 2iI = O(1)I(ωn). Plugging
this result into (67) annuls the corresponding residue from the
scattering matrix, i.e.,

Dn[I + 2iρ1/2RLO−1ρ1/2]E=ωn = 0. (68)

Thus, if the Wronskian condition (3) is respected, the {ωn}
poles cancel out of the scattering matrix U . �

Importantly, both the Lane and Thomas force closing of
subthreshold channels IV A or the analytic continuation IV B
will yield the same cross-section values for real energies
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above thresholds. However, Theorem 3 demonstrates that
the choice of analytic continuation in Eq. (2), respecting
the Wronskian condition (3), leads to the cancellation from
the scattering matrix U of the {ωn} spurious poles, which
have nothing to do with the resonant states of the scatter-
ing system. This cancellation is thus physically accurate and
would not take place had the choice of P = P been made in
Eq. (58) with the Lane and Thomas “force closure” definition
P = Im[L(z)] ∈ R (cf. Lemma 1 in Sec. III.B of Ref. [22]),
under which the scattering matrix diverges at {ωn}. Con-
versely, analytically continuing the penetration function as
P(z) � 1

2i (L(z) − [L(z∗)]∗) ∈ C (cf. Lemma 2 in Sec. III.B
of Ref. [22]) will guarantee the cancellation of the {ωn} poles
from the scattering matrix U when using (58). Notice this
is almost the definition (74) of �L(ρ) we hereafter use in
the proof of the generalized unitarity. Then, to force close
subthreshold channels, one could set the Wronskian to zero, as
proposed by Lane and Thomas in the paragraph between Eqs.
(2.1) and (2.2) of Sec. VII.1, p. 289. This shifts the problem to
how to maintain the Wronskian condition (3) while setting the
Wronskian to zero below thresholds. Alternatively, we here
argue in Sec. IV F that this might not be necessary, as analytic
continuation can naturally close subthreshold channels.

E. Generalized unitarity for analytically continued
scattering matrix

Hale proved a more esoteric argument in favor of analytic
continuation of the scattering matrix, showing it satisfies gen-
eralized unitarity.

Eden and Taylor established a generalized unitarity condi-
tion, Eq. (2.16) in Ref. [37], which extents the one described
by Lane and Thomas, Eq. (2.13), Sec. VI.2.c, p. 287, in
that the subset of open channels is unitary (thus conserving
probability), but the scattering matrix can still be continued
to subthreshold channels and be nonzero; that is, the full
scattering matrix of open and closed channels is not unitary
but satisfies the generalized unitarity condition. This is also
consistent with approaches other than R matrix to modeling
nuclear interactions (cf. commentary above Eq. (3), p. 4 in
Ref. [71], and Refs. [25,27]).

The premises of the problem lies again in the multisheeted
Riemann surface spawning from mapping (1): When consid-
ering the scattering matrix U (E ) at a given energy E , there
are multiple possibilities for the choice of wave number kc at
each channel. Following Eden and Taylor’s Eqs. (2.14a) and
(2.14b) [37], we consider the case of momenta being contin-
ued along the following paths in the multisheeted Riemann
surface: One subset of channels c, denoted by Ĉ, is continued
as kc∈Ĉ → k∗

c∈Ĉ, while all the others are continued as kc �∈Ĉ →
−k∗

c �∈Ĉ, and we collectively denote this continuation k → k̃:

k → k̃ :

{∀c ∈ Ĉ , kc → k∗
c

∀c �∈ Ĉ , kc → −k∗
c
. (69)

We then seek to reproduce the generalized unitarity property,
Eq. (2.16) of Ref. [37], which states that the submatrix Û com-
posed of the channels c ∈ Ĉ verifies the generalized unitarity

condition:

Û (k)[Û (k̃)]† = I. (70)

We now show that analytically continuing the R-matrix ex-
pression (2) ensures the scattering matrix and respects Eden
and Taylor generalized unitarity condition.

Theorem 4. ANALYTIC CONTINUATION OF THE R-MATRIX

EXPRESSION FOR THE SCATTERING MATRIX ENSURES GENER-
ALIZED UNITARITY.

By performing the analytic continuation of the R-matrix
expression (2), the scattering matrix U satisfies Eden and
Taylor’s generalized unitarity condition (70).

Proof. The proof is based on the conjugacy relations
of the outgoing and incoming wave functions, Eq. (2.12),
Sec. VI.2.c, in Ref. [2], whereby for any channel c

[Oc(k∗
c )]∗ = Ic(kc), [Ic(k∗

c )]∗ = Oc(kc),

Oc(−kc) = Ic(kc), Ic(−kc) = Oc(kc), (71)

−O(1)
c (−kc) = I (1)

c (kc), −I (1)
c (−kc) = O(1)

c (kc),

where the third line was obtained by taking the derivative
of the second. Conjugacy relations (71) entail the following
relations on the outgoing-wave reduced logarithmic derivative
L:

[Lc(k∗
c )]∗ = Lc(−kc), [Lc(−k∗

c )]∗ = Lc(kc). (72)

We also notice that the Wronskian condition (3) is equivalent
to

2iρc

OcIc
= ρc

[
O(1)

c

Oc
− I (1)

c

Ic

]
. (73)

Recognizing the definition (6) of L and using conjugacy rela-
tions (72), this Wronskian condition (73) can be expressed as
a difference of the reduced logarithmic Lc derivatives:

�Lc(kc) � Lc(kc) − Lc(−kc) = 2iρc

OcIc
(kc). (74)

Defining the diagonal matrix �L � diag(�Lc(kc)), we can
then rewrite, similarly to (58), the R-matrix expression (2) of
the scattering matrix U as a function of �Lc(kc), so that

U = O−1[I + [ρ1/2RLρ−1/2]�L]I

= I[I + �L[ρ−1/2RLρ1/2]]O−1. (75)

Notice again how this expression is closely related to the
analytic continuation of expression (58).

Coming back to the Eden and Taylor continuation (69), let
us now establish a relation between the Kapur-Peierls operator
RL and �L. From the definition (4) of the Kapur-Peierls op-
erator RL, recalling that under Eden and Taylor continuations
(69) the energy E from mapping (1) remains unaltered, and
given that the boundary condition Bc in the L0 matrix function
is real and thus the R-matrix parameters (5) are too, it follows
that [

R−1
L (k̃)

]∗ − R−1
L (k) =

(
�̂L(k) 0

0 0

)
, (76)
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where we have used the L conjugacy relations (72) to es-
tablish that all channels c �∈ Ĉ cancel out, and the rest yield
�Lc∈Ĉ(kc). The �̂L thus designates the submatrix composed
of all the channels c ∈ Ĉ. Multiplying both left and right and
considering the submatrices on the channels c ∈ Ĉ thus yield

R̂L(k) − [R̂L(k̃)]∗ = R̂L(k)�̂L(k)[R̂L(k̃)]∗. (77)

This relation is what guarantees that the scattering matrix U
satisfies generalized unitarity condition (70). Indeed, let us
develop the left-hand side of (70), using expressions (75) on
the submatrices of the channels c ∈ Ĉ:

Û (k)
[
Û (k̃)

]† = Ô
−1

(k)
[
I + ̂

[
ρ

1
2 RLρ− 1

2
]
(k)�̂L(k)

]̂
I(k)

×[̂
I(k̃)

[
I + �̂L(k̃) ̂

[
ρ− 1

2 RLρ
1
2
]
(̃k)

]
Ô

−1
(k̃)

]†

= Ô
−1

(k)
[
I + ̂

[
ρ

1
2 RLρ− 1

2
]
(k)�̂L(k)

]̂
I(k)

×[Ô
−1

(̂k∗)]∗
[
I+ ̂

[
ρ− 1

2 RLρ
1
2
]
(̂k∗)

× [�̂L(̂k∗)]∗
]
[̂I (̂k∗)]∗. (78)

Noticing that conjugacy relation (72) entail the following �L
symmetry from definition (74), [�̂L(̂k∗)]

∗ = −�̂L(k), and
making use of the conjugacy relations for the wave functions
(71), we can further simplify (78) to

Û (k)[Û (k̃)]† = I + Ô
−1

(k) ̂
[
ρ

1
2 RLρ− 1

2
]
(k)

×{[[
̂

ρ
1
2 RLρ− 1

2
]−1

(k∗)
]†

− [
̂

ρ
1
2 RLρ− 1

2
]−1

(k) − �̂L(k)
}

× [
̂

[
ρ− 1

2 RLρ
1
2
]
(̂k∗)

]†
�̂L(k)Ô(k). (79)

In the middle, we recognize property (76), where the ρ±1/2

cancel out by commuting with the diagonal matrix. Property
(76) thus annuls all nonidentity terms, leaving Eden and Tay-
lor’s generalized unitarity condition (70) satisfied. �

Let us also note that the proof required real boundary
conditions Bc ∈ R. Thus, in R-matrix parametrization (2), real
boundary conditions Bc ∈ R are necessary for the scattering
matrix U to be unitarity (and by extension generalized uni-
tary).

Theorem 4 has a strong argument in favor of perform-
ing analytic continuation of the R-matrix operators as the
physically correct way of prolonging the scattering matrix to
complex wave numbers kc ∈ C.

F. Closure of subthreshold cross sections through
analytic continuation

We finish this article with the key question of how to close
subthreshold channels. Analytically continuing the scattering
matrix below thresholds entails it cannot be identically zero
there, since this would entail it is the null function on the
entire sheet of the maniforld (unicity of analytic continuation).
However, we here show that for massive particles subject
to ρ(E ) mappings (2) or (4), Sec. II.A of Ref. [22], ade-
quate definitions and careful consideration will both make the

transmission matrix evanescent subthreshold (in a classical
case of quantum tunneling) and annul the subthreshold cross
section—the physically measurable quantity.

The equations linking the scattering matrix U to the
cross section—Eqs. (1.9), (1.10), and (2.4) in Sec. VIII.1. of
Ref. [2], pp. 291–293—were only derived for real positive
wave numbers. Yet, when performing analytic continuation of
them to subthreshold energies, the quantum tunneling effect
will naturally make the transmission matrix infinitesimal on
the physical sheet of mapping (1). Indeed, the transmission
matrix, T , is defined in Ref. [2] after Eq. (2.3), Sec. VIII.2,
p. 292, as

Tcc′ � δcc′e2iωc − Ucc′, (80)

where ωc is defined by Lane and Thomas in Eq. (2.13c),
Sec. III.2.b, p. 269, and used in Eq. (4.5a), Sec. III.4.a, p. 271,
in Ref. [2], and is the difference ωc = σ�c (ηc) − σ0(ηc), where
the Coulomb phase shift, σ�c (ηc) is defined by Thompson
in Eq. (33.2.10) of Ref. [72]. Defining the diagonal matrix
ω � diag(ωc) and using the R-matrix expression (2) for the
scattering matrix, the Lane and Thomas transmission matrix
(80) can be expressed with R-matrix parameters as

T L&T � −2iO−1

⎡⎢⎢⎣( I − Oe2iω

2i

)
︸ ︷︷ ︸

�

+ρ1/2RLO−1ρ1/2

⎤⎥⎥⎦. (81)

The angle-integrated partial cross sections σcc′ (E ) can then be
expressed as Eq. (3.2d), Sec. VIII.3, p. 293, of Ref. [2]:

σcc′ (E ) = πgJπ
c

∣∣∣∣T cc′
L&T(E )

kc(E )

∣∣∣∣2, (82)

where gJπ
c

� 2J+1
(2I1+1)(2I2+1) is the spin statistical factor defined

in Eq. (3.2c), Sec. VIII.3, p. 293. Plugging in the transmis-
sion matrix R-matrix parametrization (81) into cross-section
expression (82) then yields [2]

σcc′ = 4πgJπ
c

∣∣∣∣ 1

Ockc

∣∣∣∣2|� + ρ1/2RLO−1ρ1/2|2cc′ . (83)

An alternative, more numerically stable, way of computing
the cross section is used at Los Alamos National Laboratory,
where Hale introduced the following rotated transmission ma-
trix, defined as

T H � −e−iωT L&Te−iω

2i
(84)

and whose R-matrix parametrization is thus

T H = H−1
+

⎡⎢⎢⎣ρ1/2RLρ1/2H−1
+ −

(
H+ − H−

2i

)
︸ ︷︷ ︸

F

⎤⎥⎥⎦, (85)

where H± are defined as in Eqs. (2.13a) and (2.13b),
Sec. III.2.b, p. 269, of Ref. [2]:

H+c = Oceiωc = Gc + iFc,

H−c = Ice−iωc = Gc − iFc, (86)
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and for which we refer to Eq. (33.2.11) in Ref. [72] and
Chapter 14 of Ref. [73]. The partial cross section is then
directly related to the T H rotated transmission matrix (84) as

σcc′ (E ) = 4πgJπ
c

∣∣∣∣T cc′
H (E )

kc(E )

∣∣∣∣2. (87)

Theorem 5. EVANESCENCE OF SUBTHRESHOLD TRANSMIS-
SION MATRIX.

For massive particles, analytic continuation of R-matrix
parametrization (2) makes the subthreshold transmission ma-
trix T , defined as (81), evanescent on the physical sheets of
wave-number-energy ρ(E ) mappings (2) or (4), Sec. II.A of
Eq. [22]. In turn, this quantum tunneling entails the partial
cross sections σcc′ (E ) become infinitesimal below threshold.

Proof. The proof is based on noticing that both transmis-
sion matrix expressions (81) and (84) entail their modulus
square is proportional to

|T cc′ |2(E ) ∝
∣∣∣∣ 1

H+(E )

∣∣∣∣2. (88)

This is because RLO−1 = [O[R−1 − B] − ρO(1)]−1, which
does not diverge below threshold. Asymptotic expressions for
the behavior of H+(ρ) then yield, for small ρ values,

H+(ρ) ∼
ρ→0

ρ−�

(2� + 1)C�(η)
− iC�(η)ρ�+1 (89)

and asymptotic large-ρ behavior

H+(ρ) ∼
ρ→∞ ei(ρ−η ln(2ρ)− 1

2 �π+σ�(η)). (90)

Above the threshold, ρ ∈ R is real and thus Eq. (90) shows
how |H+(ρ)| −→

ρ→∞ 1. In other terms, the |H+(ρ)| term cancels

out of the cross-section expressions (83) and (87) for open
channels above threshold.

Yet, in both wave-number energy ρ(E ) mappings (2) or
(4) in Sec. II.A of Ref. [22], the subthreshold dimensionless
wave number is purely imaginary: ρ ∈ iR. Since asymptotic
form (90) is dominated in modulus by |H+(ρ)| ∼

ρ→∞ |eiρ |.
Depending on which sheet ρ is continued subthreshold, we
can have ρ = ±ix, with x ∈ R. Thus, on the nonphysical
sheet {E , . . . ,−c, . . . } for the given channel c of ρc, the
transmission matrix (88) experiences exponential decay of
1/|H+(ρ)| leading to the evanescence of the cross section
(82) or (87). In effect, this means that the |Oc(ρc)| term in
Eq. (83) asymptotically acts like a Heaviside function, be-
ing unity for open channels, but closing the channels below
threshold. Since ρc = kcrc for the outgoing scattered wave
Oc(ρc), the exponential closure depends on two factors: the
distance rc from the nucleus and how far from the threshold
one is |E − ETc |. This is a classical evanescence behavior of
quantum tunneling.

What happens when continuing on the physical sheet
{E , . . . ,+c, . . . }, as |H+(ρ)| will now tend to diverge as a
“divide by zero”? The authors have no rigorous answer, but
point to the fact that since E is left unchanged by the choice of
the kc sheet, the evanescence result ought to also stand, despite
the apparent divergence.

Note that for photon channels, the semiclassic wave-
number energy ρ(E ) mappings (3) of Sec. II.A of Ref. [22]
do not yield this behavior; only the relativistic mapping (4)
does. �

We can estimate the orders of magnitude required to exper-
imentally observe this evanescent quantum tunneling closure
of the cross sections below threshold. At distance rc from the
center of mass of the nucleus, and at wave number kc, distant
from the threshold as |E − ETc |, the asymptotic behavior or
the cross section below threshold is

ln(σcc′ (kc, rc))
∼

Ec�ETc
kc → −∞ − 2rc|kc|. (91)

Assuming a detector is placed at a distance rc of the
nucleus, the cross section would decay exponentially below
threshold as the distance �Ec = |E − ETc | of E to the thresh-
old ETc increases. For instance, for a threshold of 238U target
reacting with neutron n channel, evanescence (91) would be of

the rate of log10 (σcc′ (kc, rc)) ∼ −3 × 1016rcm
√

�EceV. For a
detector placed at a millimeter rc ≈ 10−3 m, this means one
order of magnitude is lost for the cross section in �Ec ≈
10−27 eV, evanescent indeed. Conversely, detecting this quan-
tum tunneling with a detector sensitive to micro-electron volts
�Ec ≈ 10−6 eV ≈ 1 μeV (200 times more sensitive than the
thermal energy of the cosmic microwave background) would
see the cross section drop by one order of magnitude for a
move of less than 10−13 m, or a tenth of a picometer. The
quantum tunneling occurs at subatomic level: the outgoing
wave disappears long before reaching the electron cloud.

Regardless of the evanescence of the transmission matrix,
a more general argument on the cross section shows that
analytic continuation of the above-threshold expressions will
automatically close the channels below the threshold.

Theorem 6. ANALYTIC CONTINUATION ANNULS SUB-
THRESHOLD CROSS SECTIONS.

For massive particles, analytic continuation of above-
threshold cross-section expressions to complex wave numbers
kc ∈ C will automatically close channels for real energies
E ∈ R below thresholds E − ETc < 0.

Proof. The proof is based on the fact that massive particles
are subject to mappings (2) or (4) in Sec. II.A of Ref. [22],
which entail wave numbers are real above threshold, and
purely imaginary subthreshold: ∀E < ETc , kc ∈ iR. Let ψ (�r)
be a general wave function, so that the probability density is
|ψ |2(�r).

For a massive particle subject to a real potential, the de
Broglie nonrelativistic Schrödinger equation applies, so that
writing the conservation of probability on a control volume
and applying the Green-Ostrogradsky theorem will yield the
following expression for the probability current vector:

�jψ � h̄

μ
Im[ψ∗ �∇ψ], (92)

where μ is the reduced mass of the two-particle system [cf.
Eqs. (2.10) and (2.12) in Sec. VIII.2.A, p. 312, in Ref. [1]).
By definition, the differential cross section dσcc′

d

is the ratio
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of the outgoing current in channel c′ by the incoming current
from channel c, by unit of solid angle d
.

Consider the incoming channel c, classically modeled as
a plane wave, ψc(�rc) ∝ ei�kc·�rc ; and the outgoing channel c′,
classically modeled as radial wave, ψc′ (rc′ ) ∝ eikc′ rc′

rc′
. For arbi-

trary complex wave numbers, kc, kc′ ∈ C, Definition (92) will
yield the following probability currents respectively:

�jψc ∝ h̄

μ
Im[i�kce−2Im[�kc]·�rc ],

�jψc′ ∝ h̄

μ
Im

[(
ikc′ − 1

rc′

)
e−2Im[kc′ ]·rc

r2
c′

]
�er . (93)

One will note these expressions are not the imaginary part of
an analytic function in the wave number, because of the imag-
inary part Im[kc]. However, if we look at real wave numbers
kc, kc′ ∈ R, that is, at above-threshold energies E � ETc , the
probability currents (93) readily simplify to

�jψc ∝ h̄

μ
Re[�kc], �jψc′ ∝ h̄

μ
Re[kc′]�er . (94)

These expressions are the real part of analytic functions of the
wave numbers. If we analytically continue them to complex
wave numbers and consider the cases of subthreshold reac-
tions E < ETc for either the incoming or the outgoing channel,
the wave numbers are then exactly imaginary, kc, kc′ ∈ iR.
The real parts in Eq. (94) become zero, thereby annulling
the cross section σc,c′ (E ). This means that for massive parti-
cles (not massless photons) subject to real potentials, analytic
continuation of the probability currents expressions above
threshold (94) will automatically close the subthreshold chan-
nels. This is true regardless of whether the transmission matrix
(80) is or is not evanescent below threshold. This constitutes
another major argument in favor of analytic continuation of
open-channel expressions to describe the closed channels. �

Note that for photon channels the derivations for the proba-
bility current vector (92) do not stand, and the wave number kc

is not imaginary below threshold using mapping (2) nor using
the relativistic correction (4) of Sec. II.A of Ref. [22]. The fun-
damental reason why photon treatment is not straightforward
is that R-matrix theory was constructed on the semiclassical
formalism of quantum physics, with wave functions instead
of state vectors. Though not incorrect, this wave-function
approach of quantum mechanics does not translate directly for
photons, though some work has been done to describe photons
through wave functions [74,75]. This is another open area in
the field of R-matrix theory, beyond the scope of this article.

V. CONCLUSION

In this article, we conduct a study and establish novel
properties of the Siegert-Humblet pole expansion in radioac-
tive states, which we show links R-matrix theory to the
Humblet-Rosenfeld pole expansions of the scattering ma-
trix. The Siegert-Humblet parameters are the poles {E j} and
residue widths {r j,c} of the Kapur-Peierls RL operator (4).
They are NL � Nλ complex and (almost always) simple poles
that reside on the Riemann surface of mapping (1), composed

of 2Nc branches, for which one must specify on which sheet
they reside, as shown in Theorem 1. They are intimately inter-
woven in that not any set of complex parameters is physically
acceptable: They must be solution to (11). Both {E j} and
{r j,c} are invariant to changes in boundary conditions {Bc}.
Furthermore, {E j} is invariant to a change in channel radii {ac},
and we established in Theorem 2 a simple way of transform-
ing the radioactive widths {r j,c} under a change of channel
radius ac. Since the Siegert-Humblet parameters are the poles
and residues of the local Mittag-Leffler expansion (10) of
the Kapur-Peierls operator RL, the set of Siegert-Humblet pa-

rameters {ETc , ac, E j, ri,c} is insufficient to entirely determine
the energy behavior of the scattering matrix U through (42)
and (41). The latter expressions directly link the R-matrix pa-
rameters to the poles and residues of the Humblet-Rosenfeld
expansion of the scattering matrix and can be complemented
by local coefficients {sn}W (E ) of the entire part (43) to un-
tangle the energy dependence of the scattering matrix into
a simple sum of poles and residues (41), which is the full
Humblet-Rosenfeld expansion of the scattering matrix. The-
orem 3 establishes that under analytic continuation of the
R-matrix operators, the poles of the Kapur-Peierls RL operator
(i.e., the Siegert-Humblet radioactive poles) are exactly the
poles of the scattering matrix U .

The latter is one of three results we advance to argue that,
contrary to the legacy force closure of subthreshold channels
presented in Lane and Thomas [2], R-matrix operators ought
to be analytically continued for complex momenta. Such an-
alytic continuation is necessary to cancel the spurious poles
which would otherwise be introduced by the outgoing wave
functions, as we establish in Theorem 3. Moreover, we show
in Theorem 4 that the analytic continuation of R-matrix op-
erators in scattering matrix parametrization (2) enforces Eden
and Taylor’s generalized unitarity condition (70). Finally, we
argue in Theorems 5 and 6 that analytic continuation will
still close cross sections for massive particle channels (not
massless photon channels) below threshold.

We thus conclude that the R-matrix community should
henceforth come to consensus and agree to set the analytic
continuation as the standard way of computing R-matrix op-
erators [in particular, the shift Sc(E ) and penetration Pc(E )
functions] when performing nuclear data evaluations.
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