
PHYSICAL REVIEW C 103, 064604 (2021)

Symmetry potentials and in-medium nucleon-nucleon cross sections within the
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In the relativistic impulse approximation (RIA), we study symmetry potentials and in-medium nucleon-
nucleon (NN) cross sections with the Nambu–Jona-Lasinio (NJL) model that features chiral symmetry. The
chiral symmetry that plays a fundamental role in the nonperturbative physics in the strong interaction is antici-
pated to add restrictive effects on the symmetry potentials and in-medium NN cross sections. For comparison,
we also perform the study with the usual relativistic mean-field (RMF) model. The numerical results with the
NJL and RMF models are similar at saturation density and below, since a priori fit was made to saturation
properties. With the increase of nuclear density, the chiral symmetry starts to be restored partially in the NJL
model, resulting in the explicit fall of the scalar density. In a large energy span, the symmetry potential acquires
a significant rise for the partial restoration of the chiral symmetry, compared to the one with the RMF model.
It is found that the in-medium NN cross sections in the RIA with the NJL and RMF models both increase with
the density in the energy region interested in this study, whereas those with the NJL model increase sharply
as long as a clear chiral symmetry restoration takes place. The different tendency of observables in density
can be transmitted to the different energy dependence in the RIA. The NJL model is shown to have charac-
teristic energy-dependent symmetry potentials and NN cross sections beyond saturation point, apart from the
RMF models.
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I. INTRODUCTION

Heavy-ion reaction experiments are indispensable to ex-
tract the nuclear equation of state (EOS) of asymmetric matter
in various density regions. In-medium nucleon-nucleon (NN)
cross sections are key inputs of reaction models, such as
Glauber models [1] and various transport models [2]. Up
to now, though great success in constraining the EOS of
asymmetric matter has been achieved [3,4], considerable un-
certainty of the EOS at high densities remains due to the facts
that the extraction of the EOS from data relies actually on var-
ious models and that the solution of highly nonlinear nuclear
in-medium problems is subject to the many-body theory with
various approximations. In particular, the large uncertainty
exists eminently in the density dependence of the symmetry
energy, which is one of two important ingredients of nuclear
EOS of asymmetric matter. In fact, the uncertainty of the
symmetry energy is closely associated with the rather flexible
isovector part of nucleon potentials, i.e., the symmetry po-
tential. Since the density dependence of the symmetry energy
plays a very important role in nuclear physics and astrophysics
[5–7], the constraint on the uncertainty in the symmetry en-
ergy and symmetry potential has received enormous attention
in past two decades [4,7–14]. It has been recognized that the
theoretical uncertainty in extracting the density dependence
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of the symmetry energy from data of heavy-ion reactions
can be largely ascribed to the poor knowledge and prema-
ture treatment of the isospin-dependent in-medium NN cross
sections [11]. For instance, in most Glauber calculations, only
the isospin averaged free-space nucleon-nucleon cross section
is used. Indeed, in spite of the well-determined NN cross
section in free space, the in-medium NN cross section is
phenomenological or model dependent [15–26].

Due to the interplay between the uncertainty of the EOS
and the complexity of the in-medium interactions, it is far
off straightforward to derive simultaneously the symmetry
potential and in-medium NN cross sections microscopically
or simply by model extrapolations with consistency. For this
reason, we seek help of first principles with the following two
considerations. First, we will highly value the role of chiral
symmetry in nuclear mean fields and NN cross sections, since
the chiral symmetry property takes part to acquire most of
the mass for nucleons and to recover the chiral symmetry
partially in the dense medium. Second, it is necessary to
derive in-medium NN cross sections consistent with the mean
fields of nuclear matter that determine the symmetry potential.
With these considerations, in this work we will deal with the
symmetry potential and in-medium NN cross sections in the
relativistic impulse approximation (RIA) that is connected to
the mean fields obtained from the chiral model.

In popular chiral models such as the linear-σ and Nambu–
Jona-Lasinio (NJL) models [27–29], the chiral condensate on
the nucleonic level is related to the scalar field. Therefore, the
partial restoration of chiral symmetry in the nuclear medium
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brings the effect on the scalar mean field and consequently the
in-medium NN cross sections. This will eventually modify the
symmetry energy extracted from heavy-ion reaction data. In
this work, we will adopt the NJL model to produce the mean
fields. The original NJL model was established as a theory
for compound particles with constituent nucleons [28]. In the
past, the NJL model has been widely used on a quark level
[30–37] and a nucleonic level [38–45]. On the nucleonic level,
the original NJL model cannot produce saturation properties
of nuclear matter. Similar to the σ model [29], a scalar-
vector interaction was introduced to cure this problem, and
the NJL model has been extended to include other interactions
respecting the chiral symmetry [42–45]. We will start with
the nucleonic NJL model that can reproduce the saturation
properties.

The RIA combines the Dirac decomposition of scattering
amplitudes and nuclear scalar and vector densities with the ex-
perimental data. The optical potentials obtained from the RIA
reproduced the analyzing power and spin-rotation parameter
in proton-nuclei scatterings successfully [46–48], whereas the
standard nonrelativistic optical models failed to describe ex-
perimental data for spin observables [49,50]. Later, the RIA
was also extended to the relative low-energy nucleon-nuclei
elastic scatterings [51–53]. The RIA success interprets the im-
portance of the relativistic dynamics. In the past, the RIA was
also used to study the symmetry potentials [12,13,54,55] and
in-medium NN cross sections [23]. Although the scattering
amplitudes can provide a constraint on the symmetry potential
in the RIA, it is generally known that the energy and density
dependence of the symmetry potential obtained from many
other approaches relies actually on specific parametrizations
[7,12–14]. As the symmetry potential and in-medium NN
cross sections diversify for various in-medium interactions in
nuclear models and approaches, it is rather advantageous to
study them with the RIA in a unified manner. In this work,
we are thus motivated to revisit the symmetry potential and
in-medium NN cross sections uniformly in the RIA based on
the NJL model that follows the chiral symmetry. For compar-
ison, we will also perform the study with the usual relativistic
mean-field (RMF) model.

The paper is organized as follows. In Sec. II, we briefly
introduce formalism and approaches used in this work. They
include a brief RMF formalism, the NJL model, the RIA,
and the in-medium NN cross sections and relevant quantities.
Results and discussion are presented in Sec. III. A summary
is finally given in Sec. IV.

II. FORMALISM

A. Relativistic mean-field theory

The original version of RMF model is the Walecka model
[56], which only contains scalar and vector mesons to pro-
vide the medium-range attraction and short-range repulsion
between the nucleons, respectively. Since the incompress-
ibility of Walecka model is too large, Boguta and Bodmer
introduced the nonlinear self-interactions of the σ meson to
bring down the incompressibility reasonably [57]. For study-
ing the isospin-asymmetric nuclei, the isovector (ρ) meson
was later invoked to account for the isospin dependence of the

nuclear force [58]. To eliminate the scalar potential instability
caused by the nonlinear self-interaction of the σ meson at
high density, Bodmer and later Sugahara and Toki took the
nonlinear self-interaction of the ω meson into account [59,60].
Due to the uncertainty of the symmetry energy, the interaction
between the ω and ρ mesons was later involved in a full
Lagrangian [61]:

L = ψ̄[γμ(i∂μ − gωωμ − gρτ3bμ) − (M − gσ σ )]ψ

+ 1
2 (∂μσ∂μσ − m2

σ σ 2) − 1
4 FμνFμν + 1

2 m2
ωωμωμ

− 1
4 BμνBμν + 1

2 m2
ρbμbμ − 1

3 g2σ
3 − 1

4 g3σ
4

+ 1
4 c3(ωμωμ)2 + 4
V g2

ρg2
ωωμωμbμbμ, (1)

where gi and mi with i = σ, ω, ρ are the meson-nucleon cou-
pling constants and the meson masses, respectively. g2 and
g3 are the coupling constants of the nonlinear self-interaction
of the σ meson. c3 is the coupling constant of the nonlinear
self-interaction of the ω meson. Fμν and Bμν are the strength
tensors of ω and ρ mesons, respectively

Fμν = ∂μων − ∂νωμ, Bμν = ∂μbν − ∂νbμ. (2)

With this Lagrangian, a nicely fit RMF parametrization is
the FSUGold by Todd and Piekarewicz [62]. The equations
of motion for the nucleon and meson are actually the Euler-
Lagrange equations from above Lagrangian. In the RMF
approximation, they are given as follows:

[iγ μ∂μ − gωγ 0ω0 − gργ
0b0τ3 − (M − gσ σ )]ψ = 0, (3)

m2
σ σ = gσ ρS − g2σ

2 − g3σ
3, (4)

m2
ωω0 = gωρB − c3ω

3
0 − 8
V g2

ρg2
ωb2

0ω0, (5)

m2
ρb0 = gρρ3 − 8
V g2

ρg2
ωω2

0b0, (6)

where ρS = 〈ψ̄ψ〉 and ρB = 〈ψ̄γ 0ψ〉 are the scalar density
and baryon density respectively. ρ3 = 〈ψ̄γ 0τ3ψ〉 = ρp − ρn

is the difference between the proton and neutron densities. For
a given baryon density ρB and isospin asymmetry parameter
δ = (ρn − ρp)/ρB, the set of coupled equations can be solved
self-consistently by iterative methods.

B. Nambu–Jona-Lasinio model of nucleonic level

On the nucleonic level, the extended NJL which contains
scalar, vector, and scalar-vector interactions can successfully
produce the saturation property [38]. For asymmetric nuclear
matter, it is reasonable to include the isovector and isovector-
scalar interactions [42,43]. The Lagrangian is written as

L = ψ̄ (iγμ∂μ − m0)ψ + GS

2
[(ψ̄ψ )2 − (ψ̄γ5τψ )2]

− GV

2
[(ψ̄γμψ )2 + (ψ̄γμγ5ψ )2]

+ Gρ

2
[(ψ̄γμτψ )2 + (ψ̄γμγ5τψ )2]

+ GSV

2
[(ψ̄ψ )2 − (ψ̄γ5τψ )2][(ψ̄γμψ )2 + (ψ̄γμγ5ψ )2]

+GρS

2
[(ψ̄γμτψ )2+(ψ̄γμγ5τψ )2][(ψ̄ψ )2−(ψ̄γ5τψ )2],

(7)
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where the m0 is the bare nucleon mass and GS , GV , GSV , Gρ ,
and GρS are the scalar, vector, scalar-vector, isovector, and
isovector-scalar coupling constants, respectively. In the RMF
approximation, the Lagrangian can be simplified to be

L = L0 + LIV = ψ̄[iγμ∂μ − M∗ − γ 0�]ψ − U, (8)

where M∗, �, and U are respectively defined as

M∗ = m0 − (
GS + GSV ρ2

B + GρSρ
2
3

)
χS, (9)

U = 1
2

(
GSχ

2
S − GV ρ2

B − Gρρ
2
3 + 3GSV χ2

S ρ2
B + 3GρSρ

2
3χ2

S

)
,

(10)

� = GV ρB + Gρρ3τ3 − GSV χ2
S ρB − GρSρ3χ

2
S τ3, (11)

with

χS = −
∑
i=p,n

∫ 


kFi

d3k

(2π )3

M∗√
k2 + M∗2

. (12)

Here, Eq. (9) is the gap equation for the nucleon effective mass
in the NJL model, and the bare nucleon mass m0 is obtained
from the relation m2

π f 2
π = m0χ

vac
S . In addition to the small m0

that breaks the chiral symmetry explicitly, the dynamic mass,
generated from the vacuum scalar condensate χS , breaks
the chiral symmetry predominately, which is known as the
spontaneous breaking of chiral symmetry. As the baryon den-
sity increases, the Fermi momentum will be approaching the
momentum cutoff 
, which is necessarily introduced to reg-
ularize the high-momentum behavior in the calculation, and
the dynamic mass decreases to vanishing at the critical density
with kF = 
 in symmetric matter where the chiral symmetry
restoration takes place. More details of the chiral symmetry
restoration in nuclear matter can be referred to Ref. [40]. In
order to check the effect of the chiral restoration whose critical
density is determined by the momentum cutoff, we employ
two different momentum cutoffs, 350 and 400 MeV, which
correspond to the critical densities 2.37ρ0 and 3.53ρ0 (ρ0 =
0.16 fm−3), respectively. The parameters for the NJL350 and
NJL400 can be found in our previous works [43,63]. The
incompressibility values are 262 and 296 MeV for NJL350
and NJL400, respectively. The symmetry energy and the slope
of symmetry energy with various momentum cutoffs are set to
be 31.6 and 50.0 MeV by adjusting Gρ and GρS , respectively.

C. Relativistic impulse approximation

In proton-nucleus scattering, the scattering process can be
approximately treated as incident proton scattered by each of
the nucleons in the target nucleus by neglecting the impact
of incident particle to the mean fields. Therefore, the Dirac
optical potential can be approximated as [46,47]

Ũopt (q) = −4π iplab

M
〈�̄|

A∑
n=1

ei �q·�r(n)F̂ (q, n)|�〉, (13)

where plab and M are the laboratory momentum and
mass of the incident nucleon, respectively. � is the
ground state of target nucleus. F̂ is Lorentz-invariant NN
scattering amplitudes and can be decomposed into five

components:

F̂ =FS +FV γ
μ
1 γ2μ+FT σ

μν
1 σ2μν +FPγ 5

1 γ 5
2 +FAγ 5

1 γ
μ
1 γ 5

2 γ2μ,

(14)

where FS , FV , FT , FP, and FA are the scalar, vector, tensor,
pseudoscalar, and axial vector amplitudes, respectively. For
the spin-saturated nucleus, F̂ only contains scalar (FS), vector
(FV ), and tensor (FT ) terms. Since the tensor term of the
scattering amplitude is small, the Dirac optical potential can
be approximately written as

Ũopt (q) = −4π iplab

M
[FS (q)ρ̃S (q) + γ 0FV (q)ρ̃B(q)]. (15)

For a nucleon scattering off finite nuclei, the momentum
transfer q between nucleon and finite nuclei is important for
understanding the scattering angle-dependent physical quan-
tities (such as differential cross sections). When the target
is infinite nuclear matter, the scalar and vector densities are
constant in coordinate space. This means only the forward
NN scattering amplitudes [FS (q = 0) and FV (q = 0)] survive.
Therefore, the Dirac optical potential is simplified as [46,47]

Uopt = −4π iplab

M
[FSρS + γ 0FV ρB]. (16)

The forward NN elastic scattering amplitudes FS and FV

[46,47] have been determined directly from the experimental
NN phase shifts [64], and have been successfully used to
describe pA elastic scattering with incident energies above
400 MeV [48]. In this work, we apply these free-space NN
elastic scattering amplitudes to perform the RIA study in the
medium. As pointed out in Ref. [64], some resonance-like
noise may exist in the data at nucleonic kinetic energies
between 650 and 800 MeV. The RIA can also project the
inelastic noise approximately onto the Dirac optical poten-
tials, since the inelastic scattering amplitudes, albeit involving
a resonant state mass larger than the nucleon counterpart, do
not violate the Lorentz decomposition in Eq. (14) and the RIA
structure in Eqs. (15) and (16). Consequently, our RIA results
may include some inelastic ingredients from the data with
the resonance-like noise in the certain energy region. Below
400 MeV, one can use the NN elastic scattering amplitude
of relativistic Love-Franey model developed by Murdock and
Horowitz [51,52]. ρS and ρB are the spatial scalar and vector
densities of infinite nuclear matter,

ρS,i =
∫ kFi

0

d3k

(2π )3

M∗
√

M∗2 + k2
,

ρB,i = k3
Fi

3π2
, i = n, p. (17)

When the density-dependent effective mass M∗ of nucleons is
obtained from nuclear models, the scalar density can be cal-
culated from Eq. (17) directly. The Dirac optical potential can
be expressed in terms of scalar and vector optical potentials:

Uopt = U tot
S + γ0U

tot
0 ,

(18)
U tot

S = US + iWS, U tot
0 = U0 + iW0,
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where US , WS , U0, and W0 are respectively real scalar,
imaginary scalar, real vector, and imaginary vector optical
potentials.

D. Symmetry potential and in-medium NN cross section

In order to study nuclear symmetry potential, the nucleon
mean free path (MFP), and in-medium NN cross section, it
is useful to derive the Schrödinger equivalent potential (SEP)
from the Dirac equation. The Dirac equation can be decom-
posed into two equations for the small and large components
of the Dirac spinor. By eliminating the small component of the
Dirac spinor, one can obtain a Schrödinger-like equation for
the large component. To obtain the SEP, there are two schemes
by Jaminon et al. [65] and Hama et al. [66]. Regardless of the
small Darwin term and Coulomb potential, the SEP following
the Jaminon’s definition (denoted by “J”) is written as [65]

U tot
sep,J = U tot

S + U tot
0 + U tot

S
2 − U tot

0
2

2M
+ U tot

0 Ekin

M
, (19)

with U tot
sep,J = Usep,J + iWsep,J. Ekin is the nucleon kinetic en-

ergy. In the Hama’s definition [66], the SEP (denoted by “H”)
is given as

U tot
sep,H =

[
U tot

S + U tot
0 + U tot

S
2 − U tot

0
2

2M
+ U tot

0 Ekin

M

]
M

E

= 1

2E

[
2EU tot

0 + 2MU tot
S + U tot

S
2 − U tot

0
2]

, (20)

with E = Ekin + M. Numerically, U tot
sep,H equals U tot

sep,JM/E .
Equations (19) and (20) can overestimate and underestimate
the SEP at high energies, respectively. As seen below, these
two expressions actually give rise to the the same nucleon
MFPs and NN cross sections. By applying the SEP, the real
and imaginary symmetry potentials are obtained as

Usym = U n
sep − U p

sep

2δ
,

(21)

Wsym = W n
sep − W p

sep

2δ
,

where Usym is the well-known Lane potential [67]. Using the
dispersion relation [68] and assuming a complex momentum
k = kR + ikI , the nucleon MFP can be obtained as [23]

λi = 1

2kI
=

√
2

2

{ − (
E2 − M2 − 2MU i

sep

)

+ [(
E2 − M2 − 2MU i

sep

)2 + (
2MW i

sep

)2]1/2}−1/2
. (22)

Note that λi,J = λi,H because of the relation U tot
sep,H =

U tot
sep,JM/E . Thus, we neglect the subscripts J and H in the

following. The nucleon MFP can also be expressed as the
length of the unit volume defined by the matter density and
the NN cross section [69]. In this case, the nucleon MFP reads

λi = (ρpσ
∗
ip + ρnσ

∗
in)−1, (23)

where σ ∗’s are in-medium NN scattering cross sections, and
ρp and ρn are the proton and neutron densities, respectively. At
some circumstances where the isospin dependence is small,

FIG. 1. The neutron and proton scalar densities as functions of
density with parametrizations of the NJL model and FSUGold. n
and p are abbreviations of neutron and proton, respectively, and n/p
means neutron or proton at δ = 0.

the in-medium NN cross sections can be obtained from the
above equation. It is useful to define two quantities [23],

λ̃−1 = 1

2δ

(
1

λn
− 1

λp

)
, 
̃−1 = 1

2

(
1

λn
+ 1

λp

)
. (24)

With Eqs. (23) and (24), in-medium NN cross sections can be
obtained as

σ ∗
pp = (
̃−1 + λ̃−1)/ρB, σ ∗

np = (
̃−1 − λ̃−1)/ρB, (25)

by assuming σ ∗
pp = σ ∗

nn on the fact that 
̃ and λ̃ were proved
to be approximately independent of the isospin asymmetry
of the medium at high energies which is much larger than
the Fermi momentum [23]. The in-medium neutron-neutron
and proton-proton scattering cross sections are thus equal by
neglecting the small charge symmetry-breaking effect [70]
and small isospin-dependent Pauli blocking effects at high
energies in asymmetric nuclear matter. Such an inference will
become weak at low energies or at high densities where the
isospin-dependent Pauli blocking arises in 
̃ and λ̃ for the
comparable Fermi momentum and kinetic energy Ekin.

III. RESULTS AND DISCUSSION

In the RIA, the scalar and vector densities, associated
respectively with the scalar and vector potentials which repre-
sent the relativistic dynamics, are two important components
to work out the Dirac optical potentials. The scalar density of
nuclear matter is calculated with Eq. (17) where the nucleon
effective mass M∗ is obtained by solving the mean fields self-
consistently in relativistic models. Here, we adopt the NJL
model [43] and a nicely-fit RMF parametrization FSUGold
[62] for comparison to check the effect of chiral symmetry
on observables. Figure 1 shows the neutron and proton scalar
densities as functions of baryon density ρB. The isospin asym-
metry δ = (ρn − ρp)/ρB is taken to be 0 and 0.2. At δ = 0.2,
the neutron scalar density is always above the proton scalar
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FIG. 2. Real parts of the scalar (US) and vector (U0) Dirac optical
potentials for neutrons and protons with various parametrizations
at ρB = 0.16, 0.32, 0.48 fm−3 as functions of the nucleon kinetic
energy.

density for the higher Fermi surface, as shown in Fig. 1. We
see that the scalar density with the FSUGold increases with
increasing the baryon density. It is, however, interesting to
find that the scalar density with the NJL model first increases
and then decreases with increasing the baryon density. This
result, distinct from common nuclear models, is due to the
characteristics of chiral symmetry in the NJL model. With the
increase of density, the chiral symmetry undergoes gradual
restoration, which is reflected by a more rapid dropping of
the nucleon effective mass. When the density is close to the
critical density for chiral symmetry restoration, the nucleon
loses its mass down to the chiral limit, and the scalar density
of nuclear matter becomes small. Since the critical density
with the NJL350 is less than that with the NJL400, the scalar
density with the NJL350 starts to decrease at a density lower
than the one with the NJL400.

With employing the above neutron and proton scalar den-
sities and the forward NN scattering amplitudes, the scalar
and vector Dirac optical potentials for neutrons and protons in
nuclear matter are obtained directly by virtue of Eqs. (16) and
(18). In Fig. 2, we illustrate the real parts of the optical po-
tentials at δ = 0 for densities ρB = 0.16, 0.32, and 0.48 fm−3

with the NJL model and FSUGold. Note that neutron and pro-
ton Dirac optical potentials at δ �= 0 are reasonably separate
for unequal proton and neutron scalar and vector densities
[55], while we do not depict them in Fig. 2 for concision.
At ρB = 0.16 fm−3, the Dirac optical potentials of various
models (FSUGold, NJL350, and NJL400) are very close to
each other, because the present nuclear models are well con-
strained by saturation properties. Beyond saturation density,
it is known that the large difference in the nuclear EOS may
arise from different models. In RMF models, the difference in

FIG. 3. Real and imaginary parts of Schrödinger equivalent po-
tentials as functions of nucleon kinetic energies in symmetric matter
at different densities. The real and imaginary parts are above and
below zero, respectively. The results in the left and right panels are
calculated with Eqs. (19) and (20), respectively.

the EOS can partly from moderately different scalar densities
which is associated with the scalar potential. While at high
densities the dropping scalar densities given by the NJL model
are totally different from those given by usual RMF models
due to the chiral symmetry effect, the scalar component of the
optical potentials separates obviously from the one from the
usual RMF models. This can be observed clearly in Fig. 2. At
ρB = 0.32 fm−3, which is close the critical density in NJL350,
the scalar Dirac optical potential with the NJL350 shallows
clearly, compared to that with the FSUGold and NJL400. As
the baryon density rises further to 0.48 fm−3, the chiral sym-
metry is already restored in NJL350, and it is partially restored
in NJL400. In this case, the NJL350 has the very small scalar
density, followed by the scalar density with the NJL400. As a
consequence, the scalar optical potential with the NJL350 and
NJL400 is clearly above the one with the FSUGold. As shown
in Fig. 2, there is no difference in the vector parts of Dirac
optical potentials with the NJL350, NJL400, and FSUGold,
because the vector parts depend only on the same baryon
density. Note that the imaginary parts of the optical potentials
have the similar features as in the real parts, and we neglect
the figurations for simplicity.

The nucleon SEPs, given by Eqs. (19) and (20), are de-
picted in Fig. 3 for symmetric nuclear matter with δ = 0.
We see that the nucleon SEPs are almost the same at ρB =
0.16 fm−3 with different models, which is consistent with the
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FIG. 4. The symmetry potential as a function of the nucleon
kinetic energy at different densities. The differentiation of the left
and right panels is similar to that in Fig. 3.

case for optical potentials, as shown in Fig. 2. The effect from
the chiral symmetry starts to arise as the density increases.
For instance, at ρB = 0.32 fm−3, since the chiral symmetry
in NJL350 is nearly restored, the real part of the nucleon
SEP increases sharply due to the large restoration of chiral
symmetry. A similar case takes place for the real part of the
nucleon SEP with the NJL400 at ρB = 0.48 fm−3, which is
close to its critical density of chiral symmetry restoration. As
shown in Fig. 3, the imaginary part of the nucleon SEP with
the NJL model becomes lower than the one with the FSUGold,
resulting from the effect of the chiral symmetry restoration. In
general, the density and energy evolutions of U tot

sep,H and U tot
sep,J

are similar in the two cases. However, since a factor M/E
exists in the relation U tot

sep,H = U tot
sep,JM/E , a shrinkage of the

SEPs in the right panels appears in comparison to those in left
panels.

The symmetry potential can be simply regarded as the po-
tential part of the symmetry energy, and the uncertainty of the
symmetry energy is largely attributed to that of the symme-
try potential [14,52–55]. However, the symmetry potential in
RIA is rather constrained by the scattering amplitude together
with densities from relativistic models. From different sources
of optical potentials, the symmetry potential is extracted to
be linear in the kinetic energy in the energy region below
200 MeV [14]. With the RIA, the linear dependence on the
nucleon kinetic energy was approved earlier by Li et al. [54].
As the kinetic energy extends to the region above 400 MeV,
the symmetry energy stays almost unchanged for densities in
the vicinity of saturation [55]. In Fig. 4, we show the real
and imaginary symmetry potentials, given by Eq. (21), as
functions of nucleon kinetic energy. It is found that the Usym

with NJL350, NJL400, and FSUGold are close to each other
at ρB = 0.16 fm−3, and it is nearly constant at higher nucleon

FIG. 5. The symmetry potential as a function of density at Ekin =
500 and 800 MeV.

kinetic energy, consistent with that in Ref. [55]. With the in-
crease of density, the chiral symmetry effect on the symmetry
potentials is just similar to that for the SEP, as can be observed
by comparing Fig. 4 with Fig. 3. The difference is that at high
densities the real symmetry potential, namely the Lane poten-
tial Usym, fluctuates with energy that is seeded by the wavy
FV (Ekin ) in energy and the amplification by multiplying Ekin

in the last term in Eq. (19). We can infer that the fluctuation is
dominated by the vector potential, since it survives in the NJL
results whose scalar potential is negligible near the critical
density. This can be nicely verified numerically. It should
be noted that the imaginary symmetry potential displays an
energy dependence different from that of the real symmetry
potential at a fixed density: It decreases with increasing nu-
cleon kinetic energy. Nevertheless, the symmetry potential is
largely modified by the effect of chiral symmetry restoration
especially at higher energies, as shown in Fig. 4. Yet, we
see that the symmetry potential relies on the approximations
adopted. The shallower symmetry potentials correspond to the
shallower SEPs as shown in Fig. 3.

Shown in Fig. 5 is the density profile of the Lane poten-
tial for Ekin = 500 and 800 MeV. It is clearly shown that
the symmetry potential becomes apart from different models
with increasing density. Interestingly, when the chiral sym-
metry is partially restored at higher densities, the separation
between those from different parametrizations appears to be
large. Especially at Ekin = 800 MeV, the separation actually
characterizes the difference induced by the chiral symmetry
restoration in the NJL model. Indeed, the difference between
the NJL model and the RMF FSUGold is irrelevant to the
vector potentials at a fixed density and fixed energy, and it
is uniquely associated with the scalar potential (or, the scalar
density) and the nucleon effective mass therein. However, the
symmetry potential with the FSUGold at Ekin = 500 MeV is
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FIG. 6. The nucleon mean free path as a function of the nucleon
kinetic energy for different densities with NJL350, NJL400, and
FSUGold.

unusually higher than the one with the NJL400 at higher den-
sities, as shown in the upper panel of Fig. 5. In fact, the uplift
of the symmetry potential at lower energies with the FSUGold
is ascribed to the cancellation between the energy-dependent
terms in Eq. (19): U tot

S and U tot
S

2
/2M that are opposite in sign.

Though the values of U tot
S and U tot

S
2
/2M are individually much

larger than those given by the NJL model at higher densities,
the cancellation can give rise to a value comparable to that
with the NJL model. Note that this unusual uplift can be
found consistently in Fig. 4 in the low-energy region. With
increasing the energy, the clearly lower optical potentials do
not favor a delicate cancellation anymore, resulting in a large
difference induced by the chiral symmetry effect, as shown
in Figs. 4 and 5, even though the SEPs are suppressed in the
Hama’s expression with increase of the kinetic energy; see
Eq. (20).

Before addressing the in-medium NN cross sections, we
present in Fig. 6 the nucleon MFPs at δ = 0.2 and 0.5, calcu-
lated by Eq. (22). The MFP of a particle is the average distance
traveled between two successive collisions of the particle, and
here it is an input to work out the in-medium NN cross section.
The nucleon MFP at high densities will be obviously shorter
than that at low densities, as is consistently given in Fig. 6. It
is worth noting that the restoration of chiral symmetry leads
to a decrease in MFPs, caused by a sharp increase in the real
SEP. For instance, at ρB = 0.32 fm−3, where the chiral sym-
metry in NJL350 is largely restored, the nucleon MFPs with
the NJL350 are lowered clearly, compared to those with the
NJL400 and FSUGold. As shown in Fig. 6, the high-energy
behavior of the MFPs tends to be flattened in all of the present
parametrizations, although the MFPs are not a monotonous
function of nucleon kinetic energy especially at high densities
in the NJL model. Besides, the nucleon MFPs are dependent
on the isospin; see Eq. (22). With increasing δ, the difference

FIG. 7. The in-medium NN cross section as a function of the
nucleon kinetic energy at densities 0.16, 0.32, and 0.48 fm−3.

between neutron and proton MFPs becomes moderately larger
[23], as shown in Fig. 6.

Now, we discuss the in-medium NN cross sections. Shown
in Fig. 7 is the in-medium NN scattering cross sections as
a function of kinetic energy with NJL350, NJL400, and
FSUGold. Once again, we see that the overlap of the curves
at saturation density for the well-constrained saturation
properties of these models. As shown in the figure, the NN
cross sections with the FSUGold just rise moderately with
increasing the density, while the rise with the NJL350 and
NJL400 can be dramatic especially at large densities close
to the critical density. The large rise with the NJL model
can be understood by the small scalar densities which yield
small nucleon effective masses. Phenomenologically, the
in-medium NN cross sections were approximately scaled
down by the nucleon mass square in the medium [11] at low
energies, whereas here the NN cross sections evolve upward
with decreasing nucleon effective mass M∗. In the kinetic
energy region where the RIA applies, the lower energy region
displays a more apparent rise of σ ∗

pp and σ ∗
np with increasing

the density, while the contraction of the rise at higher energies
is consistent with the correspondingly reduced scattering
amplitudes. As seen in Eq. (25), there is a difference between
the σ ∗

np and σ ∗
pp. It is known that at low energies less than 300

MeV, the free-space σnp is about three times the size of the
free-space σpp. The proportion between the neutron-proton
and proton-proton cross sections in the medium changes with
the density and energy. As seen in Fig. 7, the in-medium
cross section σ ∗

pp develops to be above σ ∗
np at higher

energies.
The density dependences of the NN cross sections are

shown in Fig. 8 for Ekin = 500 and 800 MeV. It is striking
that the sharp difference in the NN cross sections appears for
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FIG. 8. The in-medium NN cross section as a function of density
at Ekin = 500 and 800 MeV.

different models with increasing the density. The difference
in the NN cross sections between different models is given
by the scalar component of the optical potentials, since the
vector optical potential in RIA is identical for different models
at a fixed density and fixed energy. As seen in the left upper
panel of Fig. 8, the NN cross section with the NJL model
can be larger than that with the FSUGold by a factor of 3
at high densities. The results in Fig. 8 reflect a fact that the
chiral symmetry restoration has a direct and clear correlation
with the in-medium NN cross sections: The eclipse of the
nucleon mass caused by the chiral symmetry restoration yields
an apparently large rise in the in-medium NN cross sections.
Not only can the chiral symmetry constrain the strong interac-
tion, but also it can signal the internal structures of nucleons
which might be encountered in the energetic heavy-ion col-
lisions. Indeed, the original NJL model and later versions
treated the hadrons as composite constituents. It has been
recognized generally that the chiral phase transition coincides
with the color deconfinement, evidenced by the vanishing
baryon mass (from constituent mass to the current mass) [71],
although quarkyonic matter between the hadron and quark
phases was proposed in the recent past [72,73]. Similar role
of the chiral symmetry in pointing to the internal structure
ends but not in the more fundamental structure of quarks
and leptons by solving the axial anomaly [74,75]. Empirically
speaking, the effect produced by the chiral symmetry may
roughly reflect the influence of the interior quark degrees of
freedom in dense matter. In this sense, the consideration of
chiral symmetry in mean-field potentials is of significance
and economical for the transport models when reaching out to
internal degrees of freedom in the high-density region. Indeed,
the high-density region where the chiral symmetry matters
was produced by the energetic heavy-ion collisions; for in-
stance, see Refs. [3,76]. We notice that the present simple RIA
should not be perfect when the in-medium effects of the pion
production resonances are treated equally as the nucleons. In
the low-energy region below the pion production threshold,
one can deal with this issue better by extending the RIA to the
relativistic Love-Franey model [51–54].

We should figure out that the increasing trend of in-
medium NN cross sections with the density at high energies
is different from that in the literature at low nucleon energies
[15–18,20,22] and that the significance of this increasing trend
is based more upon comparison to the results with the usual
RMF model (FSUGold). It was familiar inadvertently that
the in-medium NN cross sections decrease with increasing
density at low energies. Our finding in the high-energy region,
albeit different, is not unique. In fact, it was found in the
Dirac-Brueckner theory that the in-medium NN cross sections
can increase with the density at high nucleon momenta [24].
Note that the present relativistic treatment can result in the
proximity of the NN cross sections at very low densities to
the free-space limits, consistent with that in Ref. [23].

At last, it is worth noting that the symmetry potential effect
on the in-medium NN cross sections is not included in the
present work. The symmetry potential just has a negligible
effect around the saturation density [23]. In much denser
matter where the RMF works nicely, the role of the symmetry
potential that is associated with the isospin-dependent Pauli
blocking would be limited in the in-medium NN cross section
in the case of Ekin > kF . However, to better work out the NN
cross sections in asymmetric matter, we need to develop a
method to include the contribution of the symmetry potential
and leave it in a future work.

IV. SUMMARY

In this work, we have studied the chiral symmetry effect
in the NJL model on the symmetry potential and in-medium
NN cross section based on the Dirac optical potentials in
RIA. In comparison, we perform the calculation with the
RMF parametrization FSUGold. We have calculated the Dirac
optical potentials, the Schrödinger equivalent potentials, sym-
metry potentials, nucleon mean free paths, and the in-medium
NN cross sections with these models. We have found that
the key ingredient in RIA is the scalar density, as the vector
component is identical for all models at a fixed density and a
fixed nucleon kinetic energy. The scalar density obtained from
the NJL model is dramatically reduced at higher densities
in comparison to that with usual RMF models, because the
chiral restoration in the medium leads to a vanishing nucleon
effective mass in the NJL model. We have observed that the
physical quantities mentioned above undergo a consistently
similar variation with the evolution of nucleon density and
kinetic energy.

With the chiral symmetry being restored considerably, the
real part of SEPs increases sharply, and this sharp rise is
transmitted to the symmetry potential. For high kinetic en-
ergies, the chiral symmetry effect on the symmetry potential
can be clearly measured by the difference from the one with
the FSUGold. The nucleon MFPs with the chiral symmetry
model are obviously lower than those with the FSUGold, as
the chiral symmetry starts to be restored partially. Correspond-
ingly, the in-medium NN cross sections with the NJL model
increases sharply for the large eclipse of the nucleon effective
mass caused by the chiral symmetry restoration. In short, the
in-medium NN cross sections in RIA can measure the chiral
symmetry restoration. On the other hand, the in-medium NN
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cross sections as a key input of the transport models should ac-
count for the chiral symmetry effect in simulating the creation
of dense matter.
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