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Microscopic investigation on the existence of transverse wobbling under the effect
of rotational alignment: The 136Nd case
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The even- and odd-spin two-quasiparticle yrast bands in 136Nd are investigated with the triaxial projected
shell model, focusing on the possible interpretation as transverse wobbling. With the experimental observables
reproduced reasonably, the conditions under which the wobbling approximation is valid are examined via the
angular momentum geometry and the configuration components extracted from the microscopic wave functions.
The impact of the rotational alignment of the quasiparticles on the scenario of transverse wobbling is emphasized.
It turns out that the n = 0 band of the wobbling candidate is more affected than the n = 1 one, which tends to go
against the decreasing trend of the wobbling energy expected in the transverse case.
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I. INTRODUCTION

The concept of wobbling motion is originally proposed by
Bohr and Mottelson [1] for a triaxial rotor as a harmonic exci-
tation based on the uniform rotation around the intrinsic axis
with the largest moment of inertia (MoI). The harmonicity is
achieved when the angular momentum component on the axis
with the largest MoI is almost as large as the total angular
momentum. In this case a bosonlike commutation rule applies
approximately between the raising and lowering operators of
the angular momentum component involved (see Sec. 4-5e in
Ref. [1]), allowing the introduction of a wobbling phonon.
The phonon describes harmonic precession oscillations of
the angular momentum vector around the principle axis with
the largest MoI, giving rise to characteristic equally spaced
energies and quantized transition probabilities. The harmonic
condition is better satisfied with larger amount of total angular
momentum, so the wobbling spectra are usually expected in
the high-spin region.

Apart from the phenomenological triaxial rotor model,
the wobbling motion has also been described in micro-
scopic frameworks based on the random-phase approximation
(RPA)-like methods. The first attempt to describe the wob-
bling motion in an RPA framework was proposed by
Marshalek in Ref. [2], based on the self-consistent crank-
ing (SCC) solution. The method called “SCC + RPA” is
then improved by taking care of the rotational invariance of
the Hamiltonian [3]. The rotational invariance is also taken
into account by the work of Mikhalov and Janssen [4,5],
but treated in a different way. The different treatments of
rotational invariance are later proved to be equivalent in
Ref. [6], in which the SCC + RPA framework is derived
by the time-dependent Hartree-Bogoliubov method, and the
wobbling effect is reflected by the time dependence of either
deformation or angular velocity.

The wobbling motion for a single rotor was later called
“simple wobbling,” in order to distinguish it from the wob-
bling modes with quasiparticle(s) involved [7]. The latter ones
are further distinguished according to the coupling scheme
between the quasiparticle(s) and the rotor. When the angu-
lar momentum of the quasiparticle(s) is perpendicular to the
principle axis favored by collective rotation, the transverse
wobbling is expected. In this case the precession happens
around the orientation of the quasiparticle angular momen-
tum, rather than the favored axis of collective rotation. With
sufficient quasiparticle angular momentum the transverse
wobbling can take place at the bandhead and is therefore
easier to observe. The longitudinal wobbling, on the other
hand, is expected when the angular momentum of the quasi-
particle(s) aligns with the axis favored by collective rotation,
and the precession, of course, happens around the orientation
of both.

The mechanism of transverse wobbling was investigated
theoretically long before the invention of its name, by both the
particle-rotor model (PRM) and the RPA. Based on the par-
ticlelike quasiparticle configurations arising from a cranked
mean field, it was shown that the RPA MoI is largest for the
short axis, rather than the intermediate axis in the simple rotor
case. Such an MoI distribution leads to the wobbling motion
around the short axis [8], which is in fact the transverse wob-
bling. The investigations based on the particle-rotor model
followed two branches. The first one [9] involved the so-called
γ -inverted MoI with the γ dependence of the irrotational MoI
changed by hand, so that the one of the short-axis can become
largest (similar to the RPA case). However, such an attempt
eventually leads to the longitudinal wobbling rather than to
the transverse one. The other one, reported in Refs. [7,10],
proceeds the PRM framework by distinguishing the angular
momentum contributed by the rotor and the valence parti-
cle. A rotorlike Hamiltonian can be obtained in this way,
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with the effective MoI following the RPA distribution, and
consequently leads to the transverse wobbling solution. As
is pointed out in Ref. [10], both the RPA and the PRM de-
scriptions share the key point that the MoI distribution (and
consequently, the spin orientation) can be changed substan-
tially by the existence of the valence (quasi)particle. The
decreasing of the wobbling energy against spin or rotational
frequency is first noted in Ref. [10] and then in Ref. [7], which
is later known as the “hallmark” of transverse wobbling.

The only candidates for a simple wobbler observed ex-
perimentally up to now are 112Ru [11] and 114Pd [12], in
which the so-called “γ bands” are interpreted as a combi-
nation of n = 1 (odd-spin) and n = 2 (even-spin) wobbling
excitations as the odd-even staggering pattern agrees with
the expectation of rigid triaxiality [13]. However, these in-
terpretations are not confirmed solidly yet, due to the lack
of transition probability measurements. On the other hand,
the wobbling motion with high- j quasiparticle(s) involved
have been suggested in various mass regions. The wobbling
bands reported in 161,163,165,167Lu [14–18] and 167Ta [19] were
interpreted by Hamamoto and Hagemann [9,20] as arising
from configurations with a high- j aligned particle, which is
equivalent to the longitudinal wobbling. Some of them are
later reinterpreted as transverse wobbling [7], according to the
decreasing behavior of the wobbling energy. In recent years,
the transverse wobbling candidates have also been reported in
105Pd [21], 135Pr [22,23], and 183Au [24]. The only example of
transverse wobbling in an even-even nucleus is the π (h11/2)2

bands in 130Ba [25–27]. It was suggested as the best-known
case for transverse wobbling [26], probably due to its larger
amount of quasiparticle angular momentum, contributed by
two quasiparticles instead of one. The experimental finger-
prints of longitudinal wobbling were reported in 133La [28],
187Au [29], and 127Xe [30]. However, one has to bear in
mind that some of these suggested wobblers are still under
debate from both theoretical and experimental points of view
[31–34].

As a solution of the RPA, the stability of the transverse
wobbling might be questioned. It is demonstrated in Ref. [35]
that the “softening” of the transverse wobbling closely relates
to the shifting of the minimum of the total Ruthian surface,
calculated by three-dimensional cranking, from the short axis
to a tilted planar orientation. The stability of the transverse
wobbling can also be examined within the PRM framework.
In fact, the existence of transverse wobbling has been ques-
tioned recently by a quantitative examination of the harmonic
condition given in Refs. [1] and [7], in terms of the MoI of the
three intrinsic principle axes [36]. The result of the examina-
tions, carried out for various choices of MoI parameters used
in actual particle-rotor model calculations, suggested that the
harmonic approximation condition demanded for transverse
wobbling is hardly satisfied. The investigation highlights the
gap between the particle-rotor model calculations, which are
used to reproduce the experimental data, and the wobbling
approximation, which is used to interpret them. Such a gap
is sometimes forgotten in the theoretical discussions of the
transverse wobbling candidates.

However, the condition function examined in the above
investigation [36] may be worth a second consideration, as it

can be connected to the angular momentum condition for the
boson approximation only if the harmonicity is perfectly re-
alized. With a deviation from the harmonic limit the meaning
of the function is not very clear. Moreover, the function for
the transverse wobbling in Ref. [36] is in fact identical to that
for the simple wobbling, due to the correspondence between
their Hamiltonians (see Eqs. (11) and (13) in Ref. [7]) which
arises under the frozen alignment approximation. The frozen
alignment assumes that the single-particle angular momentum
always align to the short axis (s axis). Therefore, the effect
of rotational alignment, which drives the single-particle an-
gular momentum to the intermediate axis (i axis) for triaxial
nuclei, is not discussed in Ref. [36]. On the other hand, in
Ref. [36] only one-quasiparticle bands in odd-mass nuclei are
discussed. With the recent observation in 130Ba, the existence
of transverse wobbling in two-quasiparticle bands of even-
even nuclei also deserves a discussion, which, as mentioned
above, might be more stable than those in the odd-mass cases.

In this work we present an investigation of the transverse
wobbling candidate, i.e., band L3 in 136Nd [37], having the
same two-quasiparticle configuration as that in 130Ba, with
the triaxial projected shell model. In such a microscopic
framework the input of the MoI as free parameters as in the
particle-rotor model calculations are avoided, and the har-
monic condition is examined in its original form, i.e., in terms
of angular momentum geometry. The alignment tendency of
the quasiparticles is also taken into account, with its effect
carefully discussed. The model framework is briefly outlined
in Sec. II. In Sec. III, the results of the calculation are pre-
sented, and the quantities related to the wobbling scenario are
analyzed. A short summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

The present model starts from the schematic pairing-plus-
quadrupole Hamiltonian [38]

Ĥ = Ĥ0 − χ

2

∑

μ

Q̂†
μQ̂μ − GMP̂†P̂ − GQ

∑

μ

P̂†
μP̂μ, (1)

in which Ĥ0 represents the spherical single-particle Hamil-
tonian and the following three terms are the quadrupole-
quadrupole interaction, the monopole pairing, and the
quadrupole pairing, respectively. The self-consistent min-
imum |�0〉 is found for the above Hamiltonian by a
Hartree-Fock-Bogoliubov iteration, together with a set of
quasiparticle orbitals i defined by

βi|�0〉 = 0 for ∀ i, (2)

in which βi represents the quasiparticle annihilation operator.
The intrinsic configuration |�κ〉 is taken from the set

|�κ〉 ∈ {|�0〉, β†
i β

†
j |�0〉}, (3)

with i and j taken from the πh11/2 subshell, in accordance
with the π (h11/2)2 configuration assigned to the wobbling
candidates under consideration. Each intrinsic configuration
|�κ〉 is projected onto good angular momentum as well as
particle numbers. The Hamiltonian is then diagonalized with
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the projected basis
{
P̂I

MK P̂N P̂Z |�κ〉
}
, (4)

leading to the Hill-Wheeler equation
∑

K ′κ ′

[H I
KK ′ (κ, κ ′) − EIσN I

KK ′ (κ, κ ′)
]

f Iσ
K ′κ ′ = 0, (5)

with the kernels

H I
KK ′ (κ, κ ′) ≡ 〈�κ |Ĥ P̂I

KK ′ P̂N P̂Z |�κ ′ 〉,
(6)

N I
KK ′ (κ, κ ′) ≡ 〈�κ |P̂I

KK ′ P̂N P̂Z |�κ ′ 〉,
calculated using the algorithm in Refs. [39,40]. The eigenval-
ues EIσ can be compared directly to the experimental spectra,
and the wave function

|	Iσ 〉 =
∑

Kκ

f Iσ
Kκ P̂I

MK P̂N P̂Z |�κ〉 (7)

with good angular momentum allows a straightforward cal-
culation of the reduced transition probabilities. For a detailed
description of the model, one can refer to Refs. [41,42].

Apart from the observables, the quantities in terms of
which the wobbling motion is defined are also important
for the following discussion, including the orientation of the
angular momentum vector in the intrinsic frame (its prob-
ability distribution, to be exact), the distribution width of
the largest component of the angular momentum, the con-
figuration components, etc. Such quantities are in fact the
probability distributions of the arguments involved in the wave
functions, like 
 (involved in the angular momentum projec-
tor P̂I

MK ), K , or κ . Due to the nonorthogonality of the projected
basis (4), the probability amplitudes of the arguments are not
given directly by their corresponding coefficients, but by a
transformation of them called the collective wave functions
[38], which can be written in general as

gIσ (ρ) =
∑

ρ

�1/2(ρ, ρ ′)F Iσ
ρ ′ , (8)

with ρ representing the arguments under discussion and
�1/2(ρ, ρ ′) representing the square root of the corresponding
kernel �(ρ, ρ ′):
∑

ρ ′
�1/2(ρ, ρ ′)�1/2(ρ ′, ρ ′′) = �(ρ, ρ ′′) ≡ 〈�̃(ρ)|�̃(ρ ′′)〉.

(9)

For example, the probability distribution of the angular
momentum orientation can be obtained by calculating the
collective wave function gIσ (
, κ ) and then summing over
κ , which means ρ = {
, κ} and |�̃(ρ)〉 = R̂(
)|�κ〉, while
the probability distribution of the angular momentum com-
ponent K can be obtained from the collective wave function
gIσ (K, κ ), so there are ρ = {K, κ} and |�̃(ρ)〉 = P̂I

MK |�κ〉.
The explicit expressions of the above probability distributions,
called the “azimuthal plot” and the “K plot,” respectively, can
be found in Ref. [43]. The weight of the configuration κ , of
course, also comes from gIσ (K, κ ) and its explicit expression
is given in Ref. [44]. Similar plots can be calculated in the
framework of the particle-rotor model [26,45,46] as well.

FIG. 1. (a) Calculated energies (minus a common rigid-rotor ref-
erence) of the even- and odd-spin yrast bands in 136Nd, in comparison
with the experimental data (see bands L1 and L3 in Ref. [37]).
(b) Wobbling energies (see the text) obtained by the calculation
compared with the experimental results from bands L1 (n = 0) and
L3 (n = 1).

In the present calculation the neutron and proton major
shells with N = 3, 4, and 5 are considered as the model
space. The single-particle Hamiltonian Ĥ0 is the Nilsson
Hamiltonian at zero deformation, with its parameters κ and
μ modified based on the values given in Ref. [47]. The
values of κ and μ for the neutron shell N = 5 are multi-
plied by a factor of 0.8, while those for the proton shells
N = 4 and N = 5 are multiplied by 0.6 and 0.9, respectively.
The strengths for the quadrupole-quadrupole interactions are
χττ ′ = χατατ ′ , with απ = (2Z/A)1/3 and αν = (2N/A)1/3 for
τ (τ ′) being proton or neutron, respectively. The choice of χ =
70A−1.4/b4 MeV (where b = A1/6 is the oscillation length) is
taken from Ref. [48], and the reducing factor multiplied by
the matrix elements of the quadrupole operator Q̂μ between
the orbitals from the N = 5 shell, suggested in Ref. [48],
is also adopted. The strengths of the monopole pairing are
GM = 0.17 MeV for neutrons and GM = 0.12 MeV for pro-
tons, and those of the quadrupole pairing are GQ = 0.16GM .
The self-consistent minimum is found with deformations β ≈
0.17 and γ ≈ 28◦, being comparable with the result of the
Hartree-Fock-Bogoliubov (HFB) calculation using the D1S
Gogny interaction [49]. The significant triaxiality also fulfills
the conditions required for the presence of wobbling motion.

III. RESULTS AND DISCUSSIONS

The calculated energy spectra of the transverse wobbling
candidates with the configuration π (h11/2)2 in 136Nd are
shown in Fig. 1 and are compared with the experimental data
(labeled as bands L1 and L3). Good agreement is achieved
for band L1 within the whole spin region. For band L3 the
levels near the bandhead are more or less well reproduced,
while those at higher spins are overestimated, similar to the
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FIG. 2. Calculated ratios between the interband [B(E2/M1)out ≡
B(E2/M1, I → I − 1) from band L3 to band L1] and the in-
traband [B(E2)in ≡ B(E2, I → I − 2) along band L3] transition
probabilities.

case in 130Ba with the same model [27]. It is expected that the
reproduction can be improved by enlarging the model space
with more quasiparticle configurations. The wobbling energy,
obtained by

Ewob = E (I, n = 1) − [E (I − 1, n = 0)

+ E (I + 1, n = 0)]/2, (10)

is given in the inset of the same figure. Its down-sloping
behavior against spin, often regarded as one of the hallmarks
of transverse wobbling, is qualitatively reproduced. The over-
estimation of Ewob for higher spins is due to that of band L3. It
is worth mentioning that, apart from the two bands shown in
Fig. 1, the bands starting from low spin, i.e., the ground-state
band and the γ -band in Ref. [37], can be also well reproduced
with the same set of parameters.

The calculated ratios between the interband and
intraband transition probabilities B(E2)out/B(E2)in and
B(M1)out/B(E2)in are shown in Fig. 2, with no experimental
measurement up to now. The overall magnitude of the
calculated values are comparable to those of the wobbling
bands in 130Ba [26], supporting the possible interpretation
of transverse wobbling. The decreasing behavior of
the calculated values is in qualitative agreement with
the analytical expressions obtained with the wobbling
approximation [1,7].

As most of the existing data for the observables are reason-
ably reproduced and basically compatible with the expectation
of transverse wobbling, it is worthwhile to have a look at the
orientation of the angular momentum in the intrinsic frame,
in terms of which the wobbling motion is proposed. The
probability density distribution profiles for the tilted angles
(θ, φ) of the angular momentum vector with respect to the
three principal axes (i.e., the so-called “azimuthal plots” [43])
are shown in Fig. 3 for the wobbling candidates.

The distribution for the bandhead of L1 is centered
around the peak at (θ = 90◦, φ = 0◦), suggesting the firm

alignment of the angular momentum along the s axis, as
expected for a particlelike configuration π (h11/2)2 (see the
following). As spin increases, the collective rotation develops,
with the orientation of its angular momentum determined by
the competition between the Coriolis effect and the distribu-
tion of the MoI among the three principal axes. The former
one prefers the alignment of the collective angular momen-
tum to the s axis, while the latter one favors the collective
rotation around the i axis. It seems that the Coriolis effect
dominates with moderate spin, as the peak at (θ = 90◦, φ =
0◦) remains until I = 16h̄. However, the angular momentum
feels increasing attraction from the i axis, as the distribution
is more and more stretched along the s-i plane. Finally at
I = 18 the abovementioned peak splits into two, with both of
them moving towards the i axis with further increasing spin.
The Coriolis effect in this case, however, tends to drive the
quasiparticle angular momentum to the i axis, as is discussed
in the following.

The transverse wobbling can take place when the angular
momentum of the yrast band (L1) aligns along the s axis. It
can be inferred from Fig. 3 that the distribution for the band-
head of L3 revolves around the node at (θ = 90◦, φ = 0◦),
in coincidence with the wobbling motion around the s axis.
The revolving behavior continues to moderate spin, with the
two peaks in the i-s plane growing sharper and sharper as
spin increases, due to the development of collective rotation
around the i axis. On the other hand, the distribution in the
s-l plane becomes less and less and fades away at sufficiently
large spin, as the result of the smallest MoI of the l axis. At
its disappearance the revolving structure at the bandhead no
longer exists and the probable transverse wobbling collapses.
It is shown that the overall evolution of the tilted-angle distri-
butions for bands L1 and L3 is in qualitative agreement with
the transverse wobbling scenario close to the bandheads, and
a quantitative examination for the validity of the wobbling
approximation is therefore necessary.

The concept of transverse wobbling is proposed assuming
that the single-particle angular momentum aligns firmly with
the s axis [7]. With this assumption the particle-rotor Hamil-
tonian can be mapped [7] to the simple rotor Hamiltonian
in Ref. [1]. The bosonlike commutation rule there (see Eq.
(4-296) in Ref. [1]) is thus transformed as

[Î−, Î+] = 2Îs ≈ 2I, Î± = Îl ± iÎi, (11)

which means that the states under discussion should be ap-
proximate eigenstates of the operator Îs with the eigenvalue I:

Îs|	Iσ 〉 ≈ I|	Iσ 〉. (12)

The distribution of the angular momentum component (i.e.,
the so-called K plot in Ref. [43]) on the s axis shown in Fig. 4
provides the probability of Is = I and therefore reflects the
validity of the boson approximation (11).

The distribution for Is at the bandhead of L1 shows a
sharp peak at Is = I , with the height (∼0.6) more or less
comparable to the corresponding result of the known exam-
ple of transverse wobbling, i.e., band S1 in 130Ba [27]. It
is therefore suggested that the boson approximation (11) is
satisfied to a similar extent as in 130Ba near the bandhead. As
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FIG. 3. Probability distribution profiles for the tilted angles (θ, φ) of the angular momentum vector �J with respect to the three principle
axes of the intrinsic frame for bands L1 and L3 in 136Nd. The polar angle θ represents the angle between �J and the long axis (l axis), while
the azimuthal angle φ represents the angle between the projection of �J on the short-intermediate plane and the short axis (s axis). Note that the
definition of φ here in coincidence with Ref. [26] is different from the definitions in Refs. [27,43].

spin increases, the peak at Is = I remains until I = 18h̄ for
band L1, with a decreasing height indicating the erosion of
the boson approximation (11) and therefore of the transverse
wobbling. A similar decreasing trend can also be found in
130Ba, but at a smaller rate [27]. For example, at I = 16h̄ the
height of the Is = I peak for the band L1 of 136Nd is about
0.4, while that for the S1 band of 130Ba is more than 0.5.
It is suggested that the transverse wobbling pattern for the
n = 0 band in 136Nd is less stable than that in 130Ba. This can

also be confirmed qualitatively by a comparison between the
orientation distributions of the angular momentum vector of
the two nuclei. For 136Nd the most probable orientation for
the n = 0 band deviates from the s axis at I = 18h̄, while for
130Ba it remains at the s axis till I = 22h̄. The Is = I peak in
the Is distribution for band L1 disappears at Is = 20h̄, showing
the complete collapse of the boson picture.

The evolution of the Is distribution for band L3 in 136Nd
provides information similar to that of L1. The peak at
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FIG. 4. Probability distributions of the angular momentum com-
ponent on the short axis, calculated for bands L1 and L3 in 136Nd.

Is = I − 1 shown in the distribution for the bandhead is
consistent with the expectation of one-phonon transverse
wobbling, and its decreasing height with spin, again, reflects
the erosion of the phonon structure. The complete disappear-
ance of the Is = I − 1 peak at I = 21h̄ also coincides with
the collapse of transverse wobbling suggested by the above
discussions for band L1. However, by a careful inspection
one may find that the decreasing rate of the height of the
Is = I − 1 peak in band L3 is more or less comparable to its
corresponding band in the 130Ba case, at least for the moderate
spin range I � 17h̄ [27]. In fact, the height of the peaks in
both cases decrease from ∼0.5 to ∼0.3, when the spin goes
from I = 11 to 17h̄. Therefore, it seems that the stability
of the transverse wobbling for the n = 1 band in 136Nd is
comparable to that in 130Ba. One may be confused by the
result that a one-phonon excitation built upon a zero-phonon
state that is less stable than that in 130Ba can have a stability
comparable to its corresponding band in 130Ba. A possible
explanation for this is provided in the later discussion.

The condition of transverse wobbling can also be expressed
as [7]

〈
Î2
i + Î2

l

〉  〈
Î2
s

〉
, (13)

which leads to the criteria f (n, I )  1, written in terms of
the MoI, used in Ref. [36]. In the present model framework
the MoIs around the three principle axes are not given ex-
plicitly, but the above equation (13) can be examined directly
by calculating the root-mean-square angular momentum com-
ponents on the three principal axes. The calculated ratios
〈Î2

s/i/l〉1/2/〈Î2〉1/2 are shown in Fig. 5 by the solid symbols

for bands L1 and L3. It is shown that the ratio 〈Î2
s 〉1/2/〈Î2〉1/2

reaches about 90% (80%) for bandheads of band L1 (L3),
supporting the approximate realization for the transverse wob-
bling. However, the ratios 〈Î2

i 〉1/2/〈Î2〉1/2 reaching around
50% in both bands remind one of the existing deviation from
the ideal wobbling scenario. The decrease of 〈Î2

s 〉1/2 with spin
is accompanied by the increase of 〈Î2

i 〉1/2, both suggesting the
erosion of the wobbling structure. It is noted that the changing
slopes of 〈Î2

s 〉1/2 and 〈Î2
i 〉1/2 for band L3 are smaller than those

FIG. 5. The ratios between the root mean squares of the angular
momentum components 〈Î2

s/i/l〉1/2 and that of the total angular mo-
menta 〈Î2〉1/2, calculated for the short (s), intermediate (i), and long
(l) axes, respectively, for bands L1 and L3 in 136Nd. The solid sym-
bols represent results calculated with configuration mixing within the
πh11/2 subshell, while the open symbols represent those calculated
with the fixed configuration πh11/2(1, 2) composed of the lowest two
Nilsson orbitals in the h11/2 subshell.

for band L1, leading to the crossings at around I = 16h̄–18h̄
between the curves of the two bands. The result with 〈Î2

s 〉1/2
L3 >

〈Î2
s 〉1/2

L1 after the crossing is no longer compatible with the ex-
pectation for transverse wobbling. For sufficiently large spin
there is 〈Î2

i 〉1/2/〈Î2〉1/2 ≈ 80%, indicating a possible onset
of longitudinal wobbling around the i axis, as mentioned in
Ref. [7]. The value of 〈Î2

s 〉1/2/〈Î2〉1/2 for band L3 smaller than
that for L1 before the crossing suggests a better transverse
wobbling condition for n = 0 than for n = 1, in agreement
with Ref. [36]. The smaller 〈Î2

i 〉1/2/〈Î2〉1/2 for band L3 after
the crossing similarly indicates the longitudinal wobbling will
also be better defined for the n = 0 case. Finally, the values of
〈Î2

l 〉1/2/〈Î2〉1/2 keep small and decrease with spin, as a result
of the s-axis-aligned quasiparticle angular momentum and the
smallest MoI for the l axis.

The angular momentum geometry revealed in the above
discussion concludes that the transverse wobbling scenario is
more or less valid at the bandhead of the bands L1 and L3 in
136Nd. As spin increases, the wobbling pattern gets destructed
and finally disappears around I = 18h̄. The reason for its
erosion is twofold. First, the rotational angular momentum
converts from the s axis to the i axis due to its large MoI,
as discussed above. Such an effect leads to the down-sloping
wobbling energy against spin given in Ref. [7], which was
later recognized as the hallmark of the transverse wobbling.
The second reason for the wobbling erosion is induced by
the first one: the quasiparticle angular momentum tends to
align along the i axis, instead of the s axis, as the rotational
angular momentum converts. Such an effect is realized by
configuration mixing in the present model. The destruction of
the wobbling scenario by configuration mixing can be quickly
seen from the plots with open symbols in Fig. 5, calculated
with the fixed configuration πh11/2(1, 2) composed by the
lowest two orbitals in the h11/2 subshell. Comparing with
the filled symbol results discussed above, one finds that the
transverse wobbling condition (13) is better satisfied at the
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FIG. 6. The weight of the π (h11/2)2 configurations included in
the present calculation, plotted for bands L1 and L3 in 136Nd as
functions of spin. The notation (i, j) denotes the two-quasiparticle
configuration composed by the ith and the jth Nilsson orbitals in the
πh11/2 subshell (counted from the lowest one).

bandhead of both bands, and the collapse of wobbling re-
flected by the crossings of bands L1 and L3 is postponed. The
configuration mixing is not taken into account in the descrip-
tion of transverse wobbling under the assumption of frozen
alignment [7], as well as the later investigation on its exis-
tence [36]. Although it is embedded in the model frameworks
of theoretical investigations on the wobbling bands in 130Ba
[26,27], its effect on the wobbling picture is not discussed in
detail. Therefore, a detailed study of the configuration mixing
and, in particular, the quasiparticle alignment in the transverse
wobbling bands in 136Nd will be interesting. Here one should
note that the phrase “quasiparticle alignment” here means the
rotational alignment along the axis with the largest MoI (i
axis) due to the developed collective rotation, which should be
distinguished from the one in the RPA works such as Ref. [8].
In the context of Ref. [8] the word “alignment” means the
quasiparticle excitation with its angular momentum along the
s axis. The former tends to destroy the transverse wobbling
that the latter leads to.

The weights of the four dominating π (h11/2)2 configura-
tions in the bands L1 and L3 are shown in Fig. 6 as functions
of spin. The particlelike configuration with orbitals at the
bottom of the h11/2 subshell, i.e., h11/2(1, 2), is found to be
dominant near the bandhead, consistent with the frozen align-
ment assumed for transverse wobbling [7]. As spin increases,
the configuration h11/2(1, 2) tends to be replaced by other
ones with their orbitals lying closer to the middle of the h11/2

sub-shell, showing the alignment of the quasiparticle angular
momentum. It is noted that the weight of h11/2(1, 2) decreases
with a larger slope in band L1 than in band L3. Correspond-
ingly, the weight of h11/2(2, 3), with its angular momentum
closer to the i axis, increases more quickly for band L1. This
suggests that the n = 0 band is more influenced than the n = 1
band by the quasiparticle alignment.

The different extent of influence from the quasiparticle
alignment found in bands L1 and L3 provides a possible

FIG. 7. The band diagrams of the configurations h11/2(1, 2) and
h11/2(2, 3), for both even and odd spins.

explanation for the comparable stability of the n = 1 bands
in 136Nd and 130Ba, even though the n = 0 band is less stable
in 136Nd than in 130Ba. Compared with 130Ba, 136Nd is less
deformed and has thus a stronger tendency of quasiparticle
alignment. The transverse wobbling in the n = 0 band, being
more affected by the alignment process, is likely to be less
stable in 136Nd than in 130Ba. On the other hand, the n = 1
band, which is less sensitive to the quasiparticle alignment,
is likely to show comparable stability in the two cases. In
other words, the different stability of the transverse wobbling
in 136Nd and 130Ba can be explained to a certain extent by
the different tendency of the quasiparticle alignment to the i
axis.

A possible interpretation for the different extents of the
quasiparticle alignment shown in the n = 0 and n = 1 bands
may be given by the decreasing behavior of the transverse
wobbling energy as a function of spin. This can be inferred
from Fig. 7, which shows the band diagrams of configurations
h11/2(1, 2) and h11/2(2, 3), which exhibit relatively large dis-
crepancies between bands L1 and L3 (see Fig. 6). The band
diagrams shown in Fig. 7 are the lowest energies obtained by
the diagonalization of the Hamiltonian within spaces spanned
by projecting the considered configuration onto the specified
spin I and all possible angular momentum components K .
It is shown that the odd-even staggering for the h11/2(1, 2)
configuration, which is exactly the Ewob in Eq. (10) neglecting
the configuration mixing, decreases substantially with spin,
while that for h11/2(2, 3) keeps more or less constant due to its
less particlelike character. As a result, the energy separation
between the projected energies of the two configurations is
much smaller for the even spins than the odd ones at high
spins, indicating much more sufficient configuration mix-
ing in the even-spin band, i.e., the n = 0 band. This kind
of configuration mixing is a reflection of the quasiparticle
alignment.
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FIG. 8. The wobbling energies extracted according to Eq. (10) as
functions of spin, calculated with and without configuration mixing.
The solid line and solid symbols represent results calculated with the
configuration mixing within the πh11/2 subshell, while the dashed
line and open symbols represent those calculated with the single
configuration h11/2(1, 2).

The quasiparticle alignment has a suppression effect on
the rotational energy, which can be, according to the above
discussion, more pronounced for the n = 0 band. Therefore,
one may conclude that the quasiparticle alignment tends to
enlarge the energy separation between the n = 1 and n = 0
bands, i.e., to increase the wobbling energy extracted accord-
ing to Eq. (10). This could be confirmed by comparing the
wobbling energies calculated with and without quasiparticle
alignment, which are shown in Fig. 8. It seems that the two
factors destructing the transverse wobbling, i.e., the collective
rotation around the i axis and the quasiparticle alignment,
have opposite effects on the wobbling energy. The behav-
ior of Ewob as the transverse wobbling collapses might be
complex due to the combination of the above two opposite
effects.

IV. SUMMARY

In this work the even- and odd-spin two-quasiparticle yrast
bands in 136Nd are investigated in a microscopic framework,
i.e., the triaxial projected shell model, to see if they can
be the n = 0 and n = 1 bands of transverse wobbling. The
observed spectra are reasonably reproduced by a single diag-
onalization of the model Hamiltonian with the projected basis
based on the self-consistent HFB minimum. The evolution of
the orientation of the angular momentum vector with respect
to the intrinsic frame tends to support a possible transverse
wobbling interpretation close to the bandhead. The validity of
the wobbling approximation, expressed in terms of the angular
momentum related quantities, is examined quantitatively. The
results suggest that the transverse wobbling is realized at the
bandhead to a similar extent as the established transverse
wobbler in 130Ba, but gets destructed faster as spin increases,
possibly due to the faster quasiparticle alignment as a result
of its smaller deformation. It is noted that the effect of quasi-
particle alignment is more pronounced in the n = 0 band than
in the n = 1 one, as the energy separation between the s-axis-
aligned configuration and the i-axis-aligned configuration is
smaller for the even-spin band than for the odd-spin one,
which, actually, can be connected to the decreasing behavior
of the transverse wobbling energy. Such a distinction between
the two bands tends to enlarge the wobbling energy, mak-
ing its behavior at the collapse of transverse wobbling more
complex than what is expected within the frozen alignment
approximation.
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