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Microscopic analysis of low-energy spin and orbital magnetic dipole excitations in deformed nuclei
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A low-energy magnetic dipole (M1) spin-scissors resonance (SSR) located just below the ordinary orbital
scissors resonance (OSR) was recently predicted in deformed nuclei within the Wigner function moments
(WFM) approach. We analyze this prediction using fully self-consistent Skyrme quasiparticle random phase
approximation (QRPA) method. Skyrme forces SkM*, SVbas, and SG2 are implemented to explore SSR and
OSR in 160,162,164Dy and 232Th. Accuracy of the method is justified by a good description of M1 spin-flip
giant resonance. The calculations show that isotopes 160,162,164Dy indeed have at 1.5–2.4 MeV (below OSR)
Iπ K = 1+1 states with a large M1 spin strength (K is the projection of the total nuclear moment to the symmetry z
axis). These states are almost fully exhausted by pp[411 ↑, 411 ↓] and nn[521 ↑, 521 ↓] spin-flip configurations
corresponding to pp[2d3/2, 2d5/2] and nn[2 f5/2, 2 f7/2] structures in the spherical limit. So the predicted SSR is
actually reduced to low-orbital (l = 2, 3) spin-flip states. Following our analysis and in contradiction with WFM
spin-scissors picture, deformation is not the principle origin of the low-energy spin M1 states but only a factor
affecting their features. The spin and orbital strengths are generally mixed and exhibit interference: weakly
destructive in SSR range and strongly constructive in OSR range. In 232Th, the M1 spin strength is very small.
Two groups of Iπ = 1+ states observed experimentally at 2.4–4 MeV in 160,162,164Dy and at 2–4 MeV in 232Th
are mainly explained by fragmentation of the orbital strength. Distributions of nuclear currents in QRPA states
partly correspond to the isovector orbital-scissors flow but not to the spin-scissors one.
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I. INTRODUCTION

Magnetic dipole excitations in nuclei provide important
information on the nuclear spin and orbital magnetism [1,2].
For a long time, these excitations were mainly represented
by M1(K = 1) spin-flip giant resonance located at the energy
E ≈ 41A−1/3 MeV [1,2] and low-energy M1 OSR with excita-
tion energy E ≈ 66δA−1/3 MeV [2], where δ is the parameter
of nuclear axial quadrupole deformation. Both resonances are
isovector and characterized by enhanced M1(�K ) transitions
to the ground state.

The spin-flip resonance is produced by particle-hole spin-
flip transitions between spin-orbit partners in the proton and
neutron single-particle spectra. This resonance is related to
spin nuclear magnetic properties and it exists in both spherical
and deformed nuclei [1,2]. The spin-flip resonance was widely
applied to test a spin channel in various self-consistent ap-
proaches (Skyrme, Gogny, and relativistic) [2–8] and to check
tensor forces [3,4,9] and spin-orbit interaction [3–5,8].

OSR is macroscopically treated as scissors-like out-of-
phase oscillations of proton and neutron deformed subsys-
tems; see Fig. 1(a). This isovector resonance can exist only in
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deformed nuclei. It represents a remarkable example of a nu-
clear orbital magnetism. OSR was predicted in the two-rotor
model [10,11] and then experimentally observed in (e, e′)
reaction [12]. OSR demonstrates some specific features: lin-
ear and square deformation laws for its energy and strength,
respectively [13,14]. Various properties of OSR are outlined
in reviews [2,15,16]. OSR is a kind of mixed-symmetry
state [17–19]. Recent studies of OSR can be found elsewhere;
see, e.g., Refs. [20–22].

A decade ago, Balbutsev, Molodtsova, and Schuck have
predicted [within the Wigner function moments (WFM)
method] that OSR should be supplemented by a low-energy
spin-scissor mode (SSR) [23]. Further WFM calculations with
inclusion of the pairing [24–26] and isoscalar-isovector cou-
pling in the residual interaction [27–29] have shown that SSR
should have two branches [see Figs. 1(b) and 1(c)] lying below
OSR. Thus, altogether the nuclear scissors mode should be
a triplet: OSR + two SSR branches. All the scissors states
should demonstrate significant M1(�K = 1) transitions to the
ground state.

Following the WFM calculations, SSR should exist in
medium and heavy axial deformed nuclei, typically at the
excitation energy E < 2.7 MeV, i.e., just below OSR [25–29].
Many Iπ = 1+ states at E < 2.7 MeV were already observed
in rare-earth and actinide nuclei; see, e.g., Refs. [30–34].

2469-9985/2021/103(6)/064313(14) 064313-1 ©2021 American Physical Society

https://orcid.org/0000-0001-8497-1979
https://orcid.org/0000-0002-4551-8247
https://orcid.org/0000-0001-9775-1895
https://orcid.org/0000-0001-6886-708X
https://orcid.org/0000-0002-8974-3980
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.103.064313&domain=pdf&date_stamp=2021-06-22
https://doi.org/10.1103/PhysRevC.103.064313


V. O. NESTERENKO et al. PHYSICAL REVIEW C 103, 064313 (2021)

FIG. 1. The schemes for the members of the scissors triple [28]:
OSR (a), SSR-I (b), and SSR-II (c). The neutron (proton) axially
deformed fractions are shown by light (dark) bars. The spin direction
of nucleons is indicated by arrows. Each mode in the triple exhibits
scissors-like oscillations of two blades: neutrons vs protons in OSR,
spin-up vs spin-down nucleons in SSR-I (spins of neutrons and
protons in each blade have the same direction), and SSR-II where
neutron and proton spins in each blade have opposite directions.

However, they are usually not included in the experimental
OSR systematics and their origin is still rather unclear. The
prediction of SSR suggests an explanation for these states.
Following the detailed WFM analysis for 160,162,164Dy, 232Th,
and 236,238U [26–29], the nuclei 164Dy and 232Th are the most
promising candidates for SSR. Low-energy 1+ states in these
nuclei form two distinctive groups which might be attributed
to SSR and OSR.

The aim of the present paper is to scrutinize the WFM
prediction of SSR from the microscopic viewpoint. It is well
known that both orbital and spin-flip M1 transitions can be
explained using single-particle schemes [1,35]. An example
of such a scheme for the 2p subshell is shown in Fig. 2. This
is a fraction of the proton scheme in 162Dy, calculated with
Skyrme parametrization SG2 [36]. The computed equilibrium
axial quadrupole deformation is β2 = 0.346. The left part of
the figure shows the splitting of the 2p subshell into 2p1/2

and 2p3/2 levels due to spin-orbit interaction. Already in this
spherical case, a spin-flip M1 transition between the levels is
possible. The large deformation significantly splits the level
2p3/2 and upshifts the level 2p1/2 (right part of Fig. 2). In
this case, two M1(�K = 1) transitions are possible: spin-
flip 3/2−[301 ↑] → 1/2−[301 ↓] and orbital 1/2−[310 ↑] →
3/2−[301 ↑]. The former connects the spin-orbit partners, the
latter relates the levels arising due to deformation splitting.
So we get two natural candidates for SSR and OSR. Because
of the large deformation splitting, the orbital transition has a
larger energy than the spin-flip one. So SSR should lie lower
by energy than OSR.

As seen in Figs. 1(b) and 1(c), neutrons and protons in the
left and right scissors blades have opposite spin directions.
Perhaps the predicted SSR can be somehow related to spin-flip
excitations in neutron and proton spectra. This point is yet un-
clear (see discussion in Appendix B). It is important that Fig. 2

FIG. 2. A scheme of single-particle levels for 2p subshell in
spherical (left) and deformed (right) cases. The scheme corresponds
to the proton 2p subshell in 162Dy, calculated with the Skyrme force
SG2. Spin-flip and orbital scissors M1 transitions are exhibited by
empty and filled arrows, respectively. In the deformed case, the levels
are denoted by Nilsson asymptotic quantum numbers [37,38], and the
arrows indicate spin direction.

clearly shows that nuclear deformation is not the primary ori-
gin of low-energy spin-flip states (though it can significantly
affect their features). This means that WFM interpretation
of low-energy spin states in terms of deformation-induced
scissors oscillations is questionable.

The main aim of the present study is to show that the
predicted low-energy spin states are ordinary spin-flip exci-
tations and the available experimental data can be explained
by the fragmentation of spin-flip and orbital M1 strength. Our
analysis is performed for axially deformed nuclei 160,162,164Dy
and 232Th. As mentioned above, two of these nuclei, 164Dy
and 232Th, are considered by WFM as promising candidates
for SSR. The calculations are performed using fully self-
consistent QRPA [39–44] with the Skyrme forces SG2 [36],
SkM* [45], and SVbas [46]. As shown below, the spin and
orbital low-energy M1 excitations are strongly mixed. So we
will analyze both SSR and OSR. To demonstrate accuracy of
our calculations, we will also present results for M1 spin-flip
giant resonance.

The paper is organized as follows. In Sec. II, the calculation
scheme is outlined. In Sec. III, results of the calculations are
discussed. In particular, flows of the nuclear currents are ex-
hibited. In Sec. IV, the conclusions are drawn. In Appendix A,
a description of the M1 spin-flip giant resonance is illustrated.
In Appendix B, some important aspects of WFM/QRPA com-
parison are discussed. In Appendix C, expressions for the orbit
and spin transition matrix elements are given.

II. CALCULATION SCHEME

The calculations are performed within the Skyrme QRPA
model [39–44]. The model is fully self-consistent, i.e.,
(i) both mean field and residual interaction are derived from
the initial Skyrme functional, (ii) the residual interaction
takes into account all the terms of the Skyrme functional
and Coulomb (direct and exchange) parts, and (iii) both
particle-hole and particle-particle channels are included [42].
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TABLE I. Isoscalar effective mass m∗
0, isoscalar and isovector

spin-orbit parameters b4 and b′
4, proton and neutron pairing constants

Gp and Gn, and the type of pairing in Skyrme forces SkM*, SVbas,
and SG2.

b4 b′
4 Gp Gn

Force m∗
0 (MeV fm5) (MeV fm5) (MeV fm3) (MeV fm3) Pairing

SkM* 0.79 65.0 65.0 279.08 258.96 Volume
SVbas 0.90 62.32 34.11 674.62 606.90 Surface
SG2 0.79 52.5 52.5 296.76 259.58 Volume

Spurious admixtures caused by violation of the rotational in-
variance are removed using the SEBRPA (spuriosity extracted
before RPA) technique[44].

A representative set of Skyrme forces is used. We employ
the standard force SkM* [45], the recently developed force
SVbas [46], and the force SG2 [36], which is often used in
analysis of magnetic excitations; see, e.g., Refs. [4,5,47]. As
seen from Table I, these forces have different isoscalar b4 and
isovector b′

4 parameters of the spin-orbit terms in the Skyrme
functionals (see definitions of the parameters in Refs. [4,40]).
In SkM* and SG2, the usual convention b4 = b′

4 is used while
in SVbas a separate tuning of b4 and b′

4 is done. All three
Skyrme forces reproduce, though with different degrees of ac-
curacy, a two-hump structure of M1 spin-flip giant resonance
in deformed nuclei [4,5]. As shown in Appendix A, SVbas
and especially SG2 give a nice description of this resonance.
So these two Skyrme forces can be considered as the most
relevant for the present study.

The nuclear mean field and pairing are computed with the
code SKYAX [48] using a two-dimensional grid in cylindrical
coordinates. The calculation box extends up to three times the
nuclear radii, and the grid step is 0.4 fm. The axial quadrupole
equilibrium deformation is obtained by minimization of the
energy of the system. As seen from Table II, the obtained val-
ues of the deformation parameter β are in a good agreement
with the experimental data [49], especially for SVbas. All the
forces reproduce a growth of the deformation from 160Dy to
164Dy.

Pairing is described by the zero-range pairing interac-
tion [51]

V q
pair (r, r′) = Gq

[
1 − η

(ρ(r)

ρpair

)]
δ(r − r′), (1)

TABLE II. Calculated parameters β of the equilibrium axial
quadrupole deformation vs the experimental values [49].

β

Nucleus SkM* SVbas SG2 Exper.

160Dy 0.339 0.331 0.339 0.334 (2)
162Dy 0.351 0.345 0.346 0.341(3)
164Dy 0.354 0.348 0.352 0.349(3)
232Th 0.256 0.247 0.238 0.248 (6)

TABLE III. Proton and neutron pairing gaps �p and �n and
energy of 2+

1 state of the ground-state rotational band, calculated in
162Dy and 232Th with Skyrme forces SkM*, SVbas, and SG2. The
experimental data for the energy E2+

1
are taken from database [49].

Nucleus SkM* SVbas SG2 exper.

�p [MeV] 0.55 0.69 0.72
162Dy �n [MeV] 0.62 0.95 0.87

E2+
1

[keV] 67.9 92.7 88.8 80.7
�p [MeV] 0.53 0.61 0.75

232Th �n [MeV] 0.54 0.80 0.78
E2+

1
[keV] 41.2 57.1 63.0 49.4

where Gq are proton (q = p) and neutron (q = n) pairing
strength constants. They are fitted to reproduce empirical
pairing gaps obtained by the five-point formula along se-
lected isotopic and isotonic chains [50]. The values of Gq

are shown in Table I. Further, ρ(r) = ρp(r) + ρn(r) is the
sum of proton and neutron densities. We get so-called volume
pairing for η = 0 and density-dependent surface pairing for
η = 1. As indicated in Table I, the former is used in SkM*
and SG2, and the latter is exploited in SVbas. In the latter
case, we use SVbas parameter ρpair = 0.2011 fm−3. Pairing
correlations are included at the level of the iterative HF-BCS
(Hartree-Fock plus Bardeen-Cooper-Schrieffer) method [42].
To cope with the divergent character of zero-range pairing
forces, energy-dependent cutoff factors are used [42,51].

Table III shows the calculated averaged proton and neutron
pairing gaps �p and �n (defined in Eq. (30) of Ref. [51]) in
162Dy and 232Th. Also we exhibit the energies E2+

1
= 3h̄2/J

(with J being the nuclear moment of inertia) of Iπ = 2+
state in the ground-state rotational band. These energies are
sensitive to both deformation and pairing. As seen from Ta-
ble III, SkM* underestimates while SVbas and SG2 somewhat
overestimate the experimental E2+

1
values.

In our calculations, QRPA is implemented in the matrix
form. A large configuration space is used. The single-particle
spectrum extends from the bottom of the potential well up
to 30 MeV. For example, in SG2 calculations for 162Dy, 691
proton and 800 neutron single-particle levels are used. The
two-quasiparticle (2qp) basis in QRPA calculation for Kπ =
1+ states includes 5270 proton and 9527 neutron configu-
rations. We do not consider Kπ = 0+ excitations since it is
well known [1,2,15,16] that M1 spin-flip and orbital-scissors
modes are characterized by strong M1(�K = 1) transitions to
the ground state.

Reduced probability for M1 transitions from the ground
state |0〉 with IπK = 0+0 to the excited QRPA state |ν〉 with
IπK = 1+1 reads

Bν (M1) = 2| 〈ν| 	̂(M11) |0〉 |2. (2)

The coefficient 2 means that contributions of both projections
K = 1 and −1 are taken into account. The transition operator
has the form

	̂(M11) = μN

√
3

4π

∑
q=p,n

[gq
s ŝ(μ = 1) + gq

l l̂ (μ = 1)], (3)
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FIG. 3. Orbital [(a)–(c)], spin [(d)–(f)], and total [(g)–(i)] low-energy M1 strength in 160,162,164Dy, calculated in QRPA with Skyrme force
SG2. In the bottom panels, the experimental M1 strength for 160Dy [30] and 162,164Dy [31] is shown.

where μN is the nuclear magneton, ŝ(μ = 1) and l̂ (μ = 1) are
μ = 1 projections of the standard spin and orbital operators,
and gq

s and gq
l are spin and orbital gyromagnetic factors. We

use the quenched spin g factors gq
s = ηḡq

s , where ḡp
s = 5.58

and ḡn
s = −3.82 are bare proton and neutron g factors and η =

0.7 is the quenching parameter [1]. The orbital g factors are
gp

l = 1 and gn
l = 0. In what follows, we consider three cases:

spin (gq
l = 0), orbital (gq

s = 0), and total (when both spin and
orbital transitions are taken into account). The expressions for
orbital and spin M1 matrix elements are given in Appendix C.

In deformed nuclei, electric and magnetic states with
the same Kπ are mixed [1,15,35,52]. In our case of Kπ =
1+ states, the magnetic dipole M1(K = 1) and electric
quadrupole E2(K = 1) modes can be mixed. To estimate this
mixing, we calculate reduced probability of E2 transitions
0+0 → 2+1:

Bν (E2) = 2| 〈ν| 	̂(E21) |0〉 |2 (4)

with the proton transition operator

	̂(E21) = er2Y21(θ, φ), (5)

where Y21(θ, φ) is the spherical harmonic.
We also calculate the current transition densities (CTD)

δjν (r) = 〈ν|ĵ|0〉(r) (6)

for the convective nuclear current

ĵ(r) = −i
eh̄

2m

∑
q=n,p

eq
eff

∑
kεq

[δ(r − rk )∇k + ∇kδ(r − rk )].

(7)
Here eq

eff are the effective charges. They are ep
eff = 1 and en

eff =
0 for the proton current, ep

eff = 0 and en
eff = 1 for the neutron

current, and ep
eff = en

eff = 1 for the isoscalar current and ep
eff =

−en
eff = 1 for the isovector current.
Beside, we calculate the separate spin-up and spin-down

parts of CTD (6). For this aim, the wave function of the QRPA
state |ν〉 is projected to the proper spin direction using spinor
structure of the involved single-particle wave functions in
cylindric coordinates; see Eqs. (C1) and (C2) in Appendix C.

III. RESULTS AND DISCUSSION

A. M1 strength in 160,162,164Dy

In Fig. 3, we compare calculated orbital, spin, and to-
tal M1 strengths (2) in 160,162,164Dy with experimental data
from the nuclear resonance fluorescence (NRF) reaction; see
Refs. [30] for 160Dy and [31] for 162,164Dy. QRPA results
are obtained for the force SG2. Following the discussion in
Sec. II and results for the spin-flip M1 giant resonance in
Appendix A, this force seems to be the most relevant for our
analysis.

Figures 3(a)–3(c) show that M1 strength above 2.4 MeV is
mainly orbital. This strength constitutes the OSR. Instead, a
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 4. Orbital [(a)–(c)], spin [(d)–(f)], and total [(g)–(i)] low-energy M1 strength in 162Dy, calculated in QRPA with Skyrme forces SkM*
(left), SVbas (middle), and SG2 (right). In the bottom panels, the quadrupole E2 strength is shown.

few states at E < 2.4 MeV exhibit a noticeable spin strength;
see Figs. 3(d)–3(f). Following prediction [25–29], these states
are candidates for SSR. Comparing spin and orbital strengths
with the total one [Figs. 3(g)–3(i)], we see that spin and
orbital modes have a strong interference, both destructive and
constructive. These results take place for all three Dy isotopes.

Figure 3 shows that NRF data [30,31] do not give Iπ = 1+
states at E < 2.39 MeV. As discussed in Ref. [33], this may be
caused by troubles of traditional NRF experiments to separate
transitions in this energy range from a sizable background.
The early data for 160Dy [30] give 1+ states only for E >

2.8 MeV, though the level list in database [49] suggests many
candidates for 1+ states at lower excitation energies.

In 162,164Dy, NRF data [31] give two groups of 1+ states
located above and below 2.7 MeV. The former group is
usually treated as OSR. The latter is treated by WFM as
SSR [25–29]. Note that low-energy groups of 1+ states were
earlier observed in various rare-earth nuclei [30]. Recent Oslo
(γ , n) experiment [33] shows that, in 164Dy, 40–60% of M1
strength at energy range 0–4 MeV is located below 2.7 MeV.
Moreover, in this nucleus the total measured M1 strength
at 0–4 MeV achieves 6.17 μ2

N [31], which substantially ex-
ceeds the values 3–4 μ2

N typical for OSR in well-deformed
rare-earth nuclei. This observation was treated by WFM as a
clear signature of SSR in 164Dy [25–29]. However, following
our results in Fig. 3, the states at 2.4–2.7 MeV give mainly
orbital M11 transitions and so should also belong to OSR.
They are omitted in OSR systematics with the lower boundary
2.7 MeV [52] but taken into account for the lower boundary

2.5 MeV [20]. So, by our opinion, the data of Oslo group
cannot be considered as the argument in favor of SSR.

In Fig. 4, we demonstrate the distribution of M1 strength in
162Dy, calculated with the forces SkM*, SVbas, and SG2. It
is seen that, despite some deviations in details, all these three
forces give qualitatively similar results. In all cases, there is
the range 0–2.4 MeV with an essential spin strength and the
range 2.4–4.0 MeV with a dominant orbital strength. Figure 4
also demonstrates E2 strength (4) for the same Kπ = 1+
states. This strength is large at 2.6–4.0 MeV and negligible
at 0–2.6 MeV. The former result is typical for OSR [15,52].
This means that OSR states are mixtures of M1(K = 1)
and E2(K = 1) modes, which is common in well-deformed
nuclei.

Note that, in WFM calculations for 164Dy [27–29], the low-
est Kπ = 1+ state at 1.47 MeV has a huge quadrupole strength
B(E2) = 25.44 W.u. (≈ 1300 e2 fm4). The authors do not
explain the origin of this state. Besides, for the next state at
2.20 MeV, Figs. 9(a) and 9(b) in Ref. [28] show a spurious-like
isoscalar flow. By our opinion, the 1.47-MeV state is spurious,
and higher states can also have spurious admixtures despite
the statements [27–29] that spurious modes are extracted in
WFM by construction. Note that similar lowest-by-energy
spurious states appear in QRPA calculations if the 2qp basis
is insufficient and/or the procedure for removal of spurious
states is not exact. Our QRPA calculations for 160,162,164Dy
(with accurate extraction of spurious admixtures by method
in Ref. [44]) do not give low-energy Kπ = 1+ states with
high B(E2); see, e.g., Fig. 4. Moreover, such states are not
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TABLE IV. The calculated orbital, spin, and total strengths
∑

B(M1) (in μ2
N ) in 160,162,164Dy, summed at SSR (0–2.4 MeV), OSR (2.4–4

MeV), and total (0–4 MeV) energy ranges as compared with experimental data for 160Dy [30] and 162,164Dy [31]. For each energy range, the
interference factors R are shown.

0–2.4 MeV 2.4–4 MeV 0–4 MeV∑
B(M1)

∑
B(M1)

∑
B(M1)

Nucleus Force Orb Spin Total R Orb Spin Total R Orb Spin Total Exp R

SkM* 0.52 0.96 1.32 0.89 2.79 0.55 4.85 1.45 3.31 1.51 6.16 1.28
160Dy SVbas 0.05 0.49 0.23 0.43 2.15 0.51 3.80 1.43 2.20 1.00 4.03 2.42 1.26

SG2 0.03 0.46 0.28 0.57 2.69 0.54 4.53 1.40 2.72 1.00 4.81 1.29
SkM* 0.80 1.09 1.80 0.95 2.69 0.51 4.63 1.45 3.49 1.60 6.44 1.27

162Dy SVbas 0.06 0.73 0.45 0.57 2.35 0.40 4.04 1.47 2.41 1.14 4.49 3.45 1.26
SG2 0.03 0.72 0.55 0.73 2.85 0.35 4.54 1.42 2.88 1.07 5.09 1.29

SkM* 0.96 1.09 2.11 1.03 2.18 0.40 3.94 1.53 3.14 1.49 6.05 1.31
164Dy SVbas 0.06 0.63 0.32 0.47 2.52 0.50 4.37 1.45 2.57 1.13 4.69 6.17 1.27

SG2 0.03 0.68 0.45 0.63 3.20 0.35 5.05 1.42 3.23 1.03 5.50 1.29

known experimentally and, to our knowledge, absent in other
microscopic calculations; see, e.g., Ref. [53] for 164Dy.

In Table IV, we show spin, orbital, and total QRPA
strengths

∑
B(M1) summed in the SSR (0–2.4 MeV), OSR

(2.4–4 MeV), and SSR + OSR (0–4 MeV) energy intervals.
The total QRPA strengths are compared with NRF experimen-
tal data for 1+ states observed at 2.8–3.1 MeV in 160Dy [30]),
2.3–3.1 MeV in 162Dy [31], and 2.5–3.8 MeV in 164Dy [31].

Table IV shows that at 0–2.4 MeV the spin strength dom-
inates over the orbital one. For SkM*, the orbital fraction in
this interval is also essential. In the OSR region 2.4–4 MeV,
the orbital M1 strength strongly dominates though the spin
strength is large as well.

Following Table IV, QRPA total M1 strengths summed at
0–4 MeV significantly overestimate the experimental values
in 160,162Dy but generally correspond to the experiment in
164Dy (SkM* and SG2). Perhaps, as mentioned above, the
experimental data for 160,162Dy [30,31] miss a significant part
of M1 strength. Also, the present calculations do not take
into account a coupling with complex configurations which
can spread the strength and so decrease

∑
B(M1) values at

0–4 MeV. Our results significantly depend on the applied
Skyrme force. For example, in all considered nuclei, SVbas
gives much smaller orbital and total strengths than SkM* and
SG2. This can be explained by a stronger pairing in SVbas
(see discussion of Table III in Sec. II), which upshifts a part
of M1 strength above 4 MeV.

In both SSR and OSR regions, we see an interference
between spin and orbital contributions to the total strength
(i.e., the sum of spin and orbital contributions does not equal
to the total strength). It is convenient to estimate this effect by
an interference factor

R =
∑

B(M1)t∑
B(M1)o + ∑

B(M1)s
, (8)

where
∑

B(M1)o,
∑

B(M1)s, and
∑

B(M1)t are summed or-
bital, spin, and total strengths. The interference is destructive
at R < 1, constructive at R > 1, and absent at R = 1.

Table IV shows that the interference is destructive in SSR
range (with exception of SkM* case in 164Dy) and con-

structive in OSR range. The interference greatly increases
the role of the minor spin fraction in the OSR range. For
example, in 162Dy (SG2), the interference results in the to-
tal strength 4.54 μ2

N , which is much larger than the orbital
strength 2.85 μ2

N .
Our results generally agree with the study of low-energy

(0–4 MeV) Kπ = 1+ states in 160,162,164Dy, performed within
the quasiparticle-phonon nuclear model (QPNM) [53]. This
model is not self-consistent. However, it has an advantage
of taking into account the coupling with complex configu-
rations. In agreement with our results, QPNM also predicts
in Dy isotopes a well-separated group of 1+ states lo-
cated at 2–2.6 MeV and carrying a noticeable fraction of
spin M1 strength. However, in QPNM the total strength
of these states is mainly orbital. Only in two states at
2.0–2.1 MeV in 164Dy does spin contribution to M1 strength
dominate over the orbital one. Coupling with complex con-
figurations is found strong in OSR region and weaker for
lower excitations. This effect can additionally downshift the
orbital strength to the lower SSR region. QPNM also pre-
dicts a considerable interference between spin and orbital
contributions.

For a better understanding of our results, it is worth consid-
ering the structure and other features of the most interesting
1+ states. They are shown for 162Dy in Table V. We present
two states with the largest spin strength B(M1)s and one state
with the largest orbital strength B(M1)o. In the spin states, we
have B(M1)s > B(M1)o. Their main 2qp components, proton
[411 ↑, 411 ↓] and neutron [521 ↑, 521 ↓], are of the spin-flip
character and correspond to particle-hole (1ph) transitions.
Note that the same spin-flip 2qp configurations were found in
QPNM calculations [53] for low-energy 1+ states in Dy iso-
topes. In the spherical limit, these configurations are reduced
to spin-flip partners 2d5/2, 2d3/2 and 2 f7/2, 2 f5/2 with low
orbital moments l = 2 and 3. For low l , the spin-orbit energy
splitting ∼(l · s) is small and leads to low-energy spin-flip
excitations. The states with larger l contribute to the spin-flip
giant resonance located at a higher energy. Altogether, we
see that so-called SSR states are actually ordinary low-energy
noncollective spin-flip excitations.
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TABLE V. Characteristics of some relevant low-energy Kπ
ν = 1+

ν states in 162Dy, calculated within QRPA with the forces SkM*, SVbas, and
SG2. For each state, we show the excitation energy E , orbital, spin, and total reduced transition probabilities B(M1) and main 2qp components
(contribution to the state norm in %, structure in terms of Nilsson asymptotic quantum numbers, position of the involved single-particle states
relative to the Fermi level F , and original quantum subshells in the spherical limit).

Force ν E B(M1) [μ2
N ] Main 2qp components

[MeV] Orb Spin Total % [N, nz,�] F position Spher. limit

SkM* 3 1.95 0.05 0.29 0.11 69 pp [411 ↑, 411 ↓] F − 1, F + 1 2d5/2, 2d3/2

30 nn [521 ↑, 521 ↓] F − 1, F + 2 2 f7/2, 2 f5/2

4 2.08 0.02 0.73 0.50 69 nn [521 ↑, 521 ↓] F − 1, F + 2 2 f7/2, 2 f5/2

28 pp [411 ↑, 411 ↓] F − 1, F + 1 2d5/2, 2d3/2

8 3.09 0.86 0.05 1.33 61 nn [521 ↑, 512 ↑] F − 1, F + 4 2 f7/2, 2 f7/2

25 pp [411 ↑, 402 ↑] F − 1, F + 4 2d5/2, 2d5/2

SVbas 1 1.88 0.05 0.54 0.27 97 pp [411 ↑, 411 ↓] F, F + 1 2d5/2, 2d3/2

2 nn [521 ↑, 521 ↓] F − 1, F + 2 2 f7/2, 2 f5/2

4 2.36 ≈ 0 0.20 0.18 94 nn [521 ↑, 521 ↓] F − 1, F + 2 2 f7/2, 2 f5/2

2 pp [411 ↑, 411 ↓] F, F + 1 2d5/2, 2d3/2

8 3.17 0.77 0.04 1.13 65 nn [521 ↑, 512 ↑] F − 1, F + 4 2 f7/2, 1h9/2

16 pp [413 ↓, 404 ↓] F − 2, F + 4 1g7/2, 1g7/2

SG2 1 2.06 0.03 0.46 0.27 99 pp [411 ↑, 411 ↓] F, F + 1 2d5/2, 2d3/2

3 2.36 ≈ 0 0.26 0.28 99 nn [521 ↑, 521 ↓] F − 1, F + 2 2 f7/2, 2 f5/2

8 3.44 0.86 0.01 1.07 57 nn [521 ↑, 512 ↑] F − 1, F + 4 2 f7/2, 1h9/2

31 pp [413 ↓, 404 ↓] F − 2, F + 4 1g7/2, 1g7/2

The orbital and spin-flip M1 transitions in 162Dy can
be illustrated using neutron and proton single-particle level
schemes. In Fig. 5, we show a proton scheme for 2d
subshell, calculated with SG2 at the equilibrium deforma-
tion β = 0.346. This scheme demonstrates the same physical
mechanisms as in Fig. 2 but now for the case including
the proton spin-flip transition 3/2+[411 ↑] → 1/2+[411 ↓]
which is of our interest. We see that the low-energy spin-flip
transition 2d5/2 → 2d3/2 can take place already in the spheri-

FIG. 5. A calculated (SG2) scheme of spin-flip (left empty ar-
rows) and orbital scissors (right filled arrows) M1 transitions in the
proton 2d subshell in 162Dy. As indicated in the top inscriptions, the
left part of the figure demonstrates a spin-orbit splitting into 2d3/2

and 2d5/2 levels in the spherical case, while the right part exhibits an
additional deformation splitting. In the deformed case, M1(�K ) = 1
transitions form two groups, spin-flip and orbital scissors, as indi-
cated in the bottom inscriptions. The Fermi level is 3/2+[411 ↑]. The
1ph transitions, spin-flip 3/2+[411 ↑] → 1/2+[411 ↓] and orbital
3/2+[411 ↑] → 5/2+[402 ↑], are marked by red color.

cal case. In the deformed case, two spin-flip and three orbital
M1 transitions are possible. However, only two of these tran-
sitions are of 1ph character and so not suppressed (other
transitions can appear only due to the pairing). They are spin-
flip 3/2+[411 ↑] → 1/2+[411 ↓] and orbital 3/2+[411 ↑] →
5/2+[402 ↑]. As seen from Table V, the proton spin-flip 2qp
configuration [411 ↑, 411 ↓] indeed dominates in the states
at 1.95 (SkM*), 1.88 (SVbas), and 2.06 MeV (SG2). The
orbital configuration [411 ↑, 402 ↑] is fragmented between
many states; it is seen, e.g., in 3.09-MeV state (SkM*). Since
deformations in 160,162,164Dy are similar (see Table II), the
same results should take place for 160Dy and 164Dy as well.

A similar analysis can be done for a neutron single-particle
scheme in 162Dy. A relevant part of this scheme for 2 f sub-
shell is shown in Fig. 6. We see that again, among many
possible spin-flip and orbital M1 transitions, there are only
two 1ph transitions: spin-flip 3/2−[521 ↑] → 1/2−[521 ↓]
and orbital 3/2−[521 ↑] → 5/2−[512 ↑]. The corresponding
2qp configurations indeed take place in Table V.

It is easy to recognize from Fig. 6 that 160Dy and 164Dy,
whose Fermi levels correspond to F − 1 and F + 1 states of
the given neutron scheme, also allow 1ph spin-flip transitions
3/2−[521 ↑] → 1/2−[521 ↓]. This explains why in our cal-
culations all three isotopes 160,162,164Dy demonstrate similar
distributions of low-lying spin-flip excitations.

B. Nuclear currents in 162Dy

In this section, we show various CTD δjν (r) defined in
Sec. II. CTD are calculated with the force SG2 for a few
relevant states in 162Dy, shown in Table V. First, we consider
3.44-MeV state which, following Fig. 4, demonstrates the
largest orbital M1 strength. Figure 7 shows for this state the
proton, neutron, isoscalar (�T = 0), and isovector (�T = 1)
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FIG. 6. The same as in Fig. 5 but for the neutron 2 f subshell
in 162Dy. The 1ph spin-flip 3/2−[521 ↑] → 1/2−[521 ↓] and orbital
3/2−[521 ↑] → 5/2−[512 ↑] transitions are marked by red color.

CTD plotted on (x, z) plane, where z is the nuclear symmetry
axis. Magnitudes of the currents are equally scaled to provide
distinctive pictures. So, only relative lengths of the current
arrows and their directions (but not absolute lengths of arrows)
are matter. The nuclear boundary estimated for the sharp nu-
cleus edge is depicted by a solid ellipse.

Figure 7 shows that protons and neutrons in the 3.44-
MeV state move in opposite directions at the left and right

FIG. 7. Proton (a), neutron (b), isoscalar (c), and isovector
(d) convection CTD in (x, z) plane for 3.44-MeV state in 162Dy,
calculated within QRPA with the force SG2. A solid ellipse shows
the nuclear boundary.

FIG. 8. The same as in Fig. 7 but for the energy interval
2.4–4 MeV.

surface regions [cf. Figs. 7(a), 7(b) and 7(d)] and this motion
resembles an isovector OSR (a similar orbital current was
earlier obtained in deformed 50Cr [21]). Following Table V,
the 3.44-MeV state has large proton (57%) and neutron (31%)
2qp components. This complicates a general flow and makes
it different (in the pole regions) from the simple collective
OSR picture. We also see that 3.44-MeV state exhibits both
isoscalar and isovector currents.

For a reasonable comparison with collective WFM cur-
rents, it is worth considering the summed CTD involving
contributions of all QRPA states from the OSR energy range
2.4–4 MeV. The summed CTD will smooth individual pecu-
liarities of the currents of particular QRPA states and thus
highlight the main (e.g., collective) features of the nuclear
flow in the given energy range. The procedure to get summed
CTD is described in Ref. [57]. The summed CTD are shown
in Fig. 8. The flow in left-right surface regions now more
resembles the OSR picture. However, the flow is again mixed
by isospin. It is isovector in the left-right sides and isoscalar
in the pole regions.

Following WFM [28,29], the low-energy spin states should
demonstrate out-of-phase rotation-like oscillations of spin-up
and spin-down nuclear fractions; see Fig. 1(b). To check this
prediction, we show in Figs. 9 and 10 spin-up and spin-down
CTD for spin-flip states at 2.06 and 2.36 MeV. As seen
from Table V, these states are almost fully exhausted by one
proton and one neutron 2qp component, respectively. So, to
characterize the nuclear flow in these states, the correspond-
ing proton and neutron spin-up and spin-down currents are
enough. Figures 9 and 10 show that the currents are not reg-
ular but rather demonstrate a complex cellular-like structure
formed by the dominant 2qp configurations. They are pro-
ton [411 ↑, 411 ↓] and neutron [521 ↑, 521 ↓] configurations
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FIG. 9. Proton spin-up (a) and spin-down (b) CTD in basically
proton 2.06-MeV state in 162Dy.

arising from 2d (l = 2) and 2 f (l = 3) spherical subshells.
Accordingly, the proton flow in Fig. 9 has a fewer number
of cells than the neutron one in Fig. 10.

In Fig. 11, the summed CTD are depicted. They do not
match regular collective WFM spin-scissors currents shown
in Ref. [28].

C. M1 strength in 232Th

In addition to strongly deformed Dy isotopes, SSR
was also predicted by WFM in a less deformed nucleus
232Th [25,26,28]. In this nucleus, the experiment [34] also
gives two separate groups of low-energy 1+ states [see
Fig. 12(d)]. The lower group at E < 2.5 MeV is considered by
WFM as a candidate for SSR. In this connection, we present
QRPA results for 232Th, obtained with the forces SVbas and
SG2. Note that these forces, especially SG2, provide a good
description of the spin-flip M1 giant resonance in 232Th; see
Appendix A.

In Fig. 12, the computed orbital, spin, and total B(M1)
strengths in 232Th are compared with NRF experimental
data [34]. We see that the spin strength is much smaller that
the orbital one even at E < 2.5 MeV. For SG2, there is a
remarkable agreement between the distribution of the total
strength and the experimental data. Namely, both experiment
and theory give at E < 2.5 MeV the distinctive group of the

FIG. 10. The same as in Fig. 9 but for CTD in basically neutron
2.36-MeV state in 162Dy.

FIG. 11. Spin-up (a) and spin-down (b) CTD for the energy
interval 0–2.4 MeV.

states. Figure 12 obviously does not demonstrate any distinc-
tive SSR. Indeed, both level groups, below and above 2.5 MeV,
are strongly dominated by the orbital strength. So, these two
groups are explained not by separation of SSR and OSR modes
(as was suggested by WFM) but rather by a fine structure of
the OSR alone.

In Table VI, we show the features of some representative
states with the large spin and orbital strength. In the SVbas
case, the first state is not spin-flip one even though it has the
largest spin strength at the range E < 2.5 MeV. Moreover, it is
dominated by the orbital strength. This state is not collective
and demonstrates a constructive interference of the spin and
orbital contributions, in contrast to the lowest states in Dy
isotopes. The 2.77-MeV state is collective and exhibits a con-
structive interference like the orbital states in Dy case. In the
SG2 case, the first 1.96-MeV state is noncollective and mainly
orbital (like for SVbas). The third 2.98-MeV state is spin-flip
one with the dominant neutron configuration [631 ↑, 631 ↓].
Both states demonstrate a strong constructive interference of

(a) (e)

(b) (f)

(c) (g)

(d) (h)

FIG. 12. The computed (SVbas, SG2) orbital, spin, and total
low-energy M1 strengths in 232Th as compared with the experimental
data [34].
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TABLE VI. The same as in Table V but for states in 232Th.

Force ν E B(M1) [μ2
N ] Main 2qp components

[MeV] Orb Spin Total % [N, nz, �] F position Spher. limit

SVbas 1 1.73 0.25 0.09 0.63 91 pp [660 ↑, 651 ↑] F, F + 1 1i13/2, 1i13/2

15 2.77 1.32 0.04 1.82 51 nn [761 ↑, 752 ↑] F − 1, F − 3 1 j15/2, 1 j15/2

SG2 1 1.96 0.18 0.04 0.39 89 pp [660 ↑, 651 ↑] F, F + 1 1i13/2, 1i13/2

3 2.25 0.01 0.11 0.20 96 nn [631 ↑, 631 ↓] F, F + 3 1i13/2, 3d5/2

13 2.98 0.42 0.01 0.53 32 pp [530 ↑, 521 ↑] F − 1, F + 4 2 f7/2, 2 f7/2

orbital and spin contributions. The 2.98-MeV state is a collec-
tive orbital state.

The calculated and experimental summed M1 strengths
are compared in Table VII. Like in Dy isotopes, the
theoretical values of the total

∑
B(M1) somewhat overesti-

mate the experimental data. As mentioned in Sec. III A, the
overestimation can be caused by (i) missing of a significant
part of M1 strength in the experiment and (ii) neglect of the
coupling with complex configurations. Like in Dy isotopes,
we see in 232Th the constructive interference of the spin and
orbital contributions to the total strength.

IV. CONCLUSIONS

The WFM prediction of a low-energy spin-scissors reso-
nance (SSR) in deformed nuclei [23,25–29] was analyzed in
the framework of the self-consistent QRPA approach using
Skyrme forces SkM*, SVbas, and SG2. The calculations were
performed for deformed nuclei 160,162,164Dy and 232Th. Two
of these nuclei, 164Dy and 232Th, were proposed by WFM as
promising candidates for SSR.

The calculations have shown that in strongly deformed
nuclei like 160,162,164Dy, indeed there can exist a group of
Kπ = 1+ spin states located at 1.5–2.4 MeV, i.e., below
the conventional orbital scissor resonance (OSR). Following
our analysis, these states are ordinary spin-flip excitations
characterized by M1(�K = 1) transitions between spin-orbit
partners in subshells with a low orbital momentum l , e.g.,
2d and 1 f . Such low-l spin-flip states can form a separate
low-energy group if a large deformation shifts OSR to a higher
energy. In our calculations, this is the case for well deformed
160,162,164Dy but not for less deformed 232Th.

The obtained low-energy spin states are noncollective and
mainly exhausted by one 2qp spin-flip configuration. This
can be explained by the basically isovector character of the
spin-spin residual interaction which upshifts the collectivity

TABLE VII. The computed orbital, spin, and total B(M1)
strengths summed at E = 0–3.3 MeV as compared with the exper-
imental data [34]. R are the interference factors.

∑
B(M1)[μ2

N ]

Force Orb Spin Total Exper. R

SVbas 3.60 0.66 5.23 1.23
SG2 3.37 0.68 4.92 4.26 1.21

to higher energies. The noncollective character of low-energy
spin states contradicts the collective scissors nature of the
predicted SSR. Further, the calculated distributions of nuclear
currents locally resemble the OSR collective flow but not the
SSR one.

Since OSR energy E ≈ 66δA−1/3 MeV falls with the mass
number A, this resonance in heavy (actinide) nuclei goes down
by energy and mixes with nearby spin states. Being stronger,
OSR conceals these states, so heavy deformed nuclei are not
suitable to exhibit distinctive low-energy spin states.

At the excitation energy E < 4 MeV, most of 1+ states
demonstrate a significant interference of spin-flip and orbital
contributions to M1 strength. The interference considerably
increases the total M1 strength in the OSR energy range.
This should be taken into account while comparing the com-
puted strengths with estimations derived merely for the orbital
mode. A part of the orbital strength is downshifted to the
region of spin states (E � 2.4 MeV) and, vice versa, the OSR
region hosts some spin-flip strength.

The experimental data [31–34] show two distinctive low-
energy groups of 1+ states in 162,164Dy and 232Th. These two
groups are treated by WFM as SSR and OSR. Our calculations
show that lowest 1+ states in 160,162,164Dy are indeed of spin-
flip character. However, they are located at E � 2.4 MeV, i.e.,
below the observed states, so perhaps both observed groups
are produced by fragmentation of the orbital strength. This
is even more the case in 232Th where the low-energy spin
strength is almost negligible. So, in our opinion, the avail-
able experimental data still do not confirm the existence of
SSR. More definite conclusions can be drawn after further
experimental and theoretical effort. Indeed, following discus-
sion [33], a significant number of 1+ states can be found below
2.7 MeV; see database [49] for candidates. The theory should
take into account the coupling with complex configurations,
which, in principle, can redistribute the M1 strength.

The WFM scissor-like treatment of low-energy spin M1
excitations requires the nuclear deformation. In other words,
spin-scissors excitations can exist only in deformed nuclei.
Instead, our calculations show that low-energy spin states
arise from the spin-orbit splitting and so can exist even in
spherical nuclei. So the deformation is not the origin of the
low-energy spin strength but only an essential factor affecting
its properties. In principle, WFM does not use any two-rotor
assumption. Then, perhaps, the deformation-induced scissors-
like scheme is just a poorly chosen illustration.

The spin-orbit splitting and spin-spin residual interac-
tion are of a primary importance in the exploration of spin
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excitations [4,5]. To check the accuracy of our QRPA method
in describing these factors, we performed calculations for the
spin-flip M1(K = 1) giant resonance in 162Dy and 232Th and
obtained for the forces SVbas and SG2 a good agreement with
the experiment. The same test should be done by WFM as
well.

In WFM calculations [27–29], the lowest Kπ = 1+ state
with the energy E = 1.47 MeV has a huge quadrupole
strength B(E2) = 25.4 W.u. The authors do not explain the
origin of such state. By our opinion, this state is spurious.
Neither experimental data nor our QRPA calculations for
160,162,164Dy and 232Th give at E < 4 MeV 1+ states with so
large B(E2) value.

The discrepancy between WFM and QRPA predictions for
spin states in 232Th could be clarified by (p, p′) measurements
which are sensitive to spin-flip excitations and not so much to
orbital ones. If low-energy spin states indeed exist in 232Th,
they should be observed in the (p, p′) reaction.

Since low-energy spin states are reduced to almost pure
2qp excitations, these states can be useful for investigation
of low-l spin-orbit splitting and its interplay with nuclear
deformation. Besides, such states can be also useful for testing
tensor forces.
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APPENDIX A: M1 SPIN-FLIP GIANT RESONANCE

Energy and structure of M1 spin-flip giant resonance in
open-shell nuclei are basically determined by the interplay
between spin-orbital splitting in proton and neutron schemes
from one side and spin-spin residual interaction from an-
other side [2,4,5]. To check the accuracy of our approach,
we present here QRPA results for spin-flip giant resonance in
162Dy and 232Th, obtained with the Skyrme parametrizations
SkM*, SVbas, and SG2. We were not able to find experimen-
tal data for this resonance in 162Dy. So, for this nucleus, we
compare QRPA results with the (p, p′) data for the neigh-
boring nucleus 158Gd [54] which has a similar quadrupole
deformations (β2 = 0.348) [49]. For 232Th, we use (p, p′)
data [47,55].

In Fig. 13, the results of our calculations are compared with
the experimental data. QRPA strength functions are obtained
by averaging transition rates Bν (M1) for separate QRPA states

(a) (d)

(b) (e)

(c) (f)

FIG. 13. M1 spin-flip giant resonance in 162Dy and 232Th, cal-
culated with Skyrme forces SkM*, SVbas and SG2. The results
are compared with scaled experimental data (in arbitrary units) for
232Th [47,55] (right plots) and neighbouring nucleus 158Gd [54] (left
plots). See details in the text.

by Lorentz weight with an averaging parameter � = 1 MeV;
see Refs. [4,5] for more detail. Only the spin part of M1 tran-
sition operator (3) is used. The experimental data (in arbitrary
units) are properly scaled for a convenient comparison with
QRPA strength functions. Figure 13 shows that SVbas and
especially SG2 well describe localization and fine structure
of the resonance in both nuclei. In SkM*, distribution of the
strength is too wide and upshifted to higher energies. This
difference can be explained by smaller values of spin-flip
parameters b4 and b′

4 in SVbas and SG2 sets (see Table I in
Sec. II).

In Table VIII, the spin B(M1) values summed at the en-
ergy interval E = 0–12 MeV are compared with early QRPA
results of Sarriguren et al. [47], obtained with the force SG2.
It is seen that the agreement is fine for SG2, acceptable for
SVbas, and worse for SkM*.

Altogether, Fig. 13 and Table VIII show that forces
SVbas and SG2 are most relevant for exploration of spin-flip
excitations.

TABLE VIII. The strength B(M1)s summed at E = 0–12 MeV
in our SkM*, SVbas, and SG2 calculations as compared with QRPA
(SG2) results of Sarriguren et al. [47].

∑
B(M1)s[μ2

N ]

Nucleus SkM* SVbas SG2 Sarriguren [47]

160Dy 14.5 13.2 12.4 11.4
162Dy 14.7 13.4 12.7 12.2
164Dy 14.7 13.6 12.9 12.2
232Th 17.2 15.9 14.3 14.9
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APPENDIX B: WFM VS QRPA RESULTS

In this Appendix, we briefly discuss some important points
concerning the comparison and treatment of WFM and QRPA
results.

It is known that macroscopic and microscopic models
often successfully supplement each other in description of
nuclear modes [1,35]. For example, our QRPA results for
isovector E1 giant resonance [56], E1 toroidal mode [57,58],
and M1 orbital scissors (present calculations) well agree
with predictions of macroscopic models (Refs. [59–61] and
Refs. [10,15,16], respectively). However, we were not able to
get a similar correspondence between our QRPA results and
WFM predictions for SSR. In this connection, it is worth to
discuss some important issues.

1. Accuracy of WFM numerical results for M1
low-energy spin states

Both Skyrme QRPA and WFM have spin-orbit mean-field
terms and so include spin-orbit splitting and corresponding
spin-flip excitations. In QRPA, spin-flip states are identi-
fied by strong domination of spin-flip 2qp components, large
values of spin B(M1)s, and hindered B(E2). WFM deals
with collective variables and identifies spin states mainly by
enhanced B(M1) and hindered B(E2), where B(M1) is cal-
culated only for the total (spin+orbital) M1 operator. This
seems not enough to identify reliably spin-flip states. Be-
sides, following Table I for 164Dy in Ref. [28], WFM does
not produce at all the M1 spin-flip giant resonance, which
makes questionable the accuracy of WFM in description of
spin-flip states. Further, the parameters of the WFM Hamil-
tonian (includes a spherical harmonic oscillator, spin-orbit
terms, pairing, quadrupole-quadrupole, and spin-spin separa-
ble residual interaction) are taken from different sources and,

by our opinion, not properly justified. In this connection, the
claimed good agreement of WFM results with the experimen-
tal data looks doubtful.

2. Is the spin-scissors scheme generally relevant?

The SSR macroscopic picture was suggested in anal-
ogy with OSR scheme developed within the two-rotor
model [10,15,16]. However, the OSR scheme was confirmed
by experimentally observed [13,14] specific dependencies
of OSR energy and strength on the nuclear deforma-
tion [2,15,16]. Instead, the WFM calculations have not still
suggested any specific measurable features justifying the rel-
evance of the spin-scissors picture.

The spin-scissors picture assumes a nonzero nuclear defor-
mation. Without deformation, this picture cannot be realized
in principle. However, following our calculations, the defor-
mation is not the primary origin of M1 low-energy spin states.

In the spin-scissors picture [Figs. 1(b) and 1(c)], SSR looks
like a two-step process including spin-flip excitation + orbital
oscillation. It is not clear how to match such a two-step pro-
cess with the linear regime used in WFM. We have not found
in Refs. [25–29] any relevant linear probe external field to
generate such SSR.

Following Eq. (29) in Ref. [28], the WFM nuclear current
is formed solely by components of an orbital collective vari-
ables for different combinations of spin directions. Maybe,
for this reason, the currents for OSR, SSR-I, and SSR-II in
Figs. 9–11 of Ref. [28] look identical (up to direction of the
motion). Our QRPA distributions of the nuclear current partly
support the isovector OSR scheme but not the SSR one.

Altogether, we have a feeling that the deformation-induced
scissors-like picture used for illustration and interpretation of
the WFM results is a poor and even misleading choice.

APPENDIX C: MATRIX ELEMENTS OF MAGNETIC TRANSITIONS IN AXIALLY DEFORMED NUCLEI

In cylindrical coordinates, the single-particle wave function with quantum numbers Kπ has the spinor form

�i(r) =
(

R(+)
i (ρ, z)eim(+)

i φ

R(−)
i (ρ, z)eim(−)

i φ

)
(C1)

for the normal state and

�i(r) = T̂ �i(r) =
(

−R(−)
i (ρ, z)e−im(−)

i φ

R(+)
i (ρ, z)e−im(+)

i φ

)
(C2)

for the time-reversal state. Here the momentum projection is decomposed as Ki = m(σ )
i + 1

2σ with σ = ±1.
The spin and orbital Mλμ transition operators are [62]

Ŝlλμ = μN

√
λ(2λ + 1)rlgq

s{ŝ Yl}λμ, (C3)

L̂lλμ = μN

√
λ(2λ + 1)rlgq

l

2

λ + 1
{l̂ Yl}λμ (C4)

where l = λ − 1, μN is the nuclear magneton, ŝ and l̂ are standard spin and orbital operators, and gq
s and gq

l are spin and orbital
gyromagnetic factors. Further,

{ŝ Yl}λμ =
∑

m

∑
α=−1,0,1

Cλμ

lm,1α
Ylmŝα, (C5)

{l̂ Yl}λμ =
∑

m

∑
α=−1,0,1

Cλμ

lm,1α
Ylml̂α, (C6)

064313-12



MICROSCOPIC ANALYSIS OF LOW-ENERGY SPIN AND … PHYSICAL REVIEW C 103, 064313 (2021)

where Ylm are the spherical harmonics and Cλμ

lm,1α
are Clebsch-Gordan coefficients.

The matrix elements for the orbital and spin Mλμ transitions from the BCS vacuum |BCS〉 to the two-quasiparticle (2qp)
state α+

i α+
j̄
|BCS〉 with the selection rule |Ki − Kj | = μ (Ki, Kj > 0, μ � 0) have the form

〈i j̄|L̂lλμ|BCS〉 = 2πμN

√
λ(2λ + 1)

2gl

λ + 1
u(−)

i j

∫
dzdρρ

{
glμ Cλμ

lμ,10 [R(+)
i m(+)

j R(+)
j + R(−)

i m(−)
j R(−)

j ]

+ 1√
2

glμ+1 Cλμ

lμ+1,1−1

[
R(+)

i

(
ρ

d

dz
− z

d

dρ
− m(+)

j

z

ρ

)
R(+)

j + R(−)
i

(
ρ

d

dz
− z

d

dρ
− m(−)

j

z

ρ

)
R(−)

j

]

+ 1√
2

glμ−1 Cλμ

lμ−1,11

[
R(+)

i

(
ρ

d

dz
− z

d

dρ
+ m(+)

j

z

ρ

)
R(+)

j + R(−)
i

(
ρ

d

dz
− z

d

dρ
+ m(−)

j

z

ρ

)
R(−)

j

]}
, (C7)

〈i j̄|Ŝlλμ|BCS〉 = 2πμN

√
λ(2λ + 1)gsu

(−)
i j

∫
dzdρρ

{
1

2
glμ Cλμ

lμ,10 [R(+)
i R(+)

j − R(−)
i R(−)

j ]

+ 1√
2

glμ+1 Cλμ

lμ+1,1−1R(−)
i R(+)

j − 1√
2

glμ−1 Cλμ

lμ−1,11R(+)
i R(−)

j

}
. (C8)

Here u(−)
i j = uiv j − u jvi is the combination of Bogoliubov factors. The (ρ, z) dependence in the functions R(±)

i , glμ, and glμ±1

is omitted for the sake of simplicity.
For the selection rule Ki + Kj = μ, the matrix elements for the transitions to the 2qp state α+

i α+
j |BCS〉 read

〈i j|L̂lλμ|BCS〉 = 2πμN

√
λ(2λ + 1)

2gl

λ + 1
u(−)

i j

∫
dzdρρ

{
glμ Cλμ

lμ,10 [R(−)
i m(+)

j R(+)
j − R(+)

i m(−)
j R(−)

j ]

+ 1√
2

glμ+1 Cλμ

lμ+1,1−1

[
R(+)

i

(
ρ

d

dz
− z

d

dρ
+ m(−)

j

z

ρ

)
R(−)

j − R(−)
i

(
ρ

d

dz
− z

d

dρ
+ m(+)

j

z

ρ

)
R(+)

j

]

+ 1√
2

glμ−1 Cλμ

lμ−1,11

[
R(+)

i

(
ρ

d

dz
− z

d

dρ
− m(−)

j

z

ρ

)
R(−)

j − R(−)
i

(
ρ

d

dz
− z

d

dρ
− m(+)

j

z

ρ

)
R(+)

j

]}
, (C9)

〈i j|Ŝlλμ|BCS〉 = 2πμN

√
λ(2λ + 1)gsu

(−)
i j

∫
dzdρρ

{
1

2
glμ Cλμ

lμ,10 [R(+)
i R(−)

j + R(−)
i R(+)

j ]

+ 1√
2

glμ+1 Cλμ

lμ+1,1−1R(−)
i R(−)

j + 1√
2

glμ−1 Cλμ

lμ−1,11R(+)
i R(+)

j

}
. (C10)

In (C7)–(C10), the functions glm (m = μ,μ ± 1) are

glm(ρ, z) = rlYlm(θ, φ)e−imφ. (C11)

In our case of interest (λμ = 11), the transition operator has the form (3). In the above expressions, we have l = 0 and so
only the terms with μ − 1 = 0 survive. In these terms, glμ−1(ρ, z) → g00 = 1/

√
4π and finally we get

〈i j̄|L̂011|BCS〉 =
√

3π

2
μN gl u

(−)
i j

∫
dzdρρ

[
R(+)

i

(
ρ

d

dz
− z

d

dρ
+ m(+)

j

z

ρ

)
R(+)

j + R(−)
i

(
ρ

d

dz
− z

d

dρ
+ m(−)

j

z

ρ

)
R(−)

j

]
, (C12)

〈i j̄|Ŝ011|BCS〉 = −
√

3π

2
μN gsu

(−)
i j

∫
dzdρρR(+)

i R(−)
j , (C13)

〈i j|L̂011|BCS〉 =
√

3π

2
μN glu

(−)
i j

∫
dzdρρ

[
R(+)

i

(
ρ

d

dz
− z

d

dρ
− m(−)

j

z

ρ

)
R(−)

j − R(−)
i

(
ρ

d

dz
− z

d

dρ
− m(+)

j

z

ρ

)
R(+)

j

]}
, (C14)

〈i j|Ŝ011|BCS〉 =
√

3π

2
μN gsu

(−)
i j

∫
dzdρρR(+)

i R(+)
j . (C15)
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