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Tensor force role in β decays analyzed within the Gogny-interaction shell model

B. Dai,1 B. S. Hu ,1 Y. Z. Ma ,1 J. G. Li ,1 S. M. Wang,1 C. W. Johnson ,2 and F. R. Xu 1,*

1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
2Department of Physics, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1233, USA

(Received 10 March 2021; accepted 14 June 2021; published 24 June 2021)

Background: The half-life of the famous 14C β decay is anomalously long, with different mechanisms: the
tensor force, cross-shell mixing, and three-body forces, proposed to explain the cancellations that lead to a small
transition matrix element.
Purpose: We revisit and analyze the role of the tensor force for the β decay of 14C as well as of neighboring
isotopes.
Methods: We add a tensor force to the Gogny interaction, and derive an effective Hamiltonian for shell-model
calculations. The calculations were carried out in a p-sd model space to investigate cross-shell effects. Further-
more, we decompose the wave functions according to the total orbital angular momentum L in order to analyze
the effects of the tensor force and cross-shell mixing.
Results: The inclusion of the tensor force significantly improves the shell-model calculations of the β-decay
properties of carbon isotopes. In particular, the anomalously slow β decay of 14C can be explained by the
isospin T = 0 part of the tensor force, which changes the components of 14N with the orbital angular momentum
L = 0, 1, and results in a dramatic suppression of the Gamow-Teller transition strength. At the same time, the
description of other nearby β decays are improved.
Conclusions: Decomposition of wave function into L components illuminates how the tensor force modifies
nuclear wave functions, in particular suppression of β-decay matrix elements. Cross-shell mixing also has a
visible impact on the β-decay strength. Inclusion of the tensor force does not seem to significantly change,
however, binding energies of the nuclei within the phenomenological interaction.
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I. INTRODUCTION

Throughout the chart of the nuclides, allowed β-decay
lifetimes are typically short, e.g., the half-life of the 12N →
12C β decay is ≈11 ms. The β decay from the initial state
(Jπ = 0+, T = 1) in 14C to the final state (Jπ = 1+, T = 0)
in 14N, although allowed, has a half-life of about 5730 y
[1,2]. This anomalously long half-life is not only useful in
many fields [3], but also poses a challenge and an opportu-
nity to test nuclear models and to understand fundamental
interactions [1,2,4].

Many efforts [5–13] have been made to explain this puzzle.
In the works [5,6], it was suggested that the tensor interaction
plays an important role in the β decay of 14C. Shell-model
studies with realistic interactions in the p-shell supported this
idea [7–10]. More recent calculations within a larger p-sd
model space using the YSOX [14] and WBP [15] interac-
tions found off-diagonal cross-shell interactions between the
p and sd shells lead to an anomalously small allowed ma-
trix elements [13]. Ab initio calculations using the no-core
shell model [11] and coupled-cluster method [12] found that
three-nucleon forces reduce the transition matrix element and
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dramatically increase the 14C lifetime. In both calculations,
however, realistic three-body coupling constants yielded life-
times an order of magnitude still too large. This motivates us
to revisit the tensor force.

In our previous work [16], we have developed a shell-
model calculation based on the Gogny interaction, and
successfully applied it to the p-, sd-, and p f -shell nuclei [16]
and the p-shell hypernuclei [17]. However, the tensor force
was excluded in the calculations. In phenomenological po-
tentials, e.g., Skyrme [18,19], Gogny [20,21], and relativistic
mean field [22], the tensor force is usually not included explic-
itly. It has been recognized that the explicit inclusion of tensor
force in mean-field calculations is nonetheless necessary for
observables beyond ground-state (g.s.) energies [23,24]. This
has been shown in the mean-field calculations of β decays
[25,26]. For these reasons, we have performed calculations
for carbon β decays in the p-sd space with the effective
Hamiltonian derived from the Gogny interaction including
a Gogny-type tensor force [27]. We find that the inclusion
of the tensor force not only reproduces the 14C half-life, it
simultaneously improves the description of allowed transi-
tions in nearby nuclides. Moreover, by decomposing the wave
functions into orbital L components [28], we can clearly view
the effect of the tensor force as well as cross-shell interactions
on the wave functions.
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II. THE MODEL

A. The Gogny interaction with tensor force embedded

In shell-model calculations, the Hamiltonian is

H =
∑

a

ean̂a +
∑

a�b,c�d

∑
JT

VJT (ab; cd )T̂JT (ab; cd ), (1)

where ea and n̂a are the energy and particle-number oper-
ator for the single-particle orbit a, respectively. VJT is the
interaction two-body matrix elements (TBMEs), and T̂ is the
two-body density operator for the nucleon pair in the orbits
(a, b) and (c, d ) with the coupled angular momentum J and
isospin T [16].

In the present work, we take the Gogny force [20,21] as the
effective nucleon-nucleon interaction,

VNN,12 =
2∑

i=1

e−(r1−r2 )2/μ2
i

× (Wi + BiP
σ − HiP

τ − MiP
σ Pτ )

+ t3δ(r1 − r2)(1 + x0Pσ )
[
ρ
( r1 + r2

2

)]α

+ iW0δ(r1 − r2)(σ1 + σ2) · k′ × k, (2)

where Pσ = 1
2 (1 + σ1 · σ2) and Pτ = 1

2 (1 + τ1 · τ2) are the
spin- and isospin-exchange operators, and σ i and τ i are the
spin and isospin matrix vectors, respectively. In the first term
of Eq. (2), the μi is the range of the Gaussian central force.
In addition, to consider the three-body effect on nuclear struc-
ture, a delta-type density-dependent effective three-body force
has been included, where ρ is the density of the nucleus
at the center-of-mass (c.m.) position of the two interacting
nucleons. We obtained the density ρ through self-consistent
shell-model iterations [16]. The last term in the Gogny force

is the spin-orbit coupling, where k =
−→∇ 1−−→∇ 2

2i and k′ =
←−∇ 1−←−∇ 2

2i
are the relative wave vectors of the two nucleons. We used
the D1S parameters [29], one of the most widely used Gogny
interactions. In the D1S, we have two ranges of μi = 0.7 and
1.2 fm for the Gaussian central force, which represent the
short-range repulsive and midrange attractive behavior of the
interaction.

We also add a tensor interaction similar to Ref. [30]:

VT(r1, r2) = [VT0(1 − Pτ ) − VT1(1 + Pτ )]

× S12exp
[−(r1 − r2)2/μ2

T

]
=

[(
1

2
VT0 − 3

2
VT1

)
−

(
1

2
VT0 + 1

2
VT1

)
τ1 · τ2

]

× S12exp
[−(r1 − r2)2/μ2

T

]
, (3)

where S12 = 3(σ1 · r)(σ2 · r)/r2 − σ1 · σ2. In particular, we
separate the tensor force into two channels: isospin T = 0
singlet and T = 1 triplet, with strengths VT0 and VT1, respec-
tively. This allows us to study the effect of the tensor force on
β decay in detail.

TABLE I. Single-particle energies (SPEs) used for the p-sd
shell-model space.

Orbit 0p1/2 0p3/2 0d3/2 0d5/2 1s1/2

SPEs (MeV) 12.43 5.23 18.54 13.23 10.48

B. The Hamiltonian and shell-model calculations

With 4He as the inner core, we take the p-sd shell as the
model space for the calculations of carbon isotopes. TBMEs
arise from the D1S Gogny parametrization [29], while single-
particle energies (SPEs) are chosen by fitting the experimental
spectra of 15,17O relative to the 16O ground state. Table I gives
the SPEs used in the present p-sd shell-model calculations. As
shown in Table II, the excited levels of 15,17O can be well de-
scribed using the SPEs given in Table I and TBMEs obtained
with the D1S interaction. In the shell-model calculation, the
harmonic-oscillator single-particle wave functions are used
with a frequency parameter of h̄ω = 45A−1/3 − 25A−2/3 MeV
[31], and a full p-sd model space is taken without further
truncation. In the Hamiltonian, the Coulomb interaction is
not included in order to keep the isospin symmetry, but its
contribution to the binding energy (the ground-state energy)
is considered as in Ref. [14]. The Lawson method [32] is used
to remove spurious c.m. motion.

The tensor force given in Eq. (3) takes a middle range
of μT = 1.2 fm [34,35]. The strengths of the T = 0 and
T = 1 tensor forces are determined by fitting the experimental
B(GT) values of 14C(0+

1 ) → 14N(1+
1 ), 12N(1+

1 ) → 12C(0+
1 ),

and 12N(1+
1 ) → 12C(2+

1 )β decays (see details in Sec. III),
giving VT0 = 26.0 MeV and VT1 = 34.8 MeV. In this paper,
we do not focus on the determinations of universal tensor
strengths, but analyze the tensor force effect on the β decays
of nuclei around carbon.

C. The L decomposition for Gamow-Teller transition

The B(GT) value of the Gamow-Teller (GT) transition is
given by

B(GT) = 1

2Ji + 1
|〈Jf ||στ±||Ji〉|2, (4)

TABLE II. Calculated spectra of 15O and 17O (relative to the 16O
ground state) using the SPEs given in Table I and TBMEs obtained
with the D1S interaction, compared with WBP [15] calculations and
experimental data [33].

Nuclei Jπ D1S (MeV) WBP (MeV) Exp (MeV)

1/2− 15.88 17.61 15.66
15O 1/2+ 20.23 24.83 20.85

5/2+ 21.12 24.76 20.91
3/2− 22.55 22.97 21.84

5/2+ −3.59 −3.15 −4.14
17O 1/2+ −2.83 −2.75 −3.27

3/2+ 0.44 2.42 0.94
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where Ji(Jf ) is the angular momentum of the initial (final)
state, and σ(τ) denotes the spin (isospin) operator.

Because the GT transition changes spin but does not
change the spatial part of the wave function (i.e., the orbital
angular momentum), the previous studies [5,7,8] dissected
the L-S structure of the initial and final states. Those studies,
however, relied upon the small dimensions of p-shell wave
functions. Instead we use an efficient decomposition method
suitable for large basis spaces [28] to illuminate the effect of
the tensor force on the wave functions and thus the transition.

The initial (i) and final ( f ) wave functions can be decom-
posed to different L components,

|
i〉 = ai
0 |Si〉 + ai

1 |Pi〉 + ai
2 |Di〉 + . . . , (5)

|
 f 〉 = a f
0 |S f 〉 + a f

1 |Pf 〉 + a f
2 |D f 〉 + . . . , (6)

where S, P, D . . . are the components with good orbital an-
gular momenta L = 0, 1, 2 . . ., respectively, and ai

L, a f
L are

the L-decomposition coefficients of the initial and final wave
functions, respectively. As indicated in Eq. (4), the GT tran-
sition selects �L = 0 between the initial and final states.
Therefore, we decompose the GT transition into different
L channels, as

〈Jf ||στ±||Ji〉 =
∑

L=0,1,2,...

ai
La f

L〈L f ||στ±||Li〉L f =Li=L. (7)

We define M(GT) = 〈Jf ||στ±||Ji〉 and ML(GT) =
〈L f ||στ±||Li〉L f =Li=L, then

M(GT) =
∑

L=0,1,2,...

ai
La f

LML(GT)

=
∑

L=0,1,2,...

Meff
L (GT), (8)

where ML(GT) is the strength of the GT transition for the
L channel, and Meff

L = ai
La f

LML(GT) is the effective transition
strength containing the coefficients ai

L and a f
L .

Usually, a quenching factor is used in B(GT) calcula-
tions [14,36–38] to give better agreements with data, where
Hamiltonians were determined normally by fitting data with-
out including B(GT) values. In the present calculations, the
tensor force strengths were determined by fitting the B(GT)
data of 14C and 12N as mentioned in Sec. II B, without the
quenching factor used in the fitting. Therefore, we do not use
the quenching factor in the present B(GT) calculations.

III. RESULTS AND DISCUSSIONS

We computed the β-decay strength B(GT) and energy Qβ

of 14C (0+
g.s.) → 14N (1+

g.s.) and 12N (1+
g.s.) → 12C (0+

g.s.) while
varying the strengths of the T = 0 and T = 1 components
of the tensor force. As shown in Fig. 1, B(GT) is sensi-
tive to the strength of the tensor force, which agrees with
previous work [25]. It is also interesting to notice that the
effects of the T = 0 and T = 1 tensor forces are different in
the allowed 14C → 14N and 12N → 12C β-decays. Figure 1(a)

FIG. 1. Calculated B(GT) (left) and Q (right) values of the
β decays of 14C → 14N and 12N → 12C as a function of the tensor
strength VT0 (in red) or VT1 (in blue). The experimental data [33] are
indicated by black dashed lines.

shows that the B(GT) value of 14C (0+
1 ) → 14N (1+

1 ) is sensi-
tive to VT0 but insensitive to VT1, while Fig. 1(b) shows that the
B(GT) value of 12N(1+

1 ) → 12C(0+
1 ) is sensitive to both of the

T = 0 and T = 1 tensor forces. From these two transitions,
along with the 12N(1+

1 ) → 12C(2+
1 ) decay shown in Fig. 1(c),

we obtain VT0 = 26.0 MeV and VT1 = 34.8 MeV by fitting
their experimental B(GT) values. The experimental B(GT) is
obtained by

B(F) + (
gA

gV
)2B(GT) = K/g2

V

f t
, (9)

where K/g2
V = 6170 [40] and |gA/gV| = 1.261 [41] are taken,

and B(F) is the strength of the Fermi transition in the decay.
In the present work, only 11C and 13N decays have the com-
ponent of the Fermi transition with B(F) = Z − N = 1 [42].

Our binding energies, and thus Qβ , are not sensitive to the
tensor force, in agreement with prior density functional theory
calculations [23]. Figure 2 shows the calculated ground-state
energies with and without the tensor force (using our de-
termined tensor force strengths) for the carbon and nitrogen
chains, compared with data [39]. This insensitivity indicates
that it is not necessary to refit the Gogny parameters with
respect to binding energies when the tensor force is added;
the main impact of the tensor force is in β-decay strengths.

Using these tensor force strengths, we have also calculated
the B(GT) values for other carbon isotopes. Table III shows
that the tensor force remarkably improves the β-decay cal-
culations compared with the D1S (without the tensor force
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FIG. 2. Shell-model calculations of the ground-state energies
(with respect to the 4He core) of carbon and nitrogen isotopes with
(indicated by D1S+T) and without (indicated by D1S) the tensor
force, along with experimental data [39].

included) and WBP predictions, especially for those with rel-
atively small B(GT) values. This indicates that tensor force is
essential to explaining systematics of the β-decay strengths in
this region, and that our interaction is consistent in this region
of the nuclear chart. However, the tensor force effects are
different for different decay systems. For example, the T = 0
component enhances the B(GT) value in the 10C decay, while
it suppresses the transition strengths of the 11,14C and 12,13N
decays. Moreover, in some cases (e.g., in 10,14C decays), the
T = 0 and T = 1 components have opposite contributions,
similar to the decay of 12N.

Besides transition strengths and decay energies, we have
also calculated the spectra of carbon isotopes (see Fig. 3). Re-
sults both with and without the tensor force agree reasonably
with experimental spectra [33] as well as those given with the
WBP interaction [15]. As with binding energies, the effect of
the tensor force on the spectrum is generally not significant.
The tensor force is a rank-2 interaction for the orbital angular
momentum, coupling configurations with �L � 2 [27]; thus

the magnitude of shifts in energies depends upon cross-shell
configuration mixing in the p-sd space.

To better understand the effects of the tensor force, we de-
compose the wave functions into components of total orbital
angular momentum L. Panels (a) and (b) of Fig. 4 show the
L decomposition for the 14C and 14N ground-state wave func-
tions: the 14C ground state is dominated by L = 0, 1, while
the 14N ground state is dominated by L = 2, consistent with
other p-shell calculations [5]. In the decomposition, without
considering the tensor force, we assign a positive sign to
each L component, i.e., assuming aL > 0. The tensor force
may change the sign of the wave function. For example, as
shown in Fig. 4, the sign of the L = 0 component in the 14N
ground state becomes negative when the T = 0 tensor force
is considered. It is also shown that the T = 0 tensor force
reduces significantly the amplitudes of the L = 0, 1 compo-
nents in 14N. As GT decay restricts �L = 0, this mismatch
in L between the initial and final states reduces the transi-
tion strength. The emergence of components with L � 2 in
14C(0+

g.s. ) and with L � 3 in 14N(1+
g.s. ) is due to cross-shell

mixing between the p and sd shells.
In Fig. 5, we plot the 14C(0+

g.s. ) → 14N(1+
g.s.) GT transi-

tion strength M(GT) defined by Eq. (8), as a function of
the maximum angular momentum Lmax considered in the
summation, i.e.,

M(GT) =
Lmax∑
L=0

Meff
L (GT), (10)

where Meff
L (GT) is the transition strength for a fixed angular

momentum L as in Eq. (8). As shown in Fig. 5, the transition
strength drops dramatically from Lmax = 0 to Lmax = 1 with
the T = 0 tensor force included (see the blue curve). This
is because the T = 0 tensor force changes the sign of the
L = 0 wave function in 14N (see Fig. 4), and then changes the
relative sign between Meff

L=0(GT) and Meff
L=1(GT), which leads

to a cancellation in the GT transition. Due this cancellation,
the contributions from L = 2, 3 channels become competitive.
The insert in Fig. 5 shows that the effective transition strengths
Meff

L at L = 2, 3 are comparable to the experimental data,
while higher-order effects from L � 4 channels are negligible.
Note again that the L � 2 channels can only come from the

TABLE III. Calculated B(GT) values within the p-sd model space, using the D1S Gogny interaction embedded with different components
of tensor force. T0 and T1 indicate the isospin T = 0 and T = 1 components of the tensor force, respectively. Also listed are experimental
data [33] and the results with WBP interaction.

Transition (Jπ
i , Ti) (Jπ

f , Tf ) D1S D1S+T0 D1S+T1 D1S+T1+T0 WBP Exp

10C → 10B (0+, 1) (1+, 0) 3.38 3.57 3.10 3.21 4.39 3.52
11C → 11B ( 3

2

−
, 1

2 ) ( 3
2

−
, 1

2 ) 0.438 0.405 0.447 0.374 0.894 0.364
12N → 12C (1+, 1) (0+, 0) 0.254 0.167 0.409 0.276 0.224 0.301

(1+, 1) (2+, 0) 0.112 0.0197 0.139 0.0288 0.00533 0.0276
13N → 13C ( 1

2

−
, 1

2 ) ( 1
2

−
, 1

2 ) 0.376 0.304 0.356 0.254 0.298 0.211
14C → 14N (0+, 1) (1+, 0) 1.38 0.0130 1.43 0.400 × 10−5 0.411 0.354 × 10−5

15C → 15N ( 1
2

+
, 3

2 ) ( 1
2

+
, 1

2 ) 0.176 0.283 0.215 0.299 0.191 0.302
( 1

2

+
, 3

2 ) ( 3
2

+
, 1

2 ) 0.327 0.0148 0.253 0.0530 0.0457 0.501 × 10−3
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FIG. 3. Shell-model calculations of spectra for carbon isotopes, with the effective interaction derived from the D1S Gogny interaction
without and with the tensor force, indicated by D1S and D1S+T, respectively. The experimental data [33] and calculations using the WBP
interaction [15] are shown for comparisons.

FIG. 4. L decomposition for the g.s. wave functions of 14C
(a) and 14N (b) in the β decay of 14C(0+

g.s. ) → 14N(1+
g.s. ). The symbols

of D1S, D1S+T1 and D1S+T1+T0 indicate the calculations with
the D1S interaction only, the T1 tensor force added and both T1+T0
tensor forces included, respectively.

space beyond the p shell, indicating the importance of cross-
shell matrix elements.

While we have focused on the coupling of different
L components via the tensor forces, another recent analysis fo-
cused on the role of isoscalar pairing [43], which can become
incoherent depending on the relative sign of specific interac-
tion matrix elements (in the case of the 14C GT transition,

FIG. 5. The calculated GT transition strength M(GT) =∑Lmax
L=0 Meff

L (GT) for the 14C(0+
g.s. ) → 14N(1+

g.s. ) decay, with and
without the tensor forces. The experimental transition strength
is extracted by Mexp = √

(2Ji + 1)Bexp(GT) [2].The insertion
displays the calculated individual effective transition strength Meff

L at
L = 2, 3, 4, separately, showing the cross-shell effects.
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FIG. 6. Similar to Fig. 4, but for the transition 12N(1+
g.s. ) →

12C(0+
g.s. ).

the j j-scheme matrix element 〈p3/2 p1/2|V |p1/2 p1/2〉J=1,T =0),
also leading to cancellations of GT matrix elements. In that
analysis one source of the incoherence is the tensor force,
consistent with both our work and that of Ref. [5].

We have also investigated the GT transition 12N → 12C,
which differs significantly from the decay of 14C. The ground
state of 12C has a dominant L = 0 component, but with a sig-
nificant subdominant L = 1 component, as seen in Fig. 6(a),
while the ground state of 12N is dominated by the L = 1
component (about 70% in the D1S calculation). Thus, unlike
14N where the tensor force suppresses the L = 0, 1 compo-
nents, this transition has significant overlap for L = 1 which
dominates the GT matrix element. This is another illustration
of the usefulness of L decomposition. Figure 7 shows that
the tensor force has only a minor effect on the calculated GT
transition strengths of the 12N β decay.

IV. SUMMARY

As an important ingredient of nuclear force, the tensor
interaction has been shown to play a role in many observations
of nuclear properties and processes. To study the tensor force
and cross-shell effects on β decays, we have calculated the
Gamow-Teller transition strengths of carbon isotopes using a
shell-model framework with a tensor force embedded in the
Gogny interaction.

We show that the tensor force plays a significant role in
the β decays of carbon isotopes, improving the description
of not only the anomalous lifetime of 14C but also nearby
nuclides. Furthermore, by decomposing the wave functions

FIG. 7. Similar to Fig. 5, but for the transition 12N(1+
g.s. ) →

12C(0+
g.s. ).

into components of total orbital angular momentum L we can
see more clearly the impact of the tensor force. The T = 0
tensor force changes the sign of the L = 0 component in
the 14N ground state, which leads to a cancellation in the
14C B(GT) calculation between contributions from L = 0 and
L = 1 channels. Consequently, cross-shell contributions from
the L = 2, 3 channels play an important role in the 14C GT
transition. However, the T = 1 component of the tensor force
is useful to describe β decays in nearby nuclides.

While the roles of the tensor force and cross-shell ma-
trix elements have been found in some previous calculations
[5,7–10,13], ab initio calculations found an important role for
three-nucleon forces [11,12]. In light of our results, it would
be interesting to revisit such ab initio frameworks and apply
similar L decompositions, as well as tracking Gamow-Teller
matrix elements in nearby nuclides. Such a comparison would
be further the goal of understanding the origin of the anoma-
lously long half-life of 14C.
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