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We study the beam-normal single-spin asymmetry (BNSSA) in high-energy elastic electron scattering from
several spin-0 nuclei. Existing theoretical approaches work in the plane-wave formalism and predict the BNSSA
to scale as ∼A/Z with the atomic number Z and nuclear mass number A. While this prediction holds for light and
intermediate nuclei, a striking disagreement in both the sign and the magnitude of BNSSA was observed by the
PREX collaboration for 208Pb, coined the “PREX puzzle.” To shed light on this disagreement, we go beyond the
plane-wave approach which neglects Coulomb distortions known to be significant for heavy nuclei. We explicitly
investigate the dependence of BNSSA on A and Z by (i) including inelastic intermediate states’ contributions
into the Coulomb problem in the form of an optical potential, (ii) by accounting for the experimental information
on the A-dependence of the Compton slope parameter, and (iii) giving a thorough account of the uncertainties
of the calculation. Despite of these improvements, the PREX puzzle remains unexplained. We discuss further
strategies to resolve this riddle.
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I. INTRODUCTION

Corrections due to two-photon exchange (TPE) Feynman
diagrams for electron scattering have received considerable
interest in recent years [1–12], primarily in the context of
the discrepancy of the experimental results [13,14] for the
electric-to-magnetic form factor ratio, which sometimes is
referred to as the proton form factor puzzle. There are strong
indications [15] that this puzzle can be resolved by a proper
inclusion of TPE in the experimental analysis. In view of the
interest in TPE, beam- and target-normal single-spin asym-
metries (SSAs) in elastic electron-nucleus (eN) scattering
regained attention of theorists [16–27]. It has been known for
several decades that these transverse asymmetries are T-odd
observables which, in the absence of CP violation, are sensi-
tive to the imaginary part of the scattering amplitude [28]. The
T-even one-photon exchange amplitude (in the plane-wave
Born approximation, PWBA) is purely real, and it is the T-odd
imaginary (absorptive) part of the TPE amplitude that gives
rise to nonzero transverse asymmetries.

The measurement of the BNSSA (Mott asymmetry, Sher-
man function, and analyzing power are alternative names
which are more common for low-energy electron scattering)
has been part of the parity-violation program over the past two
decades [29–38]. Parity violation is observed in eN scattering
when the incoming electron beam is longitudinally polarized.
Measurements of the respective parity-violating (PV) asym-
metry have far-reaching applications, including precision tests
of the standard model [39–41] and studies of the nuclear struc-
ture [42–45]. Typical values of the PV asymmetry range from

parts per million to parts per billion, several orders of magni-
tude below BNSSA, hence a thorough control of this source
of a potentially significant systematical uncertainty associated
with an unknown transverse component of the electron beam
polarization has become a must-do in the analyses of PV
electron scattering. Thanks to the fact that these experiments
are designed for measuring the much smaller PV asymmetry,
in the past decades good-quality data of the BNSSA have
become available in a variety of kinematic regions and for a
variety of targets.

The general theoretical treatment of transverse asymme-
tries in high-energy (Eb � 1 GeV) elastic eN scattering is a
highly challenging task. The two approaches that have been
pursued in the literature in this energy range are (i) solving the
Dirac equation for the electron moving in the Coulomb field
of an infinitely heavy nucleus in the distorted-wave Born ap-
proximation (DWBA) upon neglecting nuclear and hadronic
excitations of the intermediate states [21]; (ii) including the
latter only in the approximation of the two-photon exchange
[24], disregarding multiphoton exchange effects. The former
approach enables one to accurately account for Coulomb
distortion effects which scale with the nuclear charge, Zα,
and thus are important for electron scattering from heavy
nuclei. While this mechanism dominates at electron ener-
gies in the few-MeV range, its contribution to BNSSA drops
with the electron energy, and for GeV electrons the inelastic
hadronic contribution exceeds the former by several orders
of magnitude [24]. When compared with the corresponding
scattering data from Jefferson Lab [34] and MAMI [37,38],
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the second approach has been quite successful for light and
intermediate-mass nuclei, e.g., 4He, 12C, 28Si, and 90Zr,
while a stark disagreement between theory and experiment
for BNSSA on the 208Pb target [34], sometimes called the
“PREX puzzle,” was observed. This disagreement indicates
that the theoretical calculation of Ref. [24] may miss some
important nuclear contributions which become important for
very heavy nuclei, while only playing a minor role otherwise.
One such effect might be the exchange of many soft Coulomb
photons on top of the two-photon exchange which may lead
to a substantial modification of the leading-order result.

In this article, we join the two aforementioned approaches.
We include the contribution of the inelastic hadronic states as
an optical potential entering the Dirac equation and study the
interplay of the Coulomb distortion and two-photon exchange
within one formalism. We also improve the existing calcu-
lations by using a more extensive database for experimental
information on Compton scattering on nuclei. We use this
information to extract the dependence of the optical potential
on the nuclear mass number.

II. DIRAC COULOMB PROBLEM AT
RELATIVISTIC ENERGIES

We consider elastic scattering of an electron of mass m by
a spin-0 nucleus of mass M,

e−(k1, Si ) + N (p1) → e−(k2, S f ) + N (p2), (1)

where k1 (k2) and p1 (p2) denote the four-momenta of the
initial (final) electron and initial (final) nucleus, and Si (S f )
describes the spin projection of the initial (final) electron
along the considered axis.

The beam-normal single-spin asymmetry is defined as

Bn ≡ σ↑ − σ↓
σ↑ + σ↓

, (2)

where σ↑ (σ↓) represents the eN scattering cross section for
electrons with spin parallel (anti-parallel) to the normal vector
ξμ given by

ξμ = (0, �ξ ), �ξ ≡ �k1 × �k2

|�k1 × �k2|
. (3)

To account for Coulomb distortion and inelastic intermedi-
ate excitations in the considered scattering process, we solve
the relativistic Dirac equation1:

(−i�α · �∇ + βm + Vc + iβVabs)�(�r ) = E�(�r ), (4)

where �α = γ0 �γ and β = γ0 are Dirac matrices, and E the
electron energy in the center of mass reference frame related
(neglecting the electron mass) to the laboratory energy Eb by
E = Eb/

√
1 + 2Eb/M.

The Coulomb potential Vc(r) corresponds to the nuclear
charge distribution which is known from electron scattering
experiments [46]. The absorptive potential Vabs(r, E ) repre-
sents the contribution of the inelastic hadronic excitations in

1We use natural units throughout this paper.

the two-photon exchange diagram, as discussed in detail in
Sec. III. The inclusion of the absorptive component of the
potential in the Dirac problem is the main novel feature of this
work. Note that the form of this potential, iβVabs, is specific
to the problem at hand: an absorptive potential of the form
iṼabs only contributes to Bn at higher order in α, exceeding the
precision goal of this study. Spherically symmetric Vc(r) and
Vabs(r, E ) should be expected for spin-0 nuclei, and we use
this assumption throughout this paper.

For electron scattering in a central field, the solution of the
Dirac equation can be expanded in spherical waves [47],

�κ,mz (�r ) = 1

r

(
Pκ (r) 	κ,mz (θ, φ)

iQκ (r) 	−κ,mz (θ, φ)

)
, (5)

where 	κ,mz (θ, φ) are 2-component spherical spinors. The
relativistic quantum number κ takes values κ1 and κ2 given
by {

κ1 = −( j + 1/2) if j = l + 1/2,

κ2 = +( j + 1/2) if j = l − 1/2,
(6)

where l, j, and mz are the orbital angular momentum, total
angular momentum, and total angular momentum projection
quantum numbers, respectively.

The radial functions Pκ (r) and Qκ (r) satisfy the following
coupled system of differential equations:

dPκ

dr
= −κ

r
Pκ + (E − Vc + iVabs + m)Qκ ,

dQκ

dr
= −(E − Vc − iVabs − m)Pκ + κ

r
Qκ . (7)

We normalize the spherical waves such that the radial func-
tion Pκ (r) oscillates asymptotically with unit amplitude,

Pκ (r → ∞) = sin
(

kr − l
π

2
− η ln 2kr + δκ

)
, (8)

where k is the electron’s wave number and η = −ZαE/k is
the relativistic Sommerfeld parameter. The scattering phase
shift δκ is obtained by requiring continuity of the radial
function Pκ (r) and its derivative at large distance rm (match-
ing distance), at which the numerical solution of Eq. (7) is
matched to the known analytical solution of the Dirac equa-
tion for a pointlike Coulomb potential, Vpc(r)=−Zα/r. The
matching at large distances is justified by the fact that both the
absorptive potential and the short range part of the Coulomb
potential can be neglected beyond rm. As a result, the solu-
tion of the pointlike Coulomb potential provides the proper
asymptotic behavior.

The absorptive potential, while having a shorter range than
the Coulomb one, turns out to extend to distances of the order
of the inverse electron mass 1/m ∼ 400 fm, and the respective
computation becomes cumbersome (details are discussed in
Sec. III C). To perform the numerical calculation, we use the
ELSEPA package [47,48], properly modified to include the
absorptive potential.

Knowledge of the phase shift enables one to determine
the direct and spin-flip scattering amplitudes, f (θ ) and g(θ ),
respectively, in terms of which the beam-normal SSA is
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given by

Bn = i
f (θ )g∗(θ ) − f ∗(θ )g(θ )

| f (θ )|2 + |g(θ )|2 = 2 Im[ f ∗(θ )g(θ )]

| f (θ )|2 + |g(θ )|2 . (9)

These amplitudes admit the following partial-wave expan-
sions:

f (θ ) = 1

2ik

∞∑
l=0

[(l + 1)(e2iδκ1 − 1) + l (e2iδκ2 − 1)]Pl (cos θ ),

g(θ ) = 1

2ik

∞∑
l=0

[e2iδκ2 − e2iδκ1 ]P1
l (cos θ ), (10)

where Pl (cos θ ) and P1
l (cos θ ) are Legendre and associated

Legendre polynomials. The series in Eqs. (10) is singular at
θ = 0 leading to a slow convergence when approaching that
limit. The convergence of the series can be accelerated by
using the reduced series method suggested by Yennie et al.
in Ref. [49]. This method prescribes to reduce the degree
of the singularity of the original series by expanding (1 −
cos θ )n f (θ ) and (1 − cos θ )ng(θ ) into analogous sums over
Legendre polynomials. The new sums converge more quickly,
however the extraction of the original amplitudes requires
to divide by a factor (1 − cos θ )n. As a result, for forward
scattering the use of too many reductions becomes unstable.
We found the optimal number of reductions to be n=2.

III. ABSORPTIVE POTENTIAL FROM THE
TWO-PHOTON EXCHANGE

A. Elastic eN scattering

We turn to a field-theoretical description of the eN scat-
tering process to deduce the explicit form of the potentials in
Eq. (4). In the absence of P- and CP-violation, the invariant
amplitude describing the scattering process Eq. (1) for a spin-
0 nucleus has two terms [24],

T = e2

|t | ū(k2)[mA1(s, t ) + (/p1 + /p2)A2(s, t )]u(k1), (11)

with the usual Mandelstam invariants t = (k1 − k2)2 and s =
(k1 + p1)2, and two scalar amplitudes A1 and A2. The initial
and final electron Dirac spinors are denoted by u(k1) and
u(k2), respectively.

In the static approximation, |t | � s, M2, E2, relativistic
electron-nucleus scattering reduces to the problem of potential
scattering of a relativistic electron in the field of a static
nucleus. In the static limit, p1 = p2 = (M, 0), we can rewrite
Eq. (11) as

T = 2Mu†(k2)

[
e2

|t |
(

mβ

2M
A1 + A2

)]
u(k1). (12)

To leading order in Zα, the electron-nucleon interaction
proceeds via the exchange of a virtual photon, cf. Fig. 1(a),
and only the amplitude A2 survives at this order,

A1γ

1 = 0, A1γ

2 = ZFch(t ). (13)

Here, Fch denotes the nuclear charge form factor, which is
related to the spatial distribution of the nuclear charge ρch(r)

e(k1) e(k2)

N(p1) N(p2)

q q1 q2

N(p1) N(p2)

e(k1) e(k2)e(K)

X(P )

(a) (b)

FIG. 1. (a) One- and (b) two-photon exchange diagrams for elas-
tic electron-nucleus scattering.

by a three-dimensional Fourier transform,

Fch(t ) =
∫

ρch(r)e−i �q·�rd3�r, with | �q |≡
√

|t |, (14)

with the normalization
∫
ρch(r)d3�r =1.

The T-odd observable Bn is determined by the imaginary
part of the interference of A1 and A2 [28]. An imaginary part,
ImA1, for elastic eN scattering, i.e., for s > M2, t < 0, appears
first at next-to-leading order in Zα in the two-photon exchange
contribution depicted in Fig. 1(b).

The absorptive and Coulomb components of the total po-
tential which enter the Dirac Eq. (4), Vabs and Vc, are related to
ImA1 and A2 through a three-dimensional Fourier transform
of the first and second terms in square brackets of Eq. (12).
Including the leading nonvanishing terms in the perturbative
expansion of these amplitudes we obtain

Vc(r) = −
∫

d3 �q
(2π )3

e2

�q 2
A1γ

2 ei �q·�r = −Zα

∫
d3�r ′ ρch(�r ′)

|�r − �r ′| ,

(15)

Vabs(r, Eb) = −
∫

d3 �q
(2π )3

e2

�q 2

m

2M
ImA2γ

1 ei �q·�r . (16)

Other contributions, e.g., recoil corrections and higher-order
contributions to A2, are neglected here. In the next section we
are going to study the perturbative result for the two-photon
exchange diagram to determine an explicit ansatz for the ab-
sorptive potential.

B. Imaginary part of the two-photon exchange amplitude

The imaginary part of the two-photon exchange amplitude,
displayed in Fig. 1(b), is given by

ImT2γ = e4
∫

d3 �K
(2π )32EK

2πLαβW αβ

Q2
1Q2

2

, (17)

where the momenta are defined as shown in Fig. 1, with
Q2

1,2 =−q2
1,2 =−(k1,2−K )2, and EK and �K the energy and

three-momentum of the intermediate electron inside the loop,
respectively. The leptonic tensor Lαβ reads

Lαβ = ū(k2)γα ( /K + m)γβu(k1), (18)
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and the doubly virtual Compton scattering (VVCS) tensor
W αβ is defined as

W αβ ≡ 1

4π

∑
X

〈
p2|J†

α (0)|X (P)
〉〈X (P)|Jβ (0)|p1〉

× (2π )4δ4(p2 + q2 − P) (19)

= 1

4π

∫
d4xeiq2x〈p2|[Jα†(x), Jβ (0)]|p1〉, (20)

where
∑

X in Eq. (19) includes the phase-space integral∫
d3 �P/((2π )32EP ). We note that to get from Eq. (19) to

Eq. (20) one can apply a translation to the current op-
erator, Jα (x) = eiPxJα (0)e−iPx, and (2π )4δ4(p2 + q2 − P) =∫

d4xei(p2+q2−P)x. The matrix element of the hadronic current
for the elastic intermediate state is given by 〈P|Jβ (0)|p1〉 =
(P + p1)β ZFch(Q2

1).
To compute the imaginary part of the TPE diagram and

perform a systematic study of its uncertainties, we note that
the result of the contraction with the leptonic tensor can be
decomposed into two parts,

LαβW αβ = m ū(k2)u(k1)A1 + ū(k2)(/p1 + /p2)u(k1)A2,

(21)

where A1 and A2 are analytical functions of t , Q2
1, Q2

2,
W 2 = (p1 + q1)2 and s. With this notation, a straightforward
connection to the amplitude A1 can be made,

ImA2γ

1 = α|t |
2π

∫ �K2d| �K|d	K

EK Q2
1Q2

2

A1
(
t, Q2

1, Q2
2,W 2, s

)
. (22)

In the following we will obtain the long-range (i.e., low-t)
behavior of ImA2γ

1 , adequate for devising the form of the
absorptive potential via Eq. (16).

To that end, we follow Refs. [16–18] which observed that
Bn is logarithmically enhanced in the kinematical regime
m2 � |t | � s due to the collinear photon singularity. The in-
tegrals over the solid angle that are prone to this enhancement
read

I0 = |t | �K2

2π

∫
d	K

Q2
1Q2

2

≈ ln
|t |
m2

,

I1 = E | �K|
π

∫
d	K

Q2
1

= E | �K|
π

∫
d	K

Q2
2

≈ ln
4E2

m2
, (23)

with the energies E = (s − M2)/(2
√

s) and EK = (s −
W 2)/(2

√
s) defined in the center-of-mass frame, and | �K| =√

E2
K − m2. Here we have listed only the leading behavior in

the limit where
√|t | and E are large compared with the elec-

tron mass m. The exact expressions are given in the Appendix.
For the values we are interested in, |t | ≈ 0.01 GeV2, the first
logarithm is of order 10. The second logarithm is of order
25 for E in the GeV range, but is suppressed by an explicit
factor |t | with respect to the former. This hierarchy defines
our approximation scheme:

ImA2γ

1 = α
∫ d| �K|

EK

[
A(0)

1 (t )I0 + |t |EK
2E A(1)

1 (t )I1 + . . .

]
,

(24)

where terms denoted by dots are doubly suppressed: they
contain one power of t and no large logarithm. To arrive at this
result we have used an expansion in small photon virtualities,

A1
(
t, Q2

1, Q2
2,W 2, s

) = A(0)
1 (t ) + Q2

1 + Q2
2

2
A(1)

1 (t ) + . . . ,

(25)

where we show explicitly only the dependence of A(0)
1 and

A(1)
1 on t , while their dependence on the other four invari-

ant variables is implicitly assumed. For consistency, we will
only keep the “strong” t-dependence in A(0)

1 , A(1)
1 , e.g., an

exponential or the nuclear charge form factor, but will neglect
power corrections ∼t/M2, t/s, t/E2. In the literature only
A(0)

1 (t ) has been obtained in the near-forward limit. In this
work we include the second term and use it to estimate the
uncertainty induced by the approximations used.

Next we proceed to derive explicit expressions for A(0)
1

and A(1)
1 . The optical theorem relates them to the total cross

sections for virtual photoabsorption at the first step. The
t-dependence is reconstructed at the second step from the
measured differential cross section for real Compton scatter-
ing. This two-step procedure requires that we operate with the
Compton amplitudes which are well-defined in both (a) the
forward scattering limit, described by t = 0 and finite Q2

1 =
Q2

2 ≡ Q2 and (b) the real Compton scattering limit, described
by Q2

1 = Q2
2 = 0 and finite t .

The general virtual Compton tensor W αβ for a spinless
target consists of five independent Lorentz structures, τ

αβ
i ,

(i = 1, . . . , 5) [50–52] multiplied by respective scalar am-
plitudes Fi(t, Q2

1, Q2
2,W 2). In the approximation scheme we

work in, the number of structures that contribute is further
reduced upon neglecting terms that vanish in both the for-
ward and the real Compton scattering limits. This restricts
our consideration to just two structures τ

αβ
i (in the original

enumeration of Ref. [50]):

W αβ = τ
αβ

1 Im F1 + τ
αβ

3 Im F3,

τ
αβ

1 = (q1q2)gαβ − qα
1 qβ

2 ,

τ
αβ

3 = ( p̄q̄)2gαβ − ( p̄q̄)( p̄βqα
1 + p̄αqβ

2 ) + (q1q2) p̄α p̄β, (26)

with p̄ = (p1 + p2)/2 and q̄ = (q1 + q2)/2. Other structures
(explicitly provided in Ref. [50]) surviving in the forward
limit for virtual photons can always be expressed as linear
combinations of τ1,3.

By contracting the leptonic and virtual Compton tensors,
we find an explicit expression for A1,

A1(t ) = Im F1
[(

Q2
1 + Q2

2

)
(λ − 2) − t

]
+ Im F3

[(
4( p̄q̄)( p̄k̄) − p̄2(q1q2)

)
× (λ − 1) − 2( p̄q̄)2(λ − 2)

]
, (27)

where k̄ = (k1 + k2)/2 and

λ = 2(s − M2)(s − W 2) − (
Q2

1 + Q2
2

)
(s + M2)

2(s − M2)2
.

064316-4



BEAM-NORMAL SINGLE-SPIN ASYMMETRY IN ELASTIC … PHYSICAL REVIEW C 103, 064316 (2021)

The forward limit of the amplitudes F1,3 is determined by
the usual structure functions F1 and F2,

Q2Im F1(0, Q2, Q2,W 2) = F1 − 1

2xBj
F2 ≡ FL,

Q2Im F3(0, Q2, Q2,W 2) = − 1

( p̄q̄)
F2, (28)

where xBj = Q2/(2 p̄ · q̄). The structure functions are related
to the transverse and longitudinal inelastic virtual photoab-
sorption cross sections σT and σL via

F1(W 2, Q2) = W 2 − M2

8π2α
σT (W 2, Q2),

F2(W 2, Q2) = W 2 − M2

8π2α

Q2 ( p̄ · q̄)

( p̄ · q̄)2 + Q2M2

× (σT (W 2, Q2) + σL(W 2, Q2)). (29)

Expanding σT,L at Q2 = 0 we obtain the following expres-
sions for A(0)

1 and A(1)
1 :

A(0)
1 (0) = M

2π2α
EK

ω

E
σ 0

T (ω), (30)

A(1)
1 (0) = M

2π2α

[(
− 2

ω
+ 3

2Eb
− ω

(Eb + M )

2ME2
b

)
σ 0

T (ω)

+ EK
ω

E
σ ′

T (ω) + 2ωσ ′
L(ω)

]
, (31)

where Eb = (s − M2)/(2M ) and instead of the variable
W 2 we used ω = (W 2 − M2)/(2M ). Moreover, σ 0

T (ω) ≡
σT (ω, Q2 = 0) and σ ′

T,L(ω) ≡ dσT,L/dQ2(ω, Q2 = 0).
The t-dependence of the Compton amplitudes can be re-

trieved from experimental studies of the differential cross
section for Compton scattering. Measurements are available at
high energies, E ∼ 3 − 5 GeV and at low −t , 0.001 < −t <

0.06 GeV2, see Refs. [53,54]. In this kinematic range,

dσ

dt
≈ πα2M2ω2

16
|ImF3|2

(
1 + R2

)
, (32)

where the terms suppressed with powers of t were neglected,
and we defined R = |ReF3|/|ImF3|. The data follow an expo-
nential fall-off,

dσ

dt
(ω, t ) = ae−B|t |F 2

ch(t ) + σinc. (33)

Fch(t ) is the nuclear charge form factor. Depending on the nu-
cleus, we adopt a two-parameter Fermi model (197Au, 109Ag,
and 64Cu), a Fourier-Bessel model (49Ti, 27Al, and 12C), or a
sum of Gaussians (4He) [46,55,56]. A (small) incoherent con-
tribution σinc was added to improve the description of the data
around the first diffraction minimum and above. In the t-range
of interest this contribution is a slowly-varying function of t
which can be approximated by a polynomial. In practice, we
found that only the constant term is reliably constrained by the
data. This is related to the rather small range of t where data
are available, as well as large uncertainties at the largest values
of the momentum transfer. We perform the fit using the 3 and
5 GeV data of Ref. [54] with B and σinc as free parameters, and
fix the normalization of the coherent contribution a such that

FIG. 2. Compton scattering cross section data [54] used to deter-
mine the Compton slope B compared with our fit.

the sum a + σinc reproduces the values of dσ/dt (0) reported
in Ref. [54].

We find the incoherent contributions to be irrelevant for
the description of the data at 3 GeV and set σinc to 0 (cf.
second column of Table I). For the 5 GeV data, instead,
its inclusion greatly improves the overall fit due to a larger
measured t-range. Importantly, however, whether including
or excluding the incoherent contribution from the fit barely
affects the extracted value of B, as the latter is determined by
low-t data. For the 4He data of Ref. [53], we treat a as a free
parameter. The extracted values for a, B, and σinc are listed in
Table I. We display the fit of the 5 GeV data of Ref. [54] in
Fig. 2.

In the literature, BNSSA measurements have been reported
for the following spin-0 nuclei: 4He, 12C, 28Si, 40Ca, 48Ca,
90Zr, and 208Pb. To obtain the slope parameter B for 28Si, 40Ca,
48Ca, 90Zr, and 208Pb for which no direct data is available,
we use the values obtained for nuclei with the closest atomic
weight in Table I. More specifically, we use the values of B
from 27Al for 28Si, 49Ti for 40,48Ca, 109Ag for 90Zr, and 197Au
for 208Pb. Values of B obtained from the fit to Compton data
at ω = 3 GeV and ω = 5 GeV are compatible with each other
(where a comparison is possible). We use the more precise
values from the ω = 5 GeV fit for all nuclei except for 4He
where only data at ω = 3.3 GeV are available.

We finally reconstruct the t-dependence of the imaginary
part of the Compton amplitude using Eqs. (32) and (33),

ImF3(ω, t ) = ImF3(ω, 0) e− B|t |
2 Fch(t )

√
1 + R2(ω, 0)

1 + R2(ω, t )
, (34)

and estimate the ratio R(ω, t ) in a Regge model. For the latter,
we use a recent Regge fit [57] of the total photoabsorption
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TABLE I. Average values and corresponding theoretical uncertainties for the Compton slope parameter B extracted from Compton
scattering data of Refs. [53] and [54]. For nuclei with A � 12, dσ/dt (0) = a + σinc is fixed to the value reported in Ref. [54]. The 5 GeV
results are used for all nuclei except for 4He.

ω � 3 GeV ω = 5 GeV
Target a [μb/GeV2] σinc [μb/GeV2] B [GeV−2] a [μb/GeV2] σinc [μb/GeV2] B [GeV−2]

4He 13.1 ± 2.5 0.0 10.0 ± 3.6 — — —
12C 111.9 0.0 7.2 ± 2.5 89.7 ∓ 0.8 2.9 ± 0.8 10.0 ± 2.1
27Al 523.0 0.0 12.1 ± 2.1 402.8 ∓ 1.1 2.2 ± 1.1 8.1 ± 1.9
49Ti — — — 1210.9 ∓ 1.5 9.1 ± 1.5 18.6 ± 2.1
64Cu 2664.0 0.0 16.5 ± 13.8 2022.4 ∓ 1.9 9.6 ± 1.9 14.6 ± 2.3
109Ag 8406.0 0.0 26.4 ± 3.5 6096.1 ∓ 2.8 24.9 ± 2.8 26.0 ± 2.7
197Au — — — 20589.2 ∓ 17.4 40.8 ± 17.4 56.7 ± 8.2

cross section measured for several nuclei [58–60]. The total
cross section was fitted by a sum of a Pomeron and a Reggeon
exchange,

σ tot
γ A(ω) = cA

P(ω/ω0)αP (0)−1 + cA
R(ω/ω0)αR (0)−1, (35)

with ω0 = 1 GeV and linear Regge trajectories αi(t ) = α0i +
α′

it . The intercepts are α0P = 1.097, α0R = 0.5 and the slopes
α′

P = 0.25 GeV−2, α′
R = 0.9 GeV−2 [57]. The values of cA

P,R
for carbon, aluminum, copper and lead are listed in Table I of
Ref. [57]. From the optical theorem, σ tot

γ A(ω) ∝ ImFγ A→γ A
3 .

For a given Regge exchange contribution to an amplitude, its
real and imaginary parts follow from the known phase of the
Regge propagator,

PR ∼ eiπαR (t ) + ξ, ξ = ±1. (36)

For Compton scattering only the exchange with natural par-
ity, ξ = +1, contributes to the spin-independent channel,
and R2

i (t ) = cot2[παi(t )/2] with i = P, R. We found that re-
moving the effect of the real part of the amplitude from
the differential cross section to obtain the t-dependence
of the imaginary part, Eq. (34), is equivalent to a change in
the slope parameter B of ≈2.2 GeV−2. We include this effect
as an uncertainty of B, in addition to those of the fit listed in
Table I, and use a simple exponential times charge form factor
ansatz for the t-dependence of the amplitude ImF3.

Finally, our ansatz for the t-dependence of the coefficients
A(0)

1 (t ) and A(1)
1 (t ) in front of the large logarithms at small

momentum transfer t reads

A(0,1)
1 (t ) = A(0,1)

1 (0) e− B|t |
2 Fch(t ). (37)

While the ansatz for A(1)
1 (t ) is motivated by the continuity

of the function A(t, Q2
1, Q2

2,W 2, s) in t , Q2 near the forward
limit and near the real photon point, the quality of this ap-
proximation is hard to estimate. We therefore assign a 100%
uncertainty to the A(1)

1 contribution.

C. Absorptive potential

The results of Eqs. (24), (30), (31), and (37) can be used to
compute the absorptive potential given by Eq. (16). Using the
hierarchy introduced in Eq. (24), we split the absorptive po-
tential into two parts, Vabs(r, Eb) = V (0)

abs (r, Eb) + V (1)
abs (r, Eb),

and find the leading and subleading contributions to be given

by

V (0)
abs = c0

Eb∫
ωπ

dωω σ 0
T (ω)

∞∫
0

dq j0(qr)Fch(q2)e− B
2 q2

I0,

V (1)
abs = c0

2

∞∫
0

dq q2 j0(qr)Fch(q2)e− B
2 q2

Eb∫
ωπ

dωI1

×
{[

3

2Eb
− 2

ω
− ω(Eb + M )

2ME2
b

]
σ 0

T + ω(Eb − ω)

Eb
σ ′

T

}
,

(38)

with c0 =−αm/(2π3Eb), q ≡ |�q |, j0(qr) the Bessel function
of order zero, and ωπ = mπ + m2

π/(2M ) the laboratory frame
photon energy at the pion photoproduction threshold. The
expressions for I0 and I1 are provided in the Appendix.

We note that the ω-weighting ∼ωσ 0
T (ω) in V (0)

abs , together
with the overall 1/E -weighting in c0, puts the emphasis on
the photoabsorption in the hadronic energy range. Nuclear
photoabsorption occurs at much lower energies and its con-
tribution to the leading term is suppressed.

In this article, we focus on the evaluation of contributions
to the absorptive potential coming from photoabsorption in
the hadronic region. In the nucleon resonance region and
slightly above, the total nuclear photoabsorption cross section
is assumed to approximately scale with the atomic weight A as
σT (ω) ≈ AσT,γ p(ω), where σT,γ p(ω) is the real photoabsorp-
tion cross section of the proton. For the evaluation of σ 0

T,γ p

and σ ′
T,γ p, we use the parametrization of Ref. [61]. We point

out that σ ′
L,γ p(ω) is zero in this parametrization, hence this

contribution was omitted in Eq. (38).
The naive linear A-scaling disregards the shadowing at

higher energies and anti-shadowing in the resonance region
(cf. Fig. 10 of Ref. [60]). Nevertheless, since Eq. (38) operates
with the integrated cross section rather than the cross section
itself, the two effects should largely cancel out justifying our
approximation. A comprehensive study of specifically nuclear
effects in photoabsorption, from the giant resonance to shad-
owing and anti-shadowing at hadronic energies, is postponed
to a future work.

In Fig. 3, we display the result of a numerical evaluation of
the twofold integrals in Eq. (38) which determine the leading

064316-6



BEAM-NORMAL SINGLE-SPIN ASYMMETRY IN ELASTIC … PHYSICAL REVIEW C 103, 064316 (2021)

FIG. 3. The r-dependence of weighted potentials r|V (r)| for
208Pb as a function of r in units of Fermi. The point-charge Coulomb
potential is shown by a red dotted horizontal line at r|Vpc(r)| = Zα.
The Coulomb potential of the empirical charge distribution corre-
sponds to the blue solid curve. The black and orange dashed curves
show the leading and subleading contributions to the absorptive
potential, correspondingly, for Eb = 1.063 GeV.

(black dashed curve) and subleading (orange dashed curve)
contributions to the absorptive potential for 208Pb at Eb =
1.063 GeV. We compare the result with the Coulomb potential
(blue solid curve) of the lead nuclear charge distribution of
Ref. [46] and with the Coulomb potential for a pointlike
charge (red dotted curve). The potentials for the pointlike
and the empirical charge distributions approach each other
just outside the root-mean square radius, which is ∼5.5 fm
for lead. We observe that the absorptive potential is rather
small (note the scale factor 104 in front of the leading con-
tribution to Vabs) and has a finite range [rVabs(r → ∞) → 0].
However, it extends far outside the nuclear charge distribu-
tion as it is sensitive to scales up to the electron’s Compton
wave length ∼1/m ∼ 400 fm. This property results in a large
matching distance needed for a precise evaluation of Bn. The
matching distance rm is the distance at which the total inter-
action potential V (r) = Vch(r) ± iVabs(r) has reached (within
a given precision) its asymptotic value V (rm ) = Vpc(rm ), be-
yond which Vabs can be set equal to zero. The determination of
the matching distance is of crucial importance for our calcu-
lation since rm is the distance where the numerical solution of
the Dirac equation is matched to the known analytical solution
with V (r) = Vpc(r). We observe that the CPU time for the
numerical calculation grows approximately linearly with rm,
and a proper balance between precision and computing time
had to be found.

We studied the dependence of predictions for Bn on
the matching distance for electron scattering from 208Pb at
Ebeam = 1.063 GeV. In previous calculations for the Coulomb
problem with a nuclear charge distribution of a typical ra-
dius � 6 fm and without including an absorptive potential, a
matching distance of rm ∼ 15 fm had been used [21]. How-
ever, we found that the relative uncertainty of our calculation
for Bn at θ = 5◦ can not be expected to be better than
10−3 if rm is chosen smaller than 120 fm. In addition, the

FIG. 4. BNSSA for elastic electron scattering from 12C (solid
blue curve), 28Si (dashed orange curve), 40Ca (solid green curve),
90Zr (dashed-dotted black curve), and 208Pb (solid red curve) versus
momentum transfer squared |t | at Eb = 953 MeV for the case when
only elastic intermediate-state contributions are taken into account.
For the distribution of the nuclear charge, ρch(r), we use an exper-
imental fit of the world data on elastic electron-nucleus scattering
parametrized in the form of a sum of Gaussians (12C, 28Si, 40Ca,
208Pb) or Fourier-Bessel (90Zr) as reported in Ref. [46].

precision of the calculation becomes worse as the scattering
angle increases. The results of our calculation for Bn, which
are presented in Sec. IV, are obtained with rm = 606 fm.
Such a matching distance represents a compromise between
achieving the necessary numerical precision and keeping the
calculation time under control. With rm = 606 fm, the relative
intrinsic numerical uncertainty of our prediction for Bn is well
below ∼1% in the range of momentum transfers considered
in this paper, independently of the target and beam energy.

IV. RESULTS

In this section, we present results for Bn for electron scat-
tering at energies ranging from 570 MeV to 3 GeV from a
variety of nuclear targets. We note here that while our formal-
ism was developed for spin-0 nuclei, for elastic scattering on
an unpolarized nuclear target nonzero nuclear spin will only
induce corrections of the order of the nuclear recoil, ∼t/M2,
which can be safely neglected.

The results of the calculation including Coulomb distortion
(distorted-wave calculation, for short) of the beam-normal
SSA for the case when only elastic intermediate-state con-
tributions in the scattering process are taken into account
(Vabs = 0) are displayed in Fig. 4. This figure illustrates the
dependence of the asymmetry on details of the nuclear charge
distribution at a fixed energy of the incoming beam, Eb = 953
MeV. Because the nuclear charge density is roughly repre-
sented by a nearly homogeneous sphere with a relatively
sharp edge, the prediction for the beam-normal SSA features
a typical diffractive pattern. The location of the first diffrac-
tion minimum gives an idea of the characteristic size of the
target nucleus. One can see that for light nuclei the diffraction
minima are prominent and deep, with the absolute value of the
asymmetry changing by an order of magnitude in the vicinity
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FIG. 5. BNSSA versus momentum transfer squared |t | in the kinematical range where measurements are available. (a) Predictions for 4He
obtained with Eb = 2.750 GeV and for 12C and 208Pb with Eb = 1.063 GeV. Experimental data points are from the PREX-I and HAPPEX
experiments [34]. (b) Predictions for 12C, 28Si, and 90Zr obtained with Eb = 570 MeV. Experimental data points are from the experiments of
Refs. [37,38] at MAMI.

of the minimum. For heavy nuclei, Coulomb distortions are
stronger, and the asymmetry experiences a less drastic change
around the minimum. The predictions for Bn presented in
Fig. 4 are in good agreement with those reported in Ref. [21].

Next we discuss results of the distorted-wave calcula-
tion of the beam-normal SSA for the case when inelastic
intermediate-state contributions in the scattering process are
taken into account by including the absorptive potential into
the Coulomb problem. We calculate a theoretical uncertainty
in several steps. First, we evaluate a relative uncertainty ε1 of
the asymmetry due to the uncertainty of B. The uncertainty
of B receives itself two contributions: (i) the first component
is the uncertainty from the fit to the Compton data and is
provided in Table I; (ii) the second component is associated
with neglecting the effect of the real part of the amplitude
F3 in the fit of the Compton data and was estimated to be
2.2 GeV−2, as discussed in Sec. III B. These two parts are
combined in quadrature. Second, we evaluate a contribution
ε2 to the relative uncertainty of the asymmetry due to the
specific choice of an ansatz for the t-dependence of the coeffi-
cient A(1)

1 (t ). ε2 is obtained as the relative difference between
predictions for Bn computed with and without the contribution
from A(1)

1 (t ) to Vabs, while the parameter B is kept fixed at its
central value. This prescription is equivalent to assigning a
100% uncertainty to the contribution from A(1)

1 . Finally, the
two components are added in quadrature, i.e., ε =

√
ε2

1 + ε2
2

is used to calculate uncertainty bands shown in the following
figures.

In Figs. 5 and 6, we display results for the BNSSA in the
distorted-wave calculation including inelastic intermediate-
states. Each curve in these figures belongs to a specific energy
of the incoming beam as specified in the figure captions and
a specific target nucleus as indicated on the plots. The central
dashed lines correspond to the absorptive potential given by
Eq. (38) and the parameter B fixed at its central value as
provided in Table I (5 GeV data). The solid bands around
the central lines indicate the estimated theoretical uncertainty
as described in the previous paragraph. By comparing the

results presented in Fig. 4 with those displayed on the left
panel of Fig. 6 (both figures correspond to Eb = 953 MeV),
we conclude that the inelastic excitations of the intermediate
state provide the dominant contribution to Bn at GeV beam en-
ergies. This is consistent with the results of Ref. [24], in which
only the leading-order inelastic intermediate-state excitations
were considered.

In Fig. 5, we compare our prediction for Bn with the
measurements by the PREX-I and HAPPEX collaborations at
JLab [34] (left plot) and a series of experiments performed
at MAMI [37,38] (right plot). We note that our framework
has been designed for high-energy electron scattering; apart
from lacking contributions from the nuclear range, it op-
erates with a phenomenological t-dependence motivated by
the high-energy Compton scattering data. While the high-
energy measurement on 4He by the HAPPEX collaboration at
2.75 GeV is well described, and so is a somewhat lower one
on 12C at 1.063 GeV, the agreement at lower MAMI energies
is worse even for light and intermediate nuclei. This fact
indicates that the t-dependence of the Compton cross section
in the resonance region is likely not to follow the exponential
fall-off as deduced from high-energy data.

The data point by the PREX-I collaboration on the 208Pb
target clearly stands out: the measured value of Bn ≈ +0.5
p.p.m. does not follow the pattern of either the theoretical
predictions, nor measurements on lighter nuclei, with large
negative asymmetries, hence the name “the PREX puzzle.”
Although the distorted-wave calculation of Bn reported here
and obtained with the updated value of the slope parameter B
reduces the disagreement between theory and experiment for
208Pb somewhat, it is still unable to explain the origin of the
sign difference between measurement and prediction.

We note that the predictions displayed in Fig. 5 are ob-
tained using different values of the parameter B (see Table I
for details) for different nuclei. These values were deduced
from the Compton scattering data on 8 nuclei [53,54]. In
contrast, theoretical predictions presented in Refs. [34,37,38]
were based on the calculation of Ref. [24] which assumed
a universal parameter B = 8 ± 1 GeV−2, independent of the
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FIG. 6. BNSSA versus momentum transfer squared |t | for the kinematical conditions of soon-to-be published measurements. (a) Predic-
tions for 12C, 40Ca, and 208Pb obtained for Eb = 953 MeV (the PREX-II measurement [62]). (b) Predictions for 12C, 40Ca, 48Ca, and 208Pb
obtained for Eb = 2.183 GeV (the CREX measurement [63]). (c) Predictions for 12C and 27Al obtained for Eb = 1.158 GeV (the Qweak
measurement). The dashed vertical lines indicate approximate values of t of the considered experiments.

target nucleus. This value stems from the high-energy Comp-
ton data on the proton. In Ref. [24] this value was found
consistent with that for 4He, thereby conjecturing that it re-
mains constant across the nuclear chart. The present, more
careful study addressed the validity of this assumption explic-
itly, see Table I, and found it to hold for light nuclei, from
4He to 27Al. For heavier nuclei it gradually breaks down and
for the heaviest nucleus, 197Au the actual value of the slope is
seven times larger.

In Refs. [37,38], light and intermediate nuclei had been
studied at lower energies. In those references, the slope B
was taken universal and constant [24], but the uncertainty was
assumed to be 10% (20%) of the full slope of the Compton
cross section, i.e., of B + R2

Ch/3, with the nuclear charge ra-
dius RCh. For carbon, one has RCh ≈ 2.5 fm which leads to
B = 8 ± 6 (±12) GeV−2 for 10% (20%) uncertainty, respec-
tively. This is a conservative estimate in view of experimental
data that allow us to reduce the uncertainty of B considerably,
as shown in Table I.

Another difference between the approach of Refs. [37,38]
and the one used in the present work concerns the treatment
of corrections to the leading-order behavior of the poten-
tial Vabs and related uncertainties. In those references, the
approximate result for I0 shown in Eq. (23) was used to

obtain the central value, while the t-independent nonloga-
rithmic term appearing in the full result of Eqs. (A4) and
(A5), was only used to estimate the uncertainty. Here we
argue that the full expression for V (0)

abs and the subleading
contribution V (1)

abs are exactly calculable and should therefore
be included in the central value. The leading term is model-
independent as it is the only term that carries the long-range
behavior ∼ ln(|t |/m2). All other corrections, including V (1)

abs ,
are of short-range nature. Among these, V (1)

abs is the only term
enhanced by the collinear logarithm ∼ ln(4E2/m2), and its
coefficient is exactly calculable, based on the low-Q2 expan-
sion of the near-forward virtual Compton amplitude. This
enhancement justifies using 100% of this contribution as a
conservative uncertainty estimate for all neglected short-range
pieces.

The numerical hierarchy of parts of Vabs may break down
upon including effects originating from low-energy nuclear
excitations and the quasielastic peak. Such contributions carry
a new intermediate scale �Nucl ∼ 15 MeV with m � �Nucl �
Eb ∼ 1 GeV. However, as long as the beam energy is large
enough (�300 MeV) the leading term V (0)

abs is exempt from a
substantial modification by the contributions from such low
energies. To see this we may use the approximate scaling of
the integrated nuclear cross section without energy weighting,
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FIG. 7. BNSSA versus momentum transfer squared |t | for the
kinematical conditions of the CREX measurement, i.e., for Eb =
2.183 GeV. Dashed curves represent predictions for the asymmetry
obtained in the plane-wave approximation while the solid curves
correspond to the exact calculation including Coulomb distortion.

∫
σNucl(ω)dω = NZ

A
α
M [64], with N the number of neutrons.

The expected energy-weighted result then reads, assuming
N = Z , 1

A

∫ 30 MeV
0 ωσNucl(ω)dω ∼ α�Nucl

4M � 10−4. This is to be
compared with the energy-weighted integral over the hadronic
range for which we find

∫ Eb

ωπ
ωσγ p(ω)dω ∼ 0.3, for Eb =

1 GeV and using the parametrization of Ref. [61]. The effect
of these nuclear contributions on the subleading term V (1)

abs
remains a question which we plan to address in a future work.

In Fig. 6, we present the prediction for the kinematical
conditions of soon-to-be published measurements of Bn by the
PREX-II [65], CREX [66], and Qweak [67] collaborations at
Jefferson Lab.

Finally, we confront the results of our distorted-wave cal-
culation to those obtained in the plane-wave approximation as
reported in Ref. [24]. Here, the BNSSA is given by

Bn = − 2m
√|t |√

(s − M2)2 − s|t |
ImA2γ

1

A1γ

2

(39)

in terms of the invariant amplitudes A2γ

1 [Eq. (22)] and A1γ

2
[Eq. (13)]. To perform a meaningful comparison between the
two calculations, we tuned the input parameters of the plane-
wave approach to be identical to the input we used for our
distorted-wave calculation, i.e., instead of assuming a flat A/Z
dependence of the Compton slope parameter as in Ref. [24],
we used the experimental information on its Z (A) dependence
as summarized in Table I. In addition, instead of evaluating
the asymmetry in the leading logarithm approximation, i.e.,
by considering only those contributions to Bn coming from
approximating A1(t ) with A(0)

1 (t ), Eq. (30), we also took
into account the A(1)

1 (t ) contribution to A(t ), Eq. (31). The
results of the comparison are displayed in Fig. 7. We observe
that Coulomb distortion increases the absolute value of the
asymmetry. While the effect (the difference between the solid
and dashed curves of the same color) may be significant, the

corresponding predictions are qualitatively similar to those
obtained in the plane-wave approximation.

V. CONCLUSIONS

We have computed the beam-normal single-spin asymme-
try in the diffractive regime of elastic scattering of electrons
from a variety of spin-0 nuclei. This asymmetry is gener-
ated by the imaginary part of the interference between the
direct, f (θ ), and spin-flip, g(θ ), scattering amplitudes. We
have evaluated these amplitudes by studying the asymptotic
behavior of the solution of the relativistic Dirac equation
at large distances. To realistically describe the effective in-
teraction between the electron and target nucleus, we have
employed an optical potential method. Within this approach,
the electron-nucleus interaction is represented by two compo-
nents of the potential: the (real) Coulomb one and (imaginary)
absorptive one. The Coulomb component accounts for the
contribution from elastic intermediate states in the scattering
process, whereas the absorptive component describes inelastic
contributions. To parametrize the absorptive component of
the potential, we made use of the result for the imaginary
part of the general amplitude A1 calculated to order α2 in
the electromagnetic coupling. The corresponding perturbative
calculation has been performed for the kinematics of diffrac-
tive electron scattering, where the optical theorem can be used
to relate the imaginary part of the amplitude A1 to the total
photoabsorption cross section of the nucleus. To describe the
t-dependence of the asymmetry near the forward scattering
limit (t =0), we utilized information on the t-dependence of
the differential cross section of Compton scattering off nuclei
at low t . Using this approach, we have obtained distorted-
wave predictions for BNSSA for various spin-0 nuclei and
presented the results in the kinematical range of several ex-
periments that have been performed.

Our calculation contains several improvements with re-
spect to earlier calculations: (a) we included contributions
from inelastic intermediate states into the Coulomb problem;
(b) we went beyond the leading logarithm approximation
in evaluating Bn by considering contributions coming from
A(1)

1 (t ); (c) we explicitly outlined the approximation scheme
used for the evaluation of Bn and obtained a more realistic
estimate of uncertainties. We found however that neither of
these improvements seems to be enough to explain the PREX
puzzle. A small and positive value of Bn obtained on a 208Pb
target is at variance with large negative values of Bn predicted
by the theory and backed by all other measurements on light
and intermediate nuclei. As a possible improvement, we plan
to study contributions coming from the nuclear region of the
photoabsorption cross section.
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APPENDIX: MASTER INTEGRALS

In this Appendix, we briefly summarize the details of the
calculation of the master integrals appearing in the expression
for the beam-normal SSA, Eq. (23),

I0 = |t | �K2

2π

∫
d	K

Q2
1Q2

2

, (A1)

I1 = E | �K|
π

∫
d	K

Q2
1

= ln
4E2E2

K

m2E2
γ

, (A2)

where E = (s − M2)/2
√

s and EK = (s − W 2)/2
√

s are the
energies of the external and the intermediate electrons in
the center-of-mass frame. The center-of-mass energy of
the collinear quasireal photon is Eγ = E − EK = (W 2 −
M2)/2

√
s. The angular integration in Eq. (A1) can be

performed by using the Feynman trick,∫
d	K

Q2
1Q2

2

=
∫ 1

0
dx

∫
d cos θx dϕ[

Q2
1 + (

Q2
2 − Q2

1

)
x
]2 , (A3)

and choosing the polar axis to be oriented in such a way that
θx is the angle between �K and �Kx = �k1 + x(�k2 − �k1). Here �k1

and �k2 are the three-momenta of the initial and final electron
in the center-of-mass frame. As a result, one finds [17,18]

I0 = 1√
1 + 4m2E2

γ

|t | �K2

ln

√
1 + 4m2E2

γ

|t | �K2 + 1√
1 + 4m2E2

γ

|t | �K2 − 1

, (A4)

where we neglected terms ∼m2/E2. In the limit m2 � �K2,
Eq. (A4) reduces to

I0 = ln
|t |(E − Eγ )2

m2E2
γ

. (A5)
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