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Reexamining the variational two-particle reduced density matrix for nuclear systems
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In most nuclear many-body methods, observables are calculated using many-body wave functions explicitly.
The variational two-particle reduced density matrix method is one of the few exceptions to the rule. Ground-
state energies of both closed-shell and open-shell nuclear systems can indeed be evaluated by minimizing a
constrained linear functional of the two-particle reduced density matrix. However, it has virtually never been used
in nuclear theory, because nuclear ground states were found to be well overbound, contrary to those of atoms
and molecules. Consequently, we introduced new constraints in the nuclear variational two-particle reduced
density matrix method, developed recently for atomic and molecular systems. Our calculations then show that
this approach can provide a proper description of nuclear systems where only valence neutrons are included.
For the nuclear systems where both neutrons and protons are active, however, the energies obtained with the
variational two-particle reduced density matrix method are still overbound. The possible reasons for the noticed
discrepancies and solutions to this problem will be discussed.
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I. INTRODUCTION

In all areas of modern theoretical quantum mechanics,
which comprises nuclear physics, quantum chemistry, and
condensed matter physics, many-body physics consist in the
study of correlated systems. They are induced by the two-
body interactions present between the fundamental particles
building the many-body system. The main problem arising
when one aims at solving the many-body problem in quantum
mechanics is practical: the number of the occupied orbitals
at basis level increases linearly with system size, which
causes the number of configurations necessary to precisely
represent the correlated many-body wave function to increase
exponentially.

In nuclear physics, most of the many-body methods are
based on the use of an explicit many-body wave function,
which is a solution of the many-body Schrödinger equa-
tion. Most popular methods are based on shell-model [1,2],
variational quantum Monte Carlo [3], and valence space
in-medium similarity renormalization group methods [4,5].
Other methods have been developed to recapture the features
of the many-body wave function with objects of reduced
size, such as with the coupled-cluster theory [6], where one
uses a similarity transformed Hamiltonian acting on a simple
reference state, for example a Hartree-Fock state, using an ex-
ponentiated operator. However, the coupled-cluster theory is
typically limited to the use of singles-and-doubles approxima-
tions [6]. Many-body wave functions are not strictly necessary
in order to calculate observables of many-body quantum sys-
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tems. Indeed, all one-body and two-body observables can
be exactly calculated using the two-particle reduced density
matrix (2RDM) [7–18]. In fact, the number of variables of the
2RDM functional scales only polynomially with the number
of basis orbitals, which is far less than the exponential increase
of basis configurations in configuration interaction methods.

The 2RDM method is equivalent to solving the
Schrödinger equation in order to obtain the many-body wave
functions. The ground-state energy is indeed a well-defined
linear functional of the Hamiltonian matrix and 2RDM
elements in the variational 2RDM method. For an N-body
system, the Hamiltonian can be written as

Ĥ =
∑

i j

ti ja
†
i a j + 1

2

∑
i jkl

Vi j;kl a
†
i a†

j alak . (1)

And, the energy of the system can be expressed as [14]

E (�) = Tr �H (2) = 1

4

∑
i jkl

�i j;kl H
(2)
i j;kl , (2)

where the 2RDM elements appear,

�i j;kl = 〈�N |a†
i a†

j alak|�N 〉, (3)

along with the reduced Hamiltonian two-body matrix ele-
ments,

H (2)
i j;kl = 1

N − 1
(δikt jl − δil t jk − δ jktil + δ jl tik ) + Vi j;kl , (4)

where t is the one-body kinetic energy operator and V is
the two-body interaction, containing the Coulomb force for
atomic systems and the Coulomb plus nuclear force for nu-
clear systems, and N is the number of electrons or nucleons.
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The 2RDM was introduced by Löwdin, Mayer, and Cole-
man in the early days of many-body quantum physics [7,9,19].
One hereby exploits the fact that a trial 2RDM can be consid-
ered as a variable to obtain the ground-state energy without
using many-body wave functions. The 2RDM can then be
obtained from a minimization procedure, arising from the
variational principle, and hence is equivalent to solving the
full many-body Schrödinger equation [19]. However, contrary
to initial expectations, the trial 2RDM, obtained by minimiz-
ing energy and subject only to wave function normalization, is
very different from the exact 2RDM arising from many-body
wave function eigenstates. In fact, even in weakly corre-
lated atoms and molecules, correlation energy is too large
by orders of magnitude [20]. It then became clear that the
2RDM obtained by energy minimization must be constrained
by additional rules (or conditions) in order to reproduce the
physical 2RDM. Coleman described these necessary and suf-
ficient conditions as N-representability conditions [9], i.e.,
that the 2RDM functional is associated to a physical many-
body wave function. However, it was demonstrated that, in
practice, demanding an 2RDM functional to fulfill exactly
N-representability conditions is as difficult as solving the
many-body Schrödinger equation [21]. Approximate methods
thus had to be devised for 2RDM-based methods to be useful
in practice.

Research on 2RDM methods has been systematically done
for 50 years on atomic and molecular electronic systems
[9,11,22], which allowed to identify the most important non-
trivial conditions needed to constrain the 2RDM functional.
These conditions consist in positive semidefinite operators,
whose expectation value thus has to be non-negative when
evaluated with a 2RDM. Moreover, they can be systemat-
ically arranged in a hierarchy where each level yields an
increasingly tighter lower bound on the exact ground-state
energy [15,16,18,23–25]. However, limitations in optimiza-
tion software and computer resources prevented the practical
development of the 2RDM method for several years. Signif-
icant progress has been made over the last decade in 2RDM
methods, as the possible use of powerful computers allowed
to devise numerical schemes otherwise impossible to apply
in practice [8,10,14–18,25–29]. Two approaches have been
developed to calculate the ground state 2RDM: (i) variational
2RDM with energy minimization [10,17,18] and (ii) non-
variational approaches based on solutions of the contracted
Schrödinger equation [8,26,27]. In the present work, we focus
on the variational 2RDM method. The variational 2RDM min-
imization problem with positivity constraints can be treated
by a special class of optimization techniques known as
semidefinite programming [10,14,15,23,30]. Note that these
optimization schemes also have applications in control theory
[31], combinatorial optimization [32], and finance [33].

The first 2RDM calculations of nuclear systems were
devised in the 1970s [34]. However, the obtained ground-
state energies were typically overbound by several MeV, and
even sometimes tens of MeV. It was then clear that the
variational 2RDM method could not compete with config-
uration interaction methods effected in small model spaces,
for example, with which tremendous success was obtained
in the description of p [35], sd [36], and psd crossed-shell

nuclei [37,38]. Many works [39–43] have been tried to imple-
ment the 2RDM technique using a truncated time-dependent
Bogoliubov-Born-Green-Kirkwood-Yvon approach together
with an adiabatic method for the ground state of nuclear
systems. However, there has been no variational 2RDM cal-
culation of nuclear systems for a long time. Nevertheless,
shell-model approaches have not solved the many-body prob-
lem in the nuclear chart. Indeed, even with the most powerful
machines, shell-model calculations in large model spaces can-
not be performed at present without model space truncations
[1]. The situation is even more drastic for heavy nuclei, where
only mean-field-based methods can be applied in systematic
calculations [44–48]. Consequently, one can still find interest
in the use of the variational 2RDM method even in our era of
intense numerical calculations.

The 2RDM method is a powerful many-body method for
the description of atomic and molecular systems [8,10,14–
18,26,27]. The precision of 2RDM calculations is, in fact,
comparable with coupled-cluster with singles-and-doubles
approximations for these weakly correlated systems. Further-
more, it has been shown that variational 2RDM calculations
can capture many-electron excitations in the calculations of
atomic systems [10]. The variational 2RDM has also been
successfully applied in the context of the pairing model [49].
In the present paper, we employ the variational 2RDM for nu-
clear systems. The partial three-particle T1 and T ′

2 conditions
are first considered in the variational 2RDM calculations for
the nuclear systems. Systematic calculations are performed
using variational 2RDM with different conditions for nuclear
systems.

This paper is constructed as follows: We introduce the
variational 2RDM method in Sec. II at the theoretical level.
The used N-representability conditions, fundamental to de-
termine the 2RDM by energy minimization, are described.
The standard 2-positivity and 3-positivity N-representability
conditions developed for the study of molecular systems
and which we use afterwards in nuclei are presented. The
computational method used for constrained energy minimiza-
tion, based on the semidefinite optimization boundary point
method, is shortly dealt with. Results are shown in Sec. III,
where ground states of nuclear Hamiltonians based on cluster-
orbital shell-model (COSM) and standard shell-model (SM)
frameworks are considered. The energies obtained with both
2RDM and exact full configuration interaction methods are
compared. One will see that the quality of results largely
differs according to the nuclear system considered. The in-
fluences of the 2-positivity and 3-positivity N-representability
conditions on nuclear ground states are emphasized for that
matter. Plans for future use of the variational 2RDM are then
depicted. Conclusions are made afterwards.

II. METHOD

In this section, we introduce the theoretical details
underlying the variational 2RDM framework. Standard N-
representability conditions, as well as the energy optimization
procedure, belonging to the class of semidefinite optimization
boundary point methods are presented and extended to the
case of nuclear systems.
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A. Variational 2RDM method

The energy of a many-body system is a linear functional of
the reduced density matrix. For a two-body Hamiltonian, the
ground-state energy Eg can be written as

Eg = Tr[H 2�] = Tr[H (2) 2�], (5)

where H (2) is the two-body reduced Hamiltonian and 2� is
two-particle reduced density matrix. The definition of the H (2)

and 2� operators can be found in Eqs. (3) and (4). The only
difference from atomic and molecular systems is that one
has both valence proton and neutron occupied states [34]. In
nuclear physics, we typically treat the many-body problem by
including the nuclear interaction as a two-body operator (the
three-body force is present by way of a normal-order approach
in realistic calculations [50]). The 2RDM is then sufficient
to calculate all the observables related up to a one-body or
two-body operator.

An arbitrary 2RDM is, in general, not associated to a many-
body wave function, so that the use of an underconstrained
2RDM typically leads to overbound ground states [20,34,51].
Conversely, except for the trivial case of noninteracting par-
ticles, the minimization of the energy in Eq. (5) with respect
to the 2RDM provides the exact ground-state energy if the
energy minimization is given by constraining Hamiltonian
expectation values over all possible N-representable 2RDMs:

Eg = min
2�∈2DN

Tr[H (2) 2�], (6)

where 2DN contains all the 2RDM functionals generated by
a many-body wave function. To show that a given 2RDM
belongs to 2DN , one would have to check that the expectation
value of all combinations of creation and annihilation oper-
ators is positive or equal to zero. Clearly, this is as difficult
as solving the many-body Schrödinger equation, so Eq. (6)
is only of theoretical interest. Therefore, in practice, one
replaces 2DN by the set of 2RDM functionals verifying a
subset of N-representability conditions, which consist in the
N-representability conditions developed in molecular 2RDM
variational approaches [21,22,52].

B. N-representability conditions
and many-body quantum numbers

In 1932, von Neumann showed that a general matrix is
a density matrix only if it fulfills the following conditions
[53]: the matrix must be (i) Hermitian, (ii) normalized (fixed
trace), (iii) antisymmetric (fermions) or symmetric (bosons)
under particle exchange, and (iv) positive semidefinite to yield
non-negative probabilities to find particles. Variational mini-
mization of the energy in Eq. (6) with respect to the 2RDM
constrained by von Neumann conditions thus provides the
exact ground-state energy. The positive semidefinite character
of � is called the P condition [9,21].

The 2RDM can be mapped onto the one-particle reduced
density matrix (1RDM) through operator contractions:

ρ
(ν)
i j = 1

A − 1

∑
k

�ik; jk, (7)

where ν stands for proton or neutron and A is the number
of nucleons. Consequently, one obtains that the 1RDM is
positive semidefinite, i.e., � � 0 ⇒ ρ (ν) � 0. Moreover, the
density normalization implies that the trace of the proton (neu-
tron) 1RDM must be equal to the proton (neutron) number:

Trρ (ν) = Nν . (8)

For simplicity, one will no longer state in the following
whether a creation or annihilation operator is related to pro-
ton or neutron states, even though this must be effected in
practice.

Additional ensembles of N-representability conditions can
be obtained by considering the positivity of operators related
to the 2RDM. Different representations of pRDMs can be
easily defined using second quantization [16]. For example,
let us consider the metric (or overlap) matrices M defined by

Mi j = 〈�i|� j〉 = 〈�|CiC
†
j |�〉, (9)

from the set of basis functions

〈�i| = 〈�|Ci, (10)

where each Ci is a product of p creation and/or annihilation
operators. When Ci are products of p creation operators, the
metric matrix in Eq. (9) is the pRDM. Added to that, one
can generate p additional metric matrices if the Ci become
products of p second-quantized operators having different
numbers of creation and annihilation operators. These p + 1
metric matrices must be positive semidefinite [16,54,55]. The
demanded positivity of all the considered metric matrices of
order p is donated as the p-positivity condition.

Two independent classes of matrices can be constructed to
impose the 1-positivity condition, defined as

ρi j = 〈
�

ρ
i

∣∣�ρ
j

〉 = 〈ψ |a†
i a j |ψ〉, ρ � 0, (11)

qi j = 〈
�

q
i

∣∣�q
j

〉 = 〈ψ |aia
†
j |ψ〉, q � 0, (12)

where |�ρ
j 〉 and |�q

j〉 are (N − 1)- and (N + 1)-particle basis
functions, respectively. ρi j corresponds to the 1RDM, whereas
qi j can be expressed as a linear function of ρi j by using the
anticommutation relations:

qi j = δi j − ρi j . (13)

The 1-positivity condition, embodied by the two metric ma-
trices (ρi j and qi j), implies that the eigenvalues of a fermionic
1RDM are between zero and 1.

Three independent metric matrices can also be generated
from the operators Ci out of the 2-positivity condition. They
consist of the P, Q, and G matrices:

Pi j;kl = 〈
�P

i j

∣∣�P
kl

〉 = 〈ψ |a†
i a†

j alak|ψ〉, P � 0, (14)

Qi j;kl = 〈
�

Q
i j

∣∣�Q
kl

〉 = 〈ψ |aia ja
†
l a†

k |ψ〉, Q � 0, (15)

Gik;l j = 〈
�G

i j

∣∣�G
kl

〉 = 〈ψ |a†
i aka†

j al |ψ〉, G � 0, (16)

where |�P
kl〉, |�Q

kl〉, and |�G
kl〉, are (N − 2)-, (N + 2)-, and

N-particle basis functions, respectively. The P matrix is the
2RDM, and the Q and G matrices can be rewritten as a func-
tion of the 1RDM and 2RDM by reordering the creation and
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annihilation operators using anticommutation relations. One
then obtains the following linear maps:

Qi j;kl = δikδ jl − δ jkδil + Pi j;kl

− (δikρ jl − δilρ jk − δ jkρil + δ jlρik ), (17)

Gi j;kl = δ jlρik − Pil;k j . (18)

The metric matrices associated to the 3-positivity condition
read similarly to Eqs. (14)–(16):

3Di jk;lmn = 〈�|a†
i a†

j a
†
kanamal |�〉, 3D � 0, (19)

3Ei jk;lmn = 〈�|a†
i a†

j aka†
namal |�〉, 3E � 0, (20)

3Fi jk;lmn = 〈�|a†
i a jaka†

na†
mal |�〉, 3F � 0, (21)

3Qi jk;lmn = 〈�|aia jaka†
na†

ma†
l |�〉, 3Q � 0, (22)

where 3D and 3Q are the three-particle (3p) RDM and
three-hole (3h) RDM, respectively, and 3E and 3F are gen-
eralizations of the G matrix. In practice, however, the full
3-positivity condition is too cumbersome to apply. As a conse-
quence, the two less stringent conditions T1 and T2, originally
proposed by Erdahl [52] and implemented for small atoms and
molecules by Zhao et al. [22], are used in practical calcula-
tions. They read

(T1)i jk;lmn = 3Di jk;lmn + 3Qi jk;lmn, T1 � 0, (23)

(T2)i jk;lmn = 3Ei jk;lmn + 3Fi jk;lmn, T2 � 0, (24)

which are both positive semidefinite. The fundamental interest
of Eqs. (23) and (24) is that the effected summation of the
considered 3-positive metric matrices causes their connected
(or cumulant) part to cancel exactly, so that both the T1 and the
T2 metric matrices can be rewritten as a function of the 1RDM
and 2RDM only:

(T1)i jk;lmn = δknδ jmδil − δkmδilδ jn + δinδkmδ jl

− δknδimδ jl + δ jnδimδkl − δinδ jmδkl

− (δknδ jm − δ jnδkn)ρil + (δknδim − δinδkm)ρ jl

− (δ jnδim − δinδ jm)ρkl + (δkmδ jl − δ jnδkl )ρim

− (δknδil − δinδkl )ρ jm + (δ jnδil − δinδ jl )ρkm

− (δ jlδkm − δ jmδkl )ρin + (δkmδil − δimδkl )ρ jn

− (δ jmδil − δimδ jl )ρkn + δknPi j;lm

− δ jnPik;lm + δinPjk;lm − δkmPi j;lm

− δ jmPik;ln − δimPjk;ln + δkl Pi j;mn

− δ jl Pik;mn + δil Pjk;mn, (25)

(T2)i jk;lmn = (δilδ jm − δimδ jl )ρkn

− δknPi j;lm − δil Pkm;n j

− δ jl Pkm;ni + δimPkl;n j − δ jmPkl;ni. (26)

The T1 and T2 conditions are, however, inferior to the full 3-
positivity condition, since they imply the positive semidefinite
character of the expectation value of the sum CiC

†
j + CjC

†
i

with a trial 2RDM, and not that of its individual terms, equal to
CiC

†
j and CjC

†
i . Usually, an enhancement of the T2 condition,

denoted as the T ′
2 condition, is used instead of the T2 condition.

The T ′
2 condition arises from the addition of a one-particle

operator in the metric defining T2. In the T ′
2 condition, the

positive semidefinite form is equal to

(Ci + Bi )
†(Cj + Bj ) + CjC

†
i , (27)

where Bi is a one-body operator. The positive semidefinite
character arising from Eq. (27) translates into a matrix pos-
itivity condition:

T ′
2 =

(
(T2)i jk;lmn Pi j;rk

P†
sn;lm ρsr

)
� 0. (28)

One can check that the use of T2 or T ′
2 virtually has the same

numerical cost. For more theoretical and historical details, we
refer the reader to Ref. [55].

Nuclear wave functions are subject to particle number con-
servation, which can be expressed with the particle and pair
number operators N̂ν and N̂νν , respectively, reading

N̂ν =
∑
αν

a†
αν

aαν
, (29)

N̂νν =
∑

αν<βν

a†
αν

a†
βν

aβν
aαν

, (30)

where ν represents proton or neutron. Many-body systems
obey rotational symmetries as well; i.e., the total angular
momentum operator J and total isospin operator T (in the
absence of the Coulomb force for the latter) are conserved
quantities. As the expectation values of the operators associ-
ated to conservation laws are linear with respect to the 2RDM,
they can be directly included as constraints:

〈�|N̂νν |�〉 = Tr �νν = Nν (Nν − 1)

2
, (31)

〈�|N̂Ẑ|�〉 = Tr �pn = NZ, (32)

〈�|Ĵ2|�〉 = Tr Ĵ2� = J (J + 1), (33)

〈�|T̂ 2|�〉 = Tr T̂ 2� = T (T + 1), (34)

where Nν = Z or Nν = N , and the isospin conservation is used
only in the absence of the Coulomb force. Note that proton
and neutron number conservation, embodied in Eq. (8), is a
direct consequence of Eqs. (7), (31), and (32). In particular,
this implies that 〈�|N̂2

ν |�〉 = 〈�|N̂ν |�〉2, as 2N̂νν = N̂2
ν − N̂ν

[see Eqs. (29) and (30)].
Variational 2RDM calculations can be constrained using

different conditions. Calculations using the P, Q, and G
2-positive conditions, combined with the quantum number
conservation conditions of Eqs. (31)–(34), are denoted by
PQG. The inclusion of T1 or T ′

2 , or T1 and T ′
2 are denoted by

PQGT1, PQGT ′
2 , and PQGT1T ′

2 , respectively.
Even though Eqs. (14)–(16), (23), and (28) make only use

of 1RDM and 2RDM, they cannot be used directly in practice.
This arises because their computational cost increases quickly
with the number of one-body basis states. Indeed, for a num-
ber of one-body basis states equal to s, the memory needed
to store matrices using PQG (PQGT1, PQGT2, PQGT1T ′

2 )
matrices is O(s4) [O(s6)] while the time of calculation scales
as O(s6) [O(s9)], and is independent of the number of va-
lence nucleons. These estimates arise because up to four (six)
creation and/or annihilation operators are present in PQG
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(PQGT1, PQGT2, PQGT1T ′
2 ) operators, on the one hand, and

because one has to diagonalize the PQG (PQGT1, PQGT2,
PQGT1T ′

2 ) matrices in the constrained energy minimization
procedure (see Sec. II C), on the other hand, along with a
linear system to solve of similar computational cost [51].

Consequently, it is necessary in practice to couple angu-
lar momenta in Eqs. (14)–(16), (23), and (28). Atomic and
molecular systems are considered in the LS scheme as spin
S and orbital L angular momenta can be considered as good
quantum numbers [51]. Conversely, in nuclear systems, only
the total angular momentum J is conserved, so that one uses a
j j coupling scheme, i.e., one works in the J scheme. Coupling
algebra for that matter is standard, as it makes use of the
Wigner-Eckart theorem only, so that the obtained equations
are defined from the J-coupled 1RDM and 2RDM, Wigner
signs, and three-body coefficients of fractional parentage [51].
The obtained reduction in the demanded memory and time of
calculation is huge, as the memory and time of calculation
for the PQG (PQGT1, PQGT2, PQGT1T ′

2 ) case are now O(r4)
[O(r6)] and O(r6) [O(r9)], respectively, with r the number of
orbitals. Indeed, the ratio s/r, which is the average number of
states in one basis orbital, is around 5, so that the gain in com-
putational cost can easily reach 104–105 [51]. However, the
use of PQGT1, PQGT2, or PQGT1T ′

2 conditions still remains
more expensive that of PQG by a large factor, which can
reach 100–1000, as one can have tens of orbitals in practical
calculations [51]. Consequently, it is customary to impose
only PQG conditions in atomic and molecular conditions
[23,51]. However, we will see in the following that T1 and
T ′

2 conditions can barely be ignored in nuclear systems (see
Sec. III).

C. Semidefinite optimization

In the variational reduced density matrix theory, the energy
of Eq. (5) is minimized with respect to the 2RDM subject to
the constraints outlined above. The solution of the Eg problem
is then a semidefinite linear optimization problem with con-
straints. The primal formulation of this problem, i.e., where
the 2RDM is considered as a variable to optimize, can be
expressed as

minimize Eg = Tr H�,

such that A� = X,

with X � 0, (35)

where � is the primal solution vector and H is the Hamiltonian
which contains the one-body and two-body matrix elements.
The constraint matrix A and constraint vector X encode the
N-representability conditions and the equalities of Eqs. (31)–
(34) associated to conserved quantum numbers that the �

matrix must satisfy. The operator X maps the primal solutions
onto the set of positive semidefinite RDMs:

X =

⎛
⎜⎜⎜⎜⎜⎝

P 0 0 0 0 0
0 Q 0 0 0 0
0 0 G 0 0 0
0 0 0 T1 0 0
0 0 0 0 T ′

2 0
0 0 0 0 0 C

⎞
⎟⎟⎟⎟⎟⎠

, (36)

where C represents the action of the operators associated to
conserved quantum numbers, as it can be written as C� = 0
[see Eqs. (31)–(34)]. To find the � matrix, one will apply the
boundary point positive semidefinite algorithm. The boundary
point method is actually an instance of a more general class
of augmented Lagrangian approaches for solving the positive
semidefinite problem [10,23,51,56]. The standard Lagrangian
for the positive semidefinite problem can be written as

L = Tr H� + � · (X − A�), (37)

to minimize the H� functional and where a Lagrangian multi-
plier matrix � is introduced to account for constraints. While
Eq. (37) would provide the � matrix from a theoretical point
of view, it cannot be used in practice because the convergence
would be very poor, or even nonexistent numerically [57].
This arises because the functional of Eq. (37) is not convex;
i.e., it does not resemble a paraboloid in the vicinity of the
sought minimum [57].

To account for this problem, the augmented Lagrangian
method for primal problems has been developed. For this, one
adds a quadratic penalty for the so-called infeasibility, i.e., the
fact that � does not belong to the set of acceptable solutions
during optimization because A� �= X [22]:

L = Tr H� + � · (X − A�) + σ

2
||X − A�||2, (38)

where a penalty parameter, σ > 0, is introduced and deter-
mines how stringently the N-representability constraint is
enforced. As Eq. (38) is quadratic in �, its minimum is
straightforward to find with standard minimization methods
if X is kept fixed [51]. X is then obtained as a second step
also from the minimization of Eq. (38), but by keeping �

fixed [51]. In particular, X positivity is enforced by way of
a diagonalization procedure and matrix manipulations, where
the negative eigenvalues of the P, Q, G, T1, and T ′

2 metric ma-
trices and the nonzero eigenvalues of the C matrix in Eq. (36)
are replaced by zero [23,51]. σ is modified at each iteration
according to the values of ∇L and ||X − A�|| to accelerate
convergence [51,58]. One then obtains an iterative procedure,
where, at each iteration, � is the minimum of a slightly dif-
ferent problem than that of Eq. (35) with ||A� − X || → 0 at
convergence (see Refs. [23,51] for details).

The boundary point method has been successfully used
in the variational 2RDM calculations for atomic systems, as
the calculated ground-state energies agree well with those
obtained from those implemented from full configuration in-
teraction approaches [17,23,30].

The number of iterations to reach convergence when using
the augmented Lagrangian method is about one to a few thou-
sands for atomic and molecular systems [23,51]. The situation
is similar when applying this method to nuclei according
to our numerical tests. However, the number of iterations
can easily reach 104 due to the rather large strength of the
nucleon-nucleon interaction. Added to that, it can happen that
the augmented Lagrangian method does not converge when
N-representability constraints are not sufficiently strong (see
Sec. III).

Because the variational 2RDM conditions are independent
of a reference wave function, they can treat both moderate and
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strong coupling systems, such as atomic and nuclear systems.
Furthermore, closed-shell and open-shell systems, as well as
nuclei with an even or odd number of protons and neutrons,
are treated equally in the variational 2RDM calculations, so
that it is as general as configuration interaction methods from
that point of view. This is in contrast with coupled-cluster
theory, for example, where a reference state is used and only
closed-shell systems plus or minus one to two nucleons can
be used [6].

III. RESULTS

A. Variational 2RDM calculations with cluster-orbital
shell-model Hamiltonian

The first example is considered with a phenomenological
Hamiltonian for simplicity, where one uses the core plus va-
lence particle picture. We then apply the variational 2RDM
method using the COSM Hamiltonian, which is the natural
framework when using core and valence nucleons with an
effective Hamiltonian [59]. The COSM coordinates of the va-
lence nucleons are defined from the center of the core nucleus,
and the kinetic energy of the center of mass motion is sub-
tracted from the total A-body Hamiltonian. As a consequence,
no center of mass motion can arise in the COSM. In fact,
the COSM coordinates form a set of Jacobi coordinates. The
Hamiltonian in the COSM frame reads

Ĥ =
Nval∑
i=1

(
p̂2

i

2μi
+ Û (c)

i

)
+

Nval∑
i< j

(
V̂i j + p̂i · p̂ j

Mc

)
, (39)

where Nval is the number of valence nucleons, μi is the re-
duced mass of the ith nucleon with respect to the core, and
Mc is the mass of the core. The single-particle potential Û (c)

i
mimics the field generated by the core on each nucleon. It is
represented by a Woods-Saxon (WS) potential with a spin-
orbit term. V̂i j is the two-body residual interaction, which is
composed of the nucleon-nucleon interaction and the two-
body Coulomb interaction. The additional two-body kinetic
term in Eq. (39), depending on Mc, is the recoil term of
the COSM Hamiltonian and arises from the translationally
invariant character of the COSM framework.

As we aim at comparing the numerical results arising
from the variational 2RDM method in nuclear systems to
exact eigenenergies, it is sufficient to consider a simple
nucleon-nucleon interaction for Vi j . Thus, the surface Gaus-
sian interaction (SGI) [60] is used:

VSGI(ri − r j ) = V0 exp

[
−

(
ri − r j

μI

)2]
δ(ri − r j − 2R0),

(40)
where μI is the interaction range, V0 is the strength of the
interaction, and R0 is the nuclear radius. In the present work,
we fix the interaction range and nucleus radius to μI = 1 fm
and R0 = 2 fm, respectively. V0 is adjusted to reproduce the
selected experimental data.

As a first application of the variational 2RDM method, we
compare the variational eigenenergies of 6,8He ground states
obtained in the variational 2RDM method with shell-model
results, which can be deemed as exact for that matter. 4He is

TABLE I. Ground-state energies of 6,8He (in MeV), calculated
with SM and variational 2RDM methods using the COSM Hamil-
tonian. Variational 2RDM calculations are constrained with PQG
conditions. Experimental data [62] are also provided.

Nuclei PQG SM Expt.

6He −1.090 −0.974 −0.975
8He −5.845 −5.795 −3.289

selected as the inner core, and the parameters of the one-body
WS potential mimicking the core are taken from Ref. [61].
Calculations are performed in a model space spanned by the
sp partial waves. For each partial wave, six harmonic oscil-
lator (HO) shells are used. The model space consists of 17
orbitals, excluding the core space. The V0 coupling constant of
the SGI interaction is adjusted to reproduce the binding energy
of 6He [62]. Its strength is equal to −435 MeV.

Results obtained with variational 2RDM and shell model
are shown in Table I, along with experimental data [62]. Due
to the small model space used, the obtained 8He ground-state
energy is overbound in our calculations when compared with
experimental data [62]. However, this is not important for
our purpose as we only aim at benchmarking the variational
2RDM results with exact energies. We can see that the vari-
ational 2RDM calculations of 6,8He are close to the exact
COSM results, where the largest difference is about 100 keV.

Let us now compare partial wave occupation in variational
2RDM and COSM frameworks for 8He. For this, one per-
forms several COSM calculations in truncated spaces, where
one allows 0, 1, . . . , 4 neutrons in orbitals outside the 0p
shell. These truncated spaces are labeled by 0p0h, . . . , 4p4h,
respectively. Normalized occupation of the sp partial waves
are shown in Fig. 1(b). Normalized occupations are obtained
by being divided by the number of valence particles. As can
be expected, the occupation of s1/2 and p1/2 partial waves in-
creases with the size of the model space, as they are generated
by the configuration mixing induced by the nucleon-nucleon
interaction. Occupations of sp partial waves in the variational
2RDM and COSM methods become close in 3p3h and 4p4h.
At the same time, the ground-state energy of 8He is almost the
same in both methods. This means that the 2RDM calculation
of the ground state obtained with PQG conditions is close to
the exact 2RDM. Hence, in this case, the variational 2RDM
allows to calculate almost exactly the ground-state energy of
8He, even when the simplest variational 2RDM framework is
used, where only the N-representability PQG conditions are
constrained.

In the calculations of 6,8He ground states, only neutrons
are considered in the valence space. Consequently, it is inter-
esting to consider a nucleus in which both valence protons
and neutrons are present. Thus, we performed variational
2RDM calculations for the 8Be ground state, where two va-
lence protons and two valence neutrons are present outside
the 4He core. The same COSM Hamiltonian as for 6,8He is
used for 8Be, except that the Coulomb force is added in proton
space. The model space used for protons is also the same
as that of neutrons. The ground state of 8Be obtained in the
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FIG. 1. Energy and normalized occupations of 8He ground state
using SM and variational 2RDM calculations. COSM calculations
(brown diamonds) are performed using different truncation schemes
from 0p0h to 4p4h (exact). Variational 2RDM calculations (red dia-
mond) are constrained with PQG conditions.

variational 2RDM with PQG conditions are presented in
Fig. 2, along with COSM calculations with different trun-
cations. We can see that the ground-state energy of 8Be
calculated using variational 2RDM with PQG condition is
close to the exact results. However, the calculated normalized
occupations (see Fig. 3) show that large differences occur
between COSM and variational 2RDM calculations. A large
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FIG. 2. Similar to Fig. 1(a), but for 8Be.
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FIG. 3. Similar to Fig. 1(b), but for proton and neutron occupa-
tions in 8Be.

percentage of s1/2 partial wave occupation occurs using vari-
ational 2RDM, of about 12%, while it is only about 2% in
the exact wave function provided by diagonalization within
COSM. Consequently, the occupation of p3/2 partial waves is
reduced due to the large s1/2 component in the 2RDM calcu-
lation, while that of the p1/2 partial is almost the same in both
variational RDM and COSM calculations. This discrepancy
translates into an energy overbinding of the 8Be ground state
using the variational 2RDM method (see Fig. 2). Indeed, the
8Be ground state obtained with the variational 2RDM method
is too bound by 1.7 MeV compared with the COSM calcula-
tion. Thus, this energy overbinding is generated by spurious
couplings mainly involving the s1/2 and p3/2 partial waves.

Hence, to obtain precise partial wave occupations of the
8Be ground state using the variational 2RDM, it is necessary
to include higher-order conditions [22,52] or Hamiltonian-
based constraints, i.e., inequalities involving the expectation
value of two-body operators deduced from the variational
principle [63]. However, the computational cost of the varia-
tional 2RDM induced by the T1 and T ′

2 conditions is expensive
when more than a few basis orbitals are present (see Sec. II B),
so we could not include these constraints in the variational
2RDM calculations using the COSM Hamiltonian.

The variational 2RDM calculations with PQG condi-
tion could provide good descriptions of 6,8He ground-state
energies. The partial wave occupations obtained with the vari-
ational 2RDM method are close to those arising from COSM
calculations using many-body wave functions. For 8Be, the
obtained energy with the variational 2RDM method is close
to the exact value. However, the partial wave occupations
obtained therein show discrepancies when compared to exact
values.

B. Variational 2RDM calculations
with USDB shell-model interactions

The variational 2RDM calculations with PQG conditions
can provide the ground-state energies of 6,8He and 8Be using a
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TABLE II. Ground-state energies of oxygen isotopes, calculated
with the variational 2RDM method using the USDB interaction.
Variational 2RDM calculations are constrained with PQG, PQGT1,
PQGT ′

2 , or PQGT1T ′
2 conditions. The star indicates that the varia-

tional 2RDM does not converge using the considered constraints.
Results are compared with SM calculations.

Nuclei 20O 22O 24O 26O

PQG −30.344 −58.055 ∗ *
PQGT1 −29.701 −36.404 −42.317 *
PQGT ′

2 −23.712 −34.554 −41.257 −40.869
PQGT1T ′

2 −23.712 −34.554 −41.256 −40.866
SM −23.632 −34.498 −41.225 −40.868

COSM Hamiltonian within a model space built from sp partial
waves. However, the partial wave occupations obtained for
8Be are different from the exact values by about 10%. This
discrepancy might arise from the fact that one has both va-
lence protons and neutrons or because we only constrained the
variational 2RDM calculation using PQG conditions. Hence,
one would like to be able to apply T1 and T ′

2 conditions
as well. For this, one can only have a few basis orbitals,
as otherwise calculations become too expensive numerically.
Consequently, we will study the variational 2RDM method
using the USDB interaction [64] as a testing ground. The
USDB interaction is a standard shell-model interaction for
sd-shell nuclei, which can provide good descriptions of the
nuclei, such as their the binding energies and spectra [64].
The model space for valence protons and neutrons consists of
the 0d5/2, 1s1/2, and 0d3/2 shells in the USDB interaction, so
that the small number of basis orbitals makes this framework
convenient to study the effect of T1 and T ′

2 conditions.
For the USDB interaction, the Hamiltonian is written as

Ĥ = Ĥ0 + Ĥ1, (41)

where Ĥ0 represents the single-particle energies of orbitals
in the model space, and Ĥ1 is the residual two-body interac-
tion. Isospin-breaking effects are not considered in the USDB
interaction [64]. In the present work, we first consider the
ground-state energies of even-even oxygen isotopes, in which
the nuclei only have valence neutrons; after that, we focus
on the N = Z even-even nuclei, thus bearing both valence
protons and neutrons, which consist of 20Ne, 24Mg, 28Si, and
32S. Due to the isospin-conserving character of the USDB
interaction, the configurations of valence neutrons and protons
are the same in N = Z nuclei. In the latter results, we then just
show the normalized occupations of valence neutrons.

The calculated ground-state energies of oxygen isotopes
using variational 2RDM with different N-representability
conditions are presented in Table II and Fig. 4. The results
are also compared with the exact values computed from a SM
calculation. We focus on the 20–26O even-even isotopes in the
oxygen chain. For 24,26O, the variational 2RDM calculations
using PQG and/or PQGT1 conditions are not shown because
one could not obtain convergence of the variational 2RDM
method. From Fig. 4 and Table II, we can see that the results
using variational 2RDM calculations with PQG conditions
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FIG. 4. Variational 2RDM calculations of oxygen isotopes
with different N-representability conditions, i.e., PQG, PQGT1,
PQGT ′

2 , and PQGT1T ′
2 constraints. Results are compared with SM

calculations.

are overbound when compared with the exact results. For
example, the ground-state energy of 22O is overbound by
about 25 MeV, which is excessively large. The situation can
be slightly improved by including the T1 condition in PQG,
but the results of variational 2RDM calculations with PQGT1

are still overbound by a few MeV. The energy overbinding is
fully overcome in the variational 2RDM by including the T ′

2
condition. The results of the variational 2RDM with PQGT ′

2
and PQGT1T ′

2 are indeed very close to the exact results,
with differences within 100 keV. One can also note that the
results obtained using the PQGT1T ′

2 and PQGT ′
2 conditions

are nearly the same. This is consistent with the conclusions
obtained in the study of molecular systems [12,13,51].

Let us now consider partial-wave occupations (see Fig. 5).
The variational 2RDM calculations obtained with PQGT ′

2 or
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FIG. 5. Calculated normalized occupations of the ground-state
energies of oxygen isotopes using variational 2RDM, with different
N-representability conditions, and SM.
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TABLE III. Similar to Table II, but for the N = Z even-even
nuclei 20Ne, 24Mg, 28Si, and 32S.

Nuclei 20Ne 24Mg 28Si 32S

PQG −44.160 −129.809 −243.363 −219.061
PQGT1 −44.167 −129.808 ∗ −219.058
PQGT ′

2 −41.536 −91.656 −142.332 −186.186
PQGT1T ′

2 −41.537 −91.672 −142.314 −186.314
SM −41.397 −87.104 −135.861 −182.452

PQGT1T ′
2 are close to the exact results. However, the calcula-

tions with PQG or PQGT1 do not give accurate calculations.
In Table II, the detailed values of the obtained ground-state
energies are presented. We can see that the largest difference
is about 80 keV (which happens in 20O) when the variational
2RDM calculations using PQGT1T ′

2 conditions are compared
with the exact shell-model results. For 26O, the variational
2RDM calculation with PQGT1T ′

2 conditions is slightly higher
than the exact results, which may be caused by the computa-
tional error in the variational calculations.

To ponder out the influence of the isospin T = 0 part of the
nucleon-nucleon interaction, we now consider nuclei in which
protons and neutrons are both active. As testing grounds for
our benchmarking purpose, we calculate the ground states
of the N = Z even-even sd nuclei, 20Ne, 24Mg, 28Si, and
32S. The results are shown in Table III and Fig. 6. Simi-
lar to oxygen isotopes, we see that the variational 2RDM
calculations using PQG conditions are too overbound. The
situation is even worse when one has both valence protons and
neutrons, because overbinding can reach 50–100 MeV. This
is clearly due to the presence of T = 0 matrix elements in
the nucleon-nucleon interaction, which are about twice larger
than T = 1 matrix elements. However, the situation is not
improved when including the T1 condition along with PQG
conditions. In fact, only the consideration of the T ′

2 constraint
could significantly ameliorate the quality of calculations. Note
that the variational 2RDM calculations with PQGT1T ′

2 con-
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FIG. 6. Similar to Fig. 4, but for the N = Z even-even nuclei,
20Ne, 24Mg, 28Si, and 32S.
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straints are similar to those obtained with PQGT ′
2 conditions.

However, the discrepancies between variational 2RDM using
PQGT1T ′

2 and exact results using SM are still large. The
largest energy difference occurs in 28Si, where it is about 6.5
MeV. Conversely, the energy discrepancy is small in 20Ne, as
it is only about 150 keV. Normalized partial-wave occupations
are presented in Fig. 7. The variational 2RDM calculations
with PQG and PQGT1 conditions give similar results, as
both of them show large discrepancies when compared with
exact results. Partial-wave occupations are largely improved
by including the T ′

2 condition. The variational 2RDM calcu-
lations using PQGT ′

2 and PQGT1T ′
2 provide nearly the same

occupations. The results are close to SM calculations, but the
variational 2RDM calculations, including the T ′

2 condition,
still show small discrepancies. This explains ground-state en-
ergy overbinding (see Fig. 6).

The variational 2RDM calculations using the USDB
Hamiltonian have shown that the PQGT1T ′

2 conditions
tremendously improve the precision of calculations. While
PQG conditions can lead to an energy overbinding which may
even reach 100 MeV, it is decreased by more than an order of
magnitude with PQGT1T ′

2 conditions. However, a precision
of 5–10 MeV is still not sufficient for nuclear binding energy.
Stronger or additional physical conditions [16] should be in-
cluded to improve the calculations of those nuclei.

Nevertheless, PQG conditions can provide good descrip-
tions for atomic or molecular systems [11], where numerical
precision is comparable to that of coupled-cluster calculations
with singles-and-doubles excitations [11,13]. The ground
states of 6,8He can also be well reproduced using only PQG
constraints with a COSM Hamiltonian within an sp model
space.

The crux of the problem seems to be how soft the inter-
particle interaction is. In atomic or molecular systems, one
only has an interaction of the Coulomb type, whose induced
interparticle correlations are weak. Indeed, the Hartree-Fock
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approximation provides more than 99% of the exact wave
function, while electron-electron correlation energy is typi-
cally 0.1% of the total binding energy [18]. This is in sharp
contrast with the nucleon-nucleon interaction, which provides
correlations so strong that they can generate nuclear defor-
mation and clustering [65]. In fact, mean-field and residual
interaction have comparable effects on nuclear many-body
wave functions, as SM calculations have shown [1].

Consequently, we also investigate the dependence on in-
teraction strength by considering a softer nucleon-nucleon
interaction. For this, we multiply the matrix elements of
the USDB effective interaction by 1/2, while keeping the
same single-particle energies. We denote this interaction by
USDB(1/2). As the contribution of the USDB(1/2) residual
two-body interaction is much smaller than that of the initial
USDB interaction, we are able to quantify the error induced
by the approximate N-representability character of the 2RDM
issued from energy minimization. Clearly, the USDB(1/2)
interaction can only be used for benchmarking purposes and
is not suitable to describe sd-shell nuclei. We then reconsider
the same nuclei with the variational 2RDM calculations with
the USDB(1/2) interaction as those with the initial USDB
interaction, i.e., the N = Z sd-shell nuclei 20Ne, 24Mg, 28Si,
and 32S.

The calculated energies of these nuclei using the varia-
tional 2RDM and shell-model method are shown in Fig. 8 and
Table IV. Even when using a softer nucleon-nucleon interac-

TABLE IV. Similar to Table III, but using the USDB(1/2) inter-
action in the Hamiltonian.

Nuclei 20Ne 24Mg 28Si 32S

PQG −28.098 −77.242 −132.453 −130.003
PQGT1 −28.089 −72.090 −96.748 −124.090
PQGT ′

2 −27.150 −58.852 −90.886 −119.759
PQGT1T ′

2 −27.011 −58.848 −90.885 −119.756
SM −26.627 −57.007 −89.294 −119.298
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FIG. 9. Similar to Fig. 7, but where the USDB(1/2) interaction
is utilized as Hamiltonian.

tion, the variational 2RDM calculations with PQG condition
still cannot provide an adequate description of those nuclei.
Indeed, the obtained energies are overbound when compared
with the exact values by up to about 45 MeV. Similar to
the previous studies, the T1 condition gives only but a small
contribution to binding energies with the USDB(1/2) interac-
tion, while the inclusion of the T ′

2 condition largely improves
the calculations. Moreover, the results obtained with PQGT ′

2
and PQGT1T ′

2 are nearly the same based on the USDB(1/2)
interaction. The largest energy discrepancy found in the bind-
ing energies of the considered nuclei using the USDB(1/2)
2RDM with PQGT1T ′

2 conditions is about 1.8 MeV. This value
is smaller than that obtained with the USDB interaction in the
same conditions, where it is about 6.5 MeV. The calculated
occupations in the variational 2RDM using USDB(1/2) inter-
action follow a similar trend as that with the USDB interaction
(see Fig. 9). Due to the soft character of the USDB(1/2)
interaction, the occupations obtained in the variational 2RDM
calculations with PQGT1T ′

2 or PQGT ′
2 conditions are nearly

the same as those provided by SM calculations.

IV. TOWARDS A PRACTICAL VARIATIONAL 2RDM
METHOD FOR ATOMIC NUCLEI

The error induced by the approximate N representability
of the variational 2RDM strongly depends on the correla-
tions induced by the two-body interaction of the considered
Hamiltonian. As mentioned in Ref. [51], the 1RDM provided
by the variational RDM calculation is always exactly N rep-
resentable, because this property is equivalent to having the
1RDM eigenvalues be between zero and 1. Consequently,
the ground-state energy arising from a one-body Hamilto-
nian has to be exactly reproduced in a variational RDM
calculation. Conversely, overbinding arises when including
two-body forces, which increases along with the strength of
the interaction. While this discrepancy is mild in atomic and
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molecular calculations in the presence of PQG conditions,
errors can still reach several MeV in nuclear binding energies
by using PQGT1T ′

2 constraints, even after making the nuclear
interaction softer by a factor of 2. Indeed, the maximal error
is reduced by about a factor of 3.5 after dividing the matrix
elements of the USDB interaction by 2; i.e., they are of the
same order of magnitude.

Therefore, a direct implementation of the variational
2RDM method cannot be used in practice for atomic nu-
clei, contrary to atomic and molecular systems, where it can
directly provide almost exact binding energies. While the
situation has been much improved since the original work of
Mihailović and Rosina [34], it is far from being satisfactory,
as the typical error made on nuclear binding energies in sys-
tematic calculations such as density functional theory (DFT)
[45,47,48] and microscopic-macroscopic models [66,67] is
typically 0.5 to 1 MeV. Clearly, one has to devise alternative
strategies in order to develop a variational 2RDM method
which can be of practical interest in nuclear physics.

As mentioned in Sec. III, one of the most interesting paths
for that matter would be to use the variational principle in
small model spaces [63]. For example, one can diagonalize
exactly the Hamiltonian matrix if one takes into account only
a few basis orbitals. The obtained energy provides a useful
constraint for the exact ground state. This method has been
implemented, and one has seen that it accelerates convergence
significantly. However, it has been noticed during the first tests
that the constraint works well only if the correlation energy
provided by the rest of the model space is a few hundreds
of keV at most. As a consequence, constraints based on the
variational principle are interesting mainly when eigenstates
are built with a very large part from a few configurations of
low energy. This is especially the case in the Gamow shell
model [68–71], where continuum coupling is small, so that the
0p or 1s0d orbitals are mainly occupied [70]. Moreover, ac-
cording to the results obtained in Sec. III A for 6,8He and 8Be,
it might also be possible that PQG constraints are sufficient to
impose N representability in the presence of constraints using
the variational principle in small model spaces.

The situation is reversed when one enters the zones of the
nuclear chart associated to medium and heavy nuclei. From
a numerical point of view, the variational 2RDM method is
well suited for ground states therein, because one typically has
few basis orbitals but many valence nucleons in model space.
Consequently, it is possible to apply in practice the PQGT1T ′

2
constraints. Moreover, the variational 2RDM method can be
applied easily to nuclei having an even or odd number of
protons or neutrons, contrary to the Hartree-Fock-Bogoliubov
method, for example, which becomes cumbersome to apply
with odd nuclei [47]. Contrary to light nuclei, however, the
main problem here is that the nuclear interaction acts similarly
on all basis orbitals, and shell-model wave functions spread in
a large configuration space [1]. Hence, the variational 2RDM
method may lead to overbound ground states. In fact, the cal-
culations depicted in Sec. III B have shown that this is already
the case in the sd shell. Consequently, it might be of interest
here to minimize the ground-state energies of the Hamiltonian
whose two-body part is reduced. The overbinding caused by
the approximate N-representability of the 2RDM issued from

energy minimization would then be compensated by the use
of smaller two-body matrix elements. The 2RDM obtained by
energy minimization could then become closer to that of the
physical ground state, even though it would arise from the use
of a different Hamiltonian. This procedure can be related to
the Hohenberg-Kohn and Kohn-Sham theories [72,73], at the
origin of DFT [47], where the nuclear density, as a function of
the correlated ground state, is determined from a mean-field
functional. The validity of this method could be checked in
shell-model spaces where diagonalization of the Hamiltonian
can be performed, or by using solvable Hamiltonians for that
matter, of SU(3) type for example [74,75].

V. SUMMARY

We have developed the variational two-particle reduced
density matrix method for atomic nuclei, and have applied it to
the ground states of nuclear systems. The N-representability
conditions, represented by the two-particle P, Q, and G metric
matrices, as well as the partial three-particle T1 and T ′

2 metric
matrices, have been derived and applied for the first time
within the J-scheme formalism. In addition, the neutron and
proton numbers N and Z , total spin J , and the isospin T are
considered as constraints in our calculations.

We have first applied the variational two-particle reduced
density matrix method within the cluster-orbital shell-model
framework. This allowed to use a phenomenological inter-
action, which is convenient for benchmarking purposes. The
6,8He and 8Be ground-state energies were calculated using
PQG constraints, and compared with shell-model calcula-
tions, which can be considered as the exact result (since
shell-model dimensions are tractable). The results show
that the two-particle reduced density matrix calculations
could provide good descriptions of ground-state energies and
partial-wave occupations in 6,8He. However, in the case of
8Be, the partial-wave occupations exhibit a clear difference
from the shell-model calculation and a small but noticeable
overbinding of ground-state energy. Due to the large num-
ber of basis orbitals in the cluster-orbital shell-model model
space, only the PQG conditions could be imposed, because
computational cost becomes too large if one includes the
partial 3-positive T1 and T ′

2 conditions. Consequently, one has
to consider a different Hamiltonian and shell-model space to
study the impact of the T1 and T ′

2 constraints.
We then employed the variational two-particle reduced

density matrix method using the standard USDB interaction in
the sd shell. Indeed, the number of basis orbitals is small, on
the one hand, and Hamiltonian matrices can always be diago-
nalized exactly using the shell-model framework. Hence, we
could perform variational two-particle reduced density matrix
calculations with all possible sets of conditions, i.e., PQG,
PQGT1, PQGT ′

2 , and PQGT1T ′
2 . We first studied the oxygen

even-mass isotopes. The results showed that the calculations
with PQG conditions lead to overbound ground-state ener-
gies. The situation is largely improved when the T ′

2 condition
is imposed. The variational two-particle reduced density ma-
trix calculations with PQGT ′

2 and PQGT1T ′
2 can then provide

an accurate description of oxygen isotopes. The largest dif-
ference of ground-state energies compared to exact values is

064324-11



J. G. LI, N. MICHEL, W. ZUO, AND F. R. XU PHYSICAL REVIEW C 103, 064324 (2021)

about 100 keV, so that calculations using the variational two-
particle reduced density matrix method can be considered as
optimal. Furthermore, the obtained occupations with PQGT ′

2
or PQGT1T ′

2 conditions are nearly the same as those arising
from shell-model calculations.

However, the calculations of N = Z even-even mass iso-
topes in that same framework exhibit a large discrepancy with
exact results, even in the presence of PQGT ′

2 or PQGT1T ′
2

constraints. The largest error is indeed as large as 6.5 MeV,
which occurs in 28Si. To investigate the effect of Hamiltonian
correlations in ground-state energy errors, we made the USDB
Hamiltonian softer by halving its two-body matrix elements.
The error in the ground-state energy of 28Si is then decreased
to 1.8 MeV with PQGT ′

2 or PQGT1T ′
2 conditions, which is

smaller than with the initial USDB interaction, but remains
too large, nevertheless, compared to those obtained with other
methods to solve the nuclear many-body problem.

These results then suggest that the present variational two-
particle reduced density matrix method cannot be applied
satisfactorily to nuclear systems as in atomic or molecular
physics. Indeed, it is impossible to reach the same preci-
sion for binding energy due to the strength of internucleon
correlations, even if one uses PQGT1T ′

2 constraints. Theoret-
ical frameworks have then been proposed, which will be the
object of future works. The use of the variational principle
in reduced model spaces would then provide an additional

stringent condition in light nuclei, because the most important
configurations of their ground states are built with the orbitals
of lowest energy. Therefore, it would be more interesting
to optimize the 2RDM of a less correlated Hamiltonian, so
that the energy overbinding arising from the approximate N
representability of the 2RDM would be mitigated by the use
of a softer interaction.
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