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Cluster correlation and nuclear vorticity in low-lying 1− states of 24Mg
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Background: Low-energy dipole states have been popular topics in studies of stable and unstable nuclei. In
24Mg, two low-energy dipole modes, the toroidal and compressional states have been theoretically proposed
recently. The former state has been associated with cluster structure, but there is no explicit analysis of the
cluster structure.
Purpose: Our purpose is to investigate low-lying 1− states in 24Mg and clarify their properties such as the dipole
transition strengths, nuclear vorticity, and cluster features.
Method: Wave functions of 1− states of 24Mg are described within the antisymmetrized molecular dynamics
framework combined with the generator coordinate method. Excitation energies and dipole transition strengths
are calculated. Cluster wave functions are explicitly taken into account to reveal the role of cluster correlations
in 1− states. Intrinsic matter density and transition current density are analyzed.
Results: Two low-lying dipole states, the 1−

K=1 and 1−
K=0, are obtained. The 1−

K=1 state has the strongest isoscalar
toroidal dipole strength and shows two-vortex structure in the intrinsic transition current density. The 1−

K=0 state
features the isoscalar compressional dipole strength and exhibits the 16O + 8Be cluster correlation.
Conclusions: The toroidal and compressional dipole modes separately appear as K = 1 and K = 0 states in
the deformed 24Mg system. The 1−

K=1 state is the toroidal dipole state with the strong nuclear vorticity but no
prominent cluster structure, and the 1−

K=0 state is the compressional dipole state having enhanced cluster structure
but weaker vorticity.

DOI: 10.1103/PhysRevC.103.064311

I. INTRODUCTION

Isoscalar (IS) monopole and dipole excitations have been
extensively investigated by α inelastic scattering experiments.
Significant low-energy IS strengths have been observed in
various nuclei and are attracting great interest (see, for ex-
ample, Refs. [1–3] and references therein). A central issue
is determining the properties and origins of those low-energy
dipole modes.

In order to understand the low-energy dipole modes, the
vortical dipole mode (also called the torus or toroidal mode)
had been originally proposed by hydrodynamical models
[4,5] and later studied with microscopic frameworks such
as mean-field approaches [2,6–13], antisymmetrized molec-
ular dynamics (AMD) [14–16], and cluster models [17]. The
vortical dipole mode is characterized by the vorticiy of the
transition current and strongly excited by the toroidal dipole
(TD) operator, as discussed by Kvasil et al. [9]. These fea-
tures are different from the compressional dipole (CD) mode,
which is excited by the standard IS dipole operator. Following
Ref. [9], we call the vortical dipole mode the “TD mode” to
distinguish it from the compressional dipole (CD) mode. The
TD mode in deformed nuclei has been recently investigated

in various stable and unstable nuclei in a wide mass number
region from light- to heavy-mass nuclei. Cluster structures of
the TD mode in p-shell nuclei such as 12C and 10Be have been
studied [14,15,17].

Very recently, Nesterenko et al. have investigated dipole
excitations in 24Mg with the Skyrme quasiparticle random
phase approximation (QRPA) for axially symmetric deformed
nuclei, and they predicted that a TD state appears as the
low-lying Kπ = 1− state [13]. In the nuclear current density
of the TD mode, they found the vortex-antivortex type nuclear
current in the deformed system and suggested its association
with the cluster structure of 24Mg.

For cluster structures of 24Mg, one of the authors and
his collaborators have studied positive-parity states of 24Mg
within the AMD framework [18–21] and discussed roles of
the cluster structures of 20Ne +α, 16O + 8Be, and 12C + 12C
in the IS monopole excitations [22]. Kimura et al. have in-
vestigated negative-parity states of 24Mg with the AMD, and
discussed triaxial deformations of the ground and negative-
parity bands [23].

Our aim is to clarify the properties of the low-lying dipole
modes in 24Mg such as vortical and cluster features as well as
the IS dipole transition strengths. In order to describe dipole
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excitations, we apply the constraint AMD method combined
with the generator coordinate method (GCM). As for the
constraint parameters for basis wave functions in the AMD
+ GCM, the quadrupole deformations (βγ ) [23,24] and the
intercluster distance (d) [25] are adopted. This method is
useful to analyze cluster correlations as well as intrinsic defor-
mations because various cluster structures are explicitly taken
into account in the d-constraint wave functions as proved with
regard to 28Si in Ref. [26], which discussed the role of cluster
structure in IS monopole and dipole excitations. In order to
investigate properties of the low-lying 1− states of 24Mg, the
transition strengths are calculated for the TD and CD opera-
tors which can probe the vortical and compressional features,
respectively. Nuclear vorticity is discussed in our analysis of
the intrinsic transition current density. Cluster correlations in
the low-lying dipole excitations are also discussed.

The paper is organized as follows. In Sec. II, the framework
of AMD+GCM with βγ and d constraints are explained.
Section III shows the calculated results for basic properties
of the dipole states, and Sec. IV gives detailed analysis that
focuses on the vortical and cluster features. Finally, the paper
is summarized in Sec. V. In the Appendix, definitions of
the transition current density, dipole operators, and transition
strengths are explained.

II. FRAMEWORK

We briefly explain the present framework of the
AMD+GCM method with the βγ and d constraints. The
method is similar to that used in Ref. [26]. For details, readers
are directed to Refs. [21,23–27] and references therein.

A. Hamiltonian and variational wave function

The microscopic Hamiltonian for an A-nucleon system is
given as

H =
A∑
i

ti − tc.m. +
A∑

i< j

vNN
i j +

A∑
i< j

vCoul
i j . (1)

Here, the first term is the kinetic energy, and the center-
of-mass kinetic energy tc.m. is subtracted. For the effective
nuclear interaction vNN

i j , we employ Gogny D1S interaction
[28]. The Coulomb interaction vCoul

i j is approximated by a sum
of seven Gaussians.

The intrinsic wave function of AMD is given by a Slater
determinant of single-nucleon wave functions ϕi,

�int = A{ϕ1ϕ2 . . . ϕA}, (2)

ϕi = φi(r)χiξi, (3)

φi(r) = exp

{
−

∑
σ=x,y,z

νσ

(
rσ − Ziσ√

νσ

)2}
, (4)

χi = aiχ↑ + biχ↓, (5)

where χi is the spin part and ξi is the isospin part fixed to be
proton or neutron. In the present version of AMD, the spatial
part φi(r) is expressed by the deformed Gaussian wave packet
located at Zi/

√
νσ in the phase space with the width parame-

ters νσ (σ = x, y, z), which are common for all nucleons, and
the spin part is expressed by ai and bi. Here Zi, ai, and bi are
complex valuables and νσ are real valuables.

The Gaussian center parameter (Zi), the nucleon-spin
direction (ai and bi) for each nucleon, and the width pa-
rameters νσ are the variational parameters optimized by
the energy variation [27]. The energy variation is per-
formed for the parity-projected intrinsic wave function �π =
1+πPr

2 �int(π = ±).
For the ground state, constraint of the quadrupole deforma-

tion (βγ constraint) is imposed in the energy variation of the
positive-parity wave function. We use the parametrization β

and γ of the triaxial deformation as described in Ref. [27] and
get the βγ -deformed configuration for given β and γ values
after the energy variation. For 1− states, the βγ -constraint
energy variation is performed for the negative-parity wave
function. In addition, cluster configurations are also obtained
by constraint on the intercluster distance (d constraint) in
the energy variation of the negative-parity wave function, and
they are combined with the βγ -deformed configurations. For
the cluster configurations, we adopt quasiclusters proposed in
Ref. [25]. Let us consider C1 + C2 configuration consisting
of two quasiclusters C1 and C2 with the mass numbers A1

and A2 (A1 + A2 = A), respectively. Each quasicluster Cj is
defined as the Aj-nucleon group consisting of given numbers
of neutrons and protons. We select particular Aj nucleons from
A nucleons to form the quasicluster and define the intercluster
distance dA1+A2 between the quasiclusters C1 and C2 as

dA1+A2 = ∣∣RC1 − RC2

∣∣, (6)

(
RCj

)
σ

= 1

Aj

∑
i∈Cj

Re

[
Ziσ√
νσ

]
, (7)

where RCj is the center-of-mass position of the quasicluster
Cj . In the d-constraint AMD, the constraint is imposed on
the intercluster distance dA1+A2 . We here adopt the 20Ne +α,
16O + 8Be, and 12C + 12C configurations for C1 + C2 of qua-
siclusters with the mass numbers A1 + A2 = 20 + 4, 16 + 8,
and 12 + 12, respectively.

After the energy variation under each constraint of (β, γ ),
d20+4, d16+8, and d12+12, we obtain the basis wave functions
optimized for various values of the constraint parameters and
superpose them in the GCM calculation, as explained later.
For simplicity, we number the obtained basis wave functions
{�π (m)} with the index m.

It should be stressed that the cluster wave function in the
present framework is composed of not inert (frozen) clusters
but quasiclusters, which can contain cluster breaking effects
such as the core polarization, dissociation, and excitation.
These effects are taken into account in the energy variation
at a given value of the quasicluster distance dA1+A2 . Moreover,
in the small distance limit, the cluster wave function becomes
equivalent to a deformed mean-field wave function because
of the antisymmetrization of nucleons. Along the distance
parameter dA1+A2 , the d-constraint wave function describes
the structure change from the one-center system of a mean-
field configuration to the two-center system of the spatially
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FIG. 1. Energy curves for 20Ne +α(20 + 4), 16O + 8Be(16 + 8), and 12C + 12C(12 + 12) quasicluster configurations obtained by the d-
constraint energy variation for negative-parity states. The Jπ = 1− projected energies are plotted as functions of the quasicluster distances
dA1+A2 . (a) 20Ne +α(20 + 4) configuration: energies of K = 0 and K = 1 states projected from triaxially deformed intrinsic states and K = 0
states projected from axially deformed intrinsic states. (b) 16O + 8Be(16 + 8) configuration: energies of K = 0 states projected from triaxially
deformed intrinsic states and those projected from axially deformed intrinsic states. (c) 12C + 12C(12 + 12) configuration: energies of K = 0
states.

developed C1 + C2 clustering via intermediate configurations
with cluster correlation (or formation) at the nuclear surface.

B. Angular momentum projection and generator
coordinate method

After the energy variation with the constraints, the obtained
basis wave functions are projected to the angular momentum
eigenstates,

�Jπ

MK (m) = 2J + 1

8π2

∫
d
DJ∗

MK (
)R(
)�π (m), (8)

where DJ
MK (
) and R(
) are Wigner’s D function and the ro-

tation operator, respectively. They are superposed to describe
the final GCM wave function for the Jπ

n state,

�Jπ
M,n =

∑
K,m

cn(K, m)�Jπ
MK (m). (9)

Here the coefficients cn(K, m) are determined by diagonaliza-
tion of the norm and Hamiltonian matrices so as to satisfy
Hill-Wheeler (GCM) equation [29,30].

III. RESULTS

A. Properties of basis wave functions

We describe properties of the βγ -deformed and cluster
configurations obtained by the energy variation with the cor-
responding constraint.

For the βγ -deformed configurations, we obtain almost the
same results as those in the previous AMD study [23]. In the
Jπ -projected energy surface on the β-γ plane obtained from
the βγ -deformed configurations, we find the energy minimum
state with triaxial deformation at (β, γ ) = (0.49, 13◦) for
Jπ = 0+ and that at (β, γ ) = (0.5, 25◦) for Jπ = 1−. These
deformed states at the energy minimums become the domi-
nant component of the 0+

1 and 1−
1 states in the final result

of the GCM calculation.

For the cluster configurations, we adopt the 20Ne +α,
16O + 8Be, and 12C + 12C quasiclusters, as described pre-
viously. The calculated Jπ = 1− energies are shown as
functions of quasicluster distances in Fig. 1, and intrinsic
density distributions are displayed in Fig. 2.

For the 20Ne +α(20 + 4) quasicluster configuration, the
energy curves are shown in Fig. 1(a) and the density dis-
tributions at d20+4 = 2.5, 4.9, and 5.9 fm are shown in
Figs. 2(a)–2(c). In the 2.0 � d20+4 � 5.7 fm region, the tri-
axially deformed 20Ne +α configurations are obtained by the
d-constraint energy variation and they yield the K = 0 and
K = 1 states by the Jπ = 1− projection. The K = 1 energy
curve is always lower than the K = 0 energy curve. The en-
ergy difference between the K = 1 and K = 0 states is about

FIG. 2. Intrinsic matter density distributions of the 20Ne +α and
16O + 8Be quasicluster configurations obtained by the d-constraint
energy variation for negative-parity states. Panels (a), (b), and
(c) show the 20Ne +α configurations at d20+4 = 2.5, 4.9, and 5.9 fm.
Panels (d), (e), and (f) show the 16O + 8Be configurations at d16+8 =
2.5, 4.9, and 6.1 fm. The densities sliced at the x = 0 plane
(y-z plane) are shown. The units of the horizontal (y) and vertical
(z) axes are fm.
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6 MeV at d20+4 = 2.0 fm but it decreases to approximately
0 MeV at d20+4 = 5.7 fm. In d20+4 � 5.7 fm region, almost
axial symmetric states with the dominant K = 0 component
are obtained for the 20Ne +α configuration [see Fig. 2(c) and
the dotted line of Fig. 1(a)]. It should be noted that K �= 0
components are given only by deviation from the axial asym-
metry because of the fact that a complete axial symmetric state
is a pure K = 0 state.

Figures 1(b) and 2(d)–2(f) show the energy curves and
intrinsic density distributions for the 16O + 8Be(16 + 8) qua-
sicluster configuration. In d16+8 < 5.4 fm region, the lowest
16O + 8Be configuration is the triaxially deformed configu-
ration because of two α clusters oriented along the y axis
as shown in the intrinsic densities [Figs. 2(d) and 2(e)]. It
contains only the K = even component because of the re-
flection symmetry with respect to π rotation around the z
(longitudinal) axis. In the d16+8 � 5.4 fm region, the axially
symmetric 16O + 8Be configuration [Fig. 2(f)] becomes the
lowest, as shown by the dotted line of Fig. 1(b).

In both 20Ne +α and 16O + 8Be configurations, the intrin-
sic wave functions in the small quasicluster distance (dA1+A2 )
region show no prominent cluster structure but have large
overlap with the βγ -deformed configuration with triaxial de-
formations. As the distance dA1+A2 increases, the energies of
the 20Ne +α and 16O + 8Be configurations increase gradually,
indicating that the system is soft against spatial development
of the cluster structures. Compared with the 20Ne +α and
16O + 8Be configurations, the energy of the 12C + 12C con-
figuration increases rapidly as d12+12 increases, as shown in
Fig. 1(c), because the symmetric cluster configuration is rel-
atively unfavored in the negative-parity (Kπ = 0−) state. As
a result, inclusion of 12C + 12C cluster configurations gives
almost no contribution to the low-lying 1− states in the GCM
calculation.

B. GCM result of dipole excitations

We present the GCM result obtained using all the βγ

deformed and cluster configurations. In the GCM calculation,
we take discrete values of generator coordinates as d20+4 =
2.1, 2.3 . . . 6.9 fm, d16+8 = 2.1, 2.3 . . . 6.9 fm, and d12+12 =
2.4, 2.6 . . . 5.4 fm for Jπ = 0+ and 1− states. The values
of (β, γ ) are discretized on a triangular lattice in the β-γ
plane with the lattice size of 0.05 and β � 0.8. We focus on
the low-lying 1− states and their isoscalar dipole strengths.
The definitions of the CD and TD operators and transition
strengths are explained in the Appendix.

1. Spectra and transition strengths

The calculated CD and TD transition strengths [B(CD) and
B(TD)] are plotted with respect to the 1− excitation energies
(Ex) in Fig. 3. In the low-energy region Ex ≈ 10 MeV, we
obtain two dipole states, the 1−

1 and 1−
2 states, which have

quite different properties. One is the 1−
1 state at Ex = 9.5

MeV with the strongest TD transition, and the other is the
1−

2 state at Ex = 11.2 MeV with the significant CD transition
strength. Therefore, the 1−

1 state can be regarded as the TD
mode, and the 1−

2 state is the low-lying CD mode.

FIG. 3. Strength functions of dipole transitions. The toroidal and
compressional dipole strengths, B(TD) and B(CD), are plotted as
functions of 1− excitation energies in the upper and bottom panels,
respectively.

In analysis of the dominant K component in these two
states, one can assign the former (TD mode) to the bandhead
state of a K = 1 band and the latter (CD mode) to a K = 0
band. This separation of the K = 1 and K = 0 components
in the triaxially deformed intrinsic system plays a key role in
the low-lying TD and CD modes in 24Mg. To emphasize this
feature of K quanta, we denote the 1−

1 and 1−
2 states as 1−

K=1
and 1−

K=0, respectively, in the following. The energy ordering
of these two 1− states in our result is consistent with the results
of βγ -AMD [23] and QRPA [13] calculations. In the exper-
imental data, 1− (7.56 MeV) and 1− (8.44 MeV) states were
tentatively assigned to K = 0 and K = 1, respectively [31].
Therefore, the theoretical 1−

K=1 and 1−
K=0 states in the present

result may correspond to the experimental 1− (8.44 MeV) and
1− (7.56 MeV) states, though the energy ordering of two states
seems inconsistent with the observation.

2. Cluster correlations

We here discuss roles of cluster correlations in the 1−
K=1

and 1−
K=0 states. To discuss the cluster correlation effect, we

perform the GCM calculation using only the βγ configura-
tions but without the cluster configurations and compare the
results with and without cluster configurations. The excitation
energies and transition strengths of the 1−

K=1 and 1−
K=0 states

calculated with and without cluster configurations are summa-
rized in Table I.

The correlation energies induced by the cluster correlations
can be evaluated by the energy gain by inclusion of the cluster
configurations. The energy gain is 0.3 MeV for the 1−

K=1 state
and 1.0 MeV for the 1−

K=0 state. The large energy gain in
the 1−

K=0 state indicates significant cluster correlation, which
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TABLE I. The calculated values of excitation energies (Ex) and
TD and CD strengths of the 1−

K=1 and 1−
K=0 states obtained by the

GCM calculations with and without the cluster configurations (cc).

K = 1 state K = 0 state

With cc Without cc With cc Without cc

Ex (MeV) 9.52 9.85 11.21 12.18
B(TD) (10−3 fm4) 1.20 1.13 0.41 0.32
B(CD) (10−3 fm4) 0.00 0.00 2.38 1.61

mainly comes from the 16O + 8Be configuration. The cluster
correlation from the 16O + 8Be configuration also contributes
to the CD transition strength of the 1−

K=0 state as 50% en-
hancement of B(CD). This result is understood by the general
principle that the low-energy ISD strengths can be enhanced
by asymmetric clustering, as discussed in Ref. [32]. Com-
pared with the 1−

K=0 state, the properties of the 1−
K=1 state is

not affected so much by inclusion of cluster configurations.

IV. DISCUSSION

A. Cluster correlations in 1−
K=1 and 1−

K=0

In the previous discussion, we showed that inclusion of
cluster configurations gives significant contributions to the
1−

K=0 state but relatively minor effect on the 1−
K=1 state. How-

ever, it does not necessarily mean no cluster correlation in
the 1−

K=1 state because βγ -deformed configurations can im-
plicitly contain cluster correlations. We have shown, in the
previous analysis including the cluster configurations, the ef-
fects from prominent cluster structures which are beyond the
βγ -constraint method.

For more detailed investigation of cluster components in
the 1−

K=1 and 1−
K=0 states, we calculate overlap of the GCM

wave function with each basis of quasicluster configurations.
The 1−

K=1 state has 89% overlap with the 20Ne +α configura-
tion at d20+4 = 2.5 fm projected to Jπ = 1−(K = 1), which
indicates significant 20Ne +α component. Similarly, the 1−

K=0
state is dominantly described by K = 0 component of the
16O + 8Be configuration at d16+8 = 2.5 fm with 88% overlap.
The 1−

K=0 state also has non-negligible overlap with spa-
tially developed 16O + 8Be configurations, e.g., 23% overlap

at d16+8 = 4.9 fm. These developed 16O + 8Be cluster compo-
nents contribute to enhancement of the CD transition strength
discussed previously.

B. Vorticity of the nuclear current

In order to reveal vortical nature of the two low-energy
dipole modes, we analyze the intrinsic transition current den-
sity δ j(r) of 0+

1 → 1−
K=1 and 0+

1 → 1−
K=0 transitions. For

simplicity, we take the dominant configuration of each state
as an approximate intrinsic state and compute the transition
current density in the intrinsic frame: We choose the βγ -
deformed configuration at (β, γ ) = (0.49, 13◦) for the ground
state, the 20Ne +α configuration at d20+4 = 2.5 fm for the
1−

K=1 state, and the 16O + 8Be configuration at d16+8 = 2.5 fm
for the 1−

K=0. In Fig. 4, the transition current density δ j and
vorticity ∇ × δ j calculated after the parity projection are dis-
played by vector and color plots, respectively. The intrinsic
matter density distribution of the 1− states before the parity
projection is also shown by contour plot.

In the transition current density in the 1−
K=1 excitation

[Figs. 4(a) and 4(c)], one can see two vortices with opposite
directions in the upper and lower parts of the longitudinal mat-
ter density. The opposite vorticity is a specific character of the
vortical dipole mode with K = 1 in an elongated deformation,
and is consistent with the dipole mode called the vortex-
antivortex configuration in Ref. [13]. On the other hand, the
transition current density in the 1−

K=0 excitation [Figs. 4(b)
and 4(d)] shows no vortex but does show irrotational flow
with compressional nature along the z axis (the longitudinal
direction), which contributes to the CD dipole strength. The
difference in the vortical nature between the 1−

K=0 and 1−
K=1

states can be more clearly seen in color plots of the vorticity.
The 1−

K=1 excitation indicates the strong nuclear vorticity in
the top and bottom edge parts of the elongated shape, but the
1−

K=0 excitation shows much weaker vorticity.

C. Cluster and single-particle natures of 1−
K=1 state

As described previously, the 1−
K=1 state is approximately

described by the 20Ne +α cluster configuration at d20+4 = 2.5
fm, which does not show a spatially developed clustering but
the cluster correlation in the triaxially deformed state. As can
be seen in the intrinsic density distribution shown in Fig. 2(a),

FIG. 4. The intrinsic transition current density δ j(r) after the parity projection for 0+
1 → 1−

K=1 and 0+
1 → 1−

K=0 transitions. In the left
and right pairs of panels, the arrows [panels (a) and (b)] and color plots [panels (c) and (d)] indicate δ j(r) and the x component of the vorticity
∇ × δ j(r), respectively. The contours are intrinsic matter densities of the 1−

K=1 and 1−
K=0 states before the parity projection. The densities sliced

at x = 0 plane (y-z plane) are shown. The units of the horizontal (y) and vertical (z) axes are fm.

064311-5



CHIBA, KANADA-EN’YO, AND SHIKATA PHYSICAL REVIEW C 103, 064311 (2021)

α

O
16

(b)

α α

O
16

(a)

α

FIG. 5. Schematic figure of 16O +2α cluster structure for the
(a) ground state and (b) 1−

K=1 excitation.

the essential cluster correlation in the 1−
K=1 state is formation

of α clusters caused by four nucleon correlations at the nuclear
surface. In a schematic picture shown in Fig. 5, the cluster
correlation in the 1−

K=1 state is associated with the 16O core
with two α clusters in one side of the core [see Fig. 5(b)]. Two
α clusters are placed at the surface of the 16O core in a tilted
configuration, which yields the K = 1 component because of
the asymmetry against the π rotation around the z axis. On the
other hand, the ground state has the triaxial deformation be-
cause of the 2α correlation aligned in a normal direction along
the surface of 16O [see Fig. 5(a)]. Then, the dipole excitation
from the ground state to the 1−

K=1 state can be understood by
the vibrational (tilting) motion of the 2α orientation at the
surface of the 16O core. This tilting motion of the 2α clustering
produces the nuclear vorticity. Then, the vortex is duplicated
in both sides because of the antisymmetrization effect and
parity projection.

It is also worth mentioning a link between cluster and
mean-field pictures for the 1−

K=1 mode by considering the
small limit of the intercluster distance, where the cluster
structure can be associated with a deformed harmonic oscil-
lator configuration. We here use the representation (nxnynz )
with oscillator quanta nσ in σ axis for a single-particle or-
bit in the deformed harmonic oscillator. In this limit, the
ground state corresponds to the (011)4(002)4 configuration
with triaxial deformation, while the 1−

K=1 state is regarded as
(011)3(002)4(003)1. It means that the 1−

K=1 transition is de-
scribed by one-particle one-hole excitation of (011)−1(003)1

on the triaxially deformed ground state, which induces the
vortical nuclear current and contributes to the TD strength.
This mechanism is similar to that discussed with the deformed
mean-field approach in Ref. [13]. However, we should remark
that the present 1−

K=1 mode contains the cluster correlation and
corresponds to the coherent one-particle one-hole excitations
in the LS-couping scheme. The coherent contribution from
four nucleons in the SU(4) symmetry (spin-isospin symmetry)
enhances collectivity of the vortical dipole excitation further
than the j j-coupling configuration.

V. SUMMARY

We investigated the low-lying 1− states of 24Mg with
the AMD+GCM framework with the βγ constraint for the
quadrupole deformation and the d constraint for the 20Ne +α,
16O + 8Be, and 12C + 12C configurations. We discussed prop-

erties of the 1− states such as IS dipole transition strengths,
cluster correlations, and vortical nature. In the low-energy
region Ex ≈ 10 MeV, we obtained the 1−

K=1 and 1−
K=0 states,

which show quite different features. The 1−
K=1 is the toroidal

dipole mode, which is characterized by the nuclear vortic-
ity. The 1−

K=0 state has the significant compressional dipole
strength and the weaker vorticity. Effects of the cluster corre-
lations on the excitation energy and transition strength of these
two low-lying dipole states were analyzed. It was found that
the spatially developed cluster configurations give significant
contribution to the 1−

K=0 state, whereas the effect on the 1−
K=1

state is minor. We should stress that the deformation and
cluster correlations play important roles in the low-energy
dipole modes of 24Mg.
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APPENDIX: DEFINITION OF TRANSITION DENSITIES
AND DIPOLE STRENGTHS

The density and current density operators for the nuclear
matter are given as follows:

ρ(r) =
∑

k

δ(r − rk ), (A1)

j(r) = − ih̄

2m

∑
k

[∇kδ(r − rk ) + δ(r − rk )∇k]. (A2)

For the current density, we consider only the convection
term of the nuclear current but not the spin term of mag-
netization. The transition current density for the transition
from the ground (0+

1) to the 1− states is written as δ j(r) =
〈1−| j(r)|0+

1〉.
For the dipole transition strengths, the following CD and

TD operators are adopted:

MCD(μ) = −i

2
√

3c

∫
dr j(r)

×
[

2
√

2

5
r2Y 12μ(r̂) − r2Y 10μ(r̂)

]
, (A3)

MTD(μ) = −i

2
√

3c

∫
dr j(r)

×
[√

2

5
r2Y 12μ(r̂) + r2Y 10μ(r̂)

]
, (A4)

where Y λLμ is the vector spherical harmonics. The CD
operator corresponds to the standard IS dipole operator
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and is sensitive to the compressional dipole excitations,
and the TD operator has been adopted in Ref. [9] as a
measure probing the nuclear dipole vorticity. The CD and TD
transition strengths are given by the square of the reduced
matrix elements of the corresponding dipole operators
as B(CD,TD; 0+

1 → 1−) = |〈1−||MCD,TD||0+
1〉|2. Using

the continuity equation, the CD transition strengths is related

to the transition strength for the standard IS dipole operator
MIS1(μ) = ∫

drρ(r)r3Y1μ(r̂) as

B(IS1) ≡ |〈1−||MIS1||0+
1〉|2 =

(
10h̄c

E

)2

B(CD). (A5)
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