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State densities of heavy nuclei in the static-path plus random-phase approximation
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Nuclear state densities are important inputs to statistical models of compound-nucleus reactions. State densi-
ties are often calculated with self-consistent mean-field approximations that do not include important correlations
and must be augmented with empirical collective enhancement factors. Here, we benchmark the static-path
plus random-phase approximation (SPA + RPA) to the state density in a chain of samarium isotopes “-'>*Sm
against exact results (up to statistical errors) obtained with the shell-model Monte Carlo (SMMC) method. The
SPA + RPA method incorporates all static fluctuations beyond the mean field together with small-amplitude
quantal fluctuations around each static fluctuation. Using a pairing plus quadrupole interaction, we show that the
SPA + RPA state densities agree well with the exact SMMC densities for both the even- and odd-mass isotopes.
For the even-mass isotopes, we also compare our results with mean-field state densities calculated with the
finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation. We find that the SPA + RPA repairs the
deficiencies of the mean-field approximation associated with broken rotational symmetry in deformed nuclei
and with the violation of particle-number conservation in the pairing condensate. In particular, in deformed
nuclei the SPA + RPA reproduces the rotational enhancement of the state density relative to the mean-field state

density.
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I. INTRODUCTION

Nuclear level densities, which measure the average num-
ber of nuclear levels per unit energy, are important inputs to
the statistical Hauser-Feshbach theory of compound-nucleus
reactions [1,2]. Neutron capture rates, which affect the pre-
dicted isotopic abundances in r-process nucleosynthesis [3,4]
and the precision of i-process simulations [5], are particularly
sensitive to level densities. Uncertainties in nuclear reaction
rates also have important implications for nuclear technology
and stockpile stewardship [6].

Level densities are extracted from various experimental
data, including level counting at low excitation energies, neu-
tron resonance data at the neutron separation energy, Oslo
method measurements [7,8], and particle evaporation spec-
tra [9]. Rare-isotope beam facilities and novel experimental
techniques such as the 8-Oslo method [10] promise to ex-
tend level-density measurements to unstable nuclei. However,
available data to determine nuclear level densities remain lim-
ited, and theoretical calculations of level densities are required
to describe many compound-nucleus reactions.

The calculation of level densities in the presence of corre-
lations is a challenging many-body problem. Most theoretical
approaches are based on phenomenological models fit to
experimental data [2,11]. Such models cannot be reliably ex-
trapolated to regions in which data are scarce [12]. Moreover,
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these models are limited by uncertainties in the experimental
data [9].

Consequently, it is important to develop microscopic mod-
els of the level density that are based on the underlying nuclear
interaction. Widely used methods that rely on mean-field
approximations [13—15] must be augmented with phenomeno-
logical models to describe rotational and vibrational enhance-
ments [14,15]. In contrast, the configuration-interaction (CI)
shell model describes both single-particle and collective exci-
tations within the same framework. However, conventional CI
shell-model methods are limited by the combinatorial growth
of the many-particle model space with the number of nucleons
and/or the number of single-particle states. The shell-model
Monte Carlo (SMMC) method is capable of calculating level
densities exactly (up to controllable statistical errors) in model
spaces that are far beyond the reach of conventional CI meth-
ods and has been applied to nuclei as heavy as lanthanides
[16—-19]; for a recent review, see Ref. [20]. Most applica-
tions of the SMMC to the calculation of level densities have
used effective nuclear interactions with a good Monte Carlo
sign [20-22], although smaller bad-sign components of more
general effective nuclear interactions can be treated using the
method of Ref. [22].

Another method to calculate level densities based on the
CI shell model is the moment method [23-25]. This approach
has been applied to light and mid-mass nuclei but becomes
costly in heavy nuclei and is limited by the need to calculate
independently an accurate ground-state energy. Similarly, the
stochastic estimation method of Ref. [26] and the methods of
Ref. [27] based on the Lanczos algorithm have been used to
calculate CI shell-model level densities in mid-mass nuclei,
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but these methods cannot be applied to heavy nuclei due to
their prohibitive computational cost.

The static-path plus random-phase approximation (SPA +
RPA) is a promising method for including correlation effects
beyond the mean field within the CI shell-model framework.
The approach includes large-amplitude static fluctuations be-
yond the mean field and small-amplitude time-dependent
quantal fluctuations around each static fluctuation [28-39]. In
solvable models, the SPA 4+ RPA was found to give nearly
exact results for thermodynamic quantities above a low tem-
perature below which the method breaks down [30-32,35,36].
The SPA 4+ RPA can also be applied to certain interactions
for which the SMMC has a sign problem and thus can be
complementary to the SMMC. However, there have been few
applications of the SPA 4 RPA to many-particle systems with
realistic forces. In nuclear physics, the SPA 4+ RPA was used
in Ref. [36] to calculate thermal quantities in erbium isotopes
with a pure pairing force. The SPA + RPA was also used to
study the pairing properties of molybdenum isotopes with a
pairing force [37], as well as the level density of *°Fe with
a pairing plus quadrupole interaction [38]. In addition, the
SPA + RPA has been applied to calculate thermodynamic
properties, such as the heat capacity and spin susceptibility,
in nanoscale metallic grains in the presence of pairing and
exchange correlations [39]. However, the SPA + RPA has
not been benchmarked systematically against exact results in
heavy nuclei.

Here, we benchmark SPA + RPA nuclear state densi-
ties' against SMMC state densities for a chain of samarium
isotopes *¥153Sm, which describe the crossover from vibra-
tional to rotational collectivity [17,40,41]. For the even-mass
samarium isotopes, we also compare our results with mean-
field state densities calculated with the finite-temperature
Hartree-Fock-Bogoliubov (HFB) approximation. We imple-
ment a Monte Carlo method to calculate SPA + RPA
thermodynamic observables. The SPA 4+ RPA method breaks
down below a certain low temperature, and we use the parti-
tion function extrapolation method of Ref. [42] to extract the
ground-state energy from the SPA 4 RPA excitation partition
function above the breakdown temperature.

Using a pairing plus quadrupole interaction, we find that
the SPA + RPA canonical entropy and state density are in
good agreement with the corresponding SMMC results for
each of the even- and odd-mass samarium isotopes. In the
even-mass deformed isotopes, the SPA + RPA method re-
produces the enhancement of the state density relative to the
HFB density due to rotational collectivity. In addition, the SPA
+ RPA entropy remains non-negative at low temperatures,
whereas the pairing condensate phase of the HFB approxima-
tion is characterized by an unphysical negative entropy. We
study the evolution with neutron number of the enhancement
of the SPA + RPA and SMMC state densities relative to the
HFB density, as was done in Ref. [17]. We find that the SPA
+ RPA enhancement factors are in good agreement with those

'In the state density, all 2J + 1 degenerate states associated with
a nuclear level of spin J are counted, whereas, in the level density,
each level with spin J is counted only once.

extracted from the SMMC and are consistent with a crossover
from pairing-dominated collectivity to rotational collectivity.

The outline of this paper as follows: In Sec. II, we derive
the SPA + RPA expressions for the grand-canonical and ap-
proximate canonical partition functions, and we discuss the
calculation of the state density. In Sec. III, we present the
Monte Carlo method used to evaluate thermodynamic quan-
tities in the SPA 4+ RPA. We also summarize the partition
function extrapolation method used to extract the SPA +
RPA ground-state energy. In Sec. IV, we apply the SPA +
RPA to calculate the state densities in a chain of samarium
isotopes '*15Sm and compare our results with the SMMC
state densities. For the even-mass samarium isotopes, we also
compare the SPA + RPA densities with the HFB densities and
extract the collective enhancement factors. Finally, in Sec. V,
we summarize our conclusions, discuss the advantages and
limitations of the SPA + RPA method, and provide an outlook
for future developments of this method.

II. STATIC-PATH PLUS RANDOM-PHASE
APPROXIMATION TO STATE DENSITIES

A. General formulation

Here, we review the SPA + RPA formalism for the parti-
tion function in the grand-canonical ensemble. Many elements
of this derivation appear in previous works; see Refs. [30-39].

We consider a Hamiltonian in which the two-body residual
interaction is written as a sum of separable terms,

| ~
=0 — 5g:vaoa, 1)

where H; is a one-body operator and O, are Hermitian and
bilinear in fermion creation and annihilation operators. Any
Hermitian two-body interaction can be decomposed in this
way [21]. We assume that the interaction is purely attractive
when written in the form of Eq. (1), i.e., all the v,, are positive.
An approximate SPA + RPA treatment of repulsive interac-
tions was proposed in Ref. [43] but is not investigated here.

The Hubbard-Stratonovich transformation [44,45] ex-
presses the Gibbs density operator at inverse temperature
as a functional integral

e—ﬂlq — /D[U(T)]e_foﬁ dry_, vaa‘f(r)/ZTe— foﬁ drfla(t)’ (2)

where o, (7) (With0 < 7 < 8) are real-valued auxiliary fields,
T denotes time ordering, and /4, (7) is a Hermitian one-body
Hamiltonian given by

fla(f):ﬁl _Zvaaa(r)0a~ (3)

Next, each auxiliary field is separated into a static and t-
dependent part,

0u(T) = 00 + ) Nare™”, “)
r#0

where w, =2nr/B (r = £1,+£2,...) are the bosonic Mat-
subara frequencies. The grand-canonical partition function at
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inverse temperature B and chemical potentials w,, w, (for
protons and neutrons) can then be written as

Z(B, tps Un) = Tre—FH=Cimpn 128

172
S e

> /'Dne—ﬁZa.r;&ovulnm\z/Z(Te—foﬁdTVn(r)) i
%)

where Z(o) is the partition function for static auxiliary fields
g,

Z(G) = Tre_ﬁ(ila_z;\:p.” M)\N)\). (6)

In Eq. (6), the one-body Hamiltonian /, is given by
Eq. (3), with the time-dependent auxiliary fields o,(7)
replaced by the static fields o,. The operator Vn(r) =
— D r0 VaNare ™0y (t) in Eq. (5) [Ou(t) is the
interaction-picture representation of O, with respect to
the static Hamiltonian }Az(,] accounts for the contribution
of the time-dependent fluctuations of the auxiliary fields
to the one-body Hamiltonian. The angular brackets (...),
denote the expectation value with respect to the static density
operator ¢ #e = Xa=pn wlh),

In the SPA + RPA, the logarithm of the integrand in Eq. (5)
is expanded to second order in the amplitudes n,, of the
time-dependent auxiliary-field fluctuations, and the resulting
Gaussian integral over 7, is evaluated analytically [30-36].
The final result is

1/2
Z(B. 1p, un)=/[]_[ (i;“) dO’aj|eﬁv~a 7(0)C(0),

(7N
where v - 0% = Y v,02 and C(o) is the RPA correction fac-
tor for static fields o given by [28,35,36]

l_[k>1 ﬁ Sinh[ﬂ(Ek - El)/z]
[T,-0 g sinh(BR,/2)

In Eq. (8), E; are the generalized quasiparticle energies ob-
tained by diagonalizing A, and €2, are the eigenvalues of the
o-dependent matrix

. . 1 . -
Skt pr = (Ex — E)Siw 811 — E(ﬁ = Ji) Xa: Ou ki Oa,re. (9)

Clo) = ®

Here O, is the matrix representation of the one-body oper-
ator O, in the quasiparticle basis diagonalizing /i, and f;
is the generalized thermal quasiparticle occupation number
associated with generalized quasiparticle energy £;.> The
matrix S in Eq. (9) has the same form as the thermal RPA
matrix derived from considering small oscillations around a
self-consistent mean-field solution at finite temperature [46].

2There are 2N, generalized quasiparticle energies and thermal
occupation numbers, where N, is the number of single-particle
states. Letk = 1, ..., N, and E; be the positive quasiparticle energy.
Then, E; = E; and Ei,y, = —E;. Similarly, f, = (1 + ¢#%)~!, and
S =1— fi = (1 + &Py,

Consequently, we refer to the eigenvalues €2, as the RPA
frequencies. These frequencies come in pairs of opposite sign,
and [ [, in Eq. (8) denotes the product over half the frequen-
cies with a fixed sign.

Some of the RPA frequencies can become imaginary for
certain static auxiliary field configurations. The SPA 4+ RPA
is well defined at inverse temperature 8 provided that there
exists no imaginary frequency , satisfying |Q,| > 27 /B
[32,35,36,39]. Below a certain temperature, this condition no
longer holds, and the SPA + RPA breaks down [30-39]. In our
calculations, we find that this breakdown temperature is very
low and does not limit our ability to calculate state densities.
However, the breakdown of the SPA + RPA makes it chal-
lenging to estimate the ground-state energy, which is needed
to determine the excitation energy. We have overcome this
challenge using the partition function extrapolation method
[42]; see Sec. III B.

B. Pairing plus quadrupole Hamiltonian

Here we apply the SPA + RPA to a CI shell-model
Hamiltonian containing pairing and quadrupole-quadrupole
interaction terms. This particular model was studied in the
SPA + RPA in Refs. [33,38] and at the SPA level in
Ref. [29]. The SPA 4 RPA was applied to the pairing model
in Refs. [30,32,36,37,39] and to the quadrupole-quadrupole
interaction in Ref. [31].

The CI shell-model single-particle space consists of a set
of spherical orbitals a, = (ng,ls, ja, ), where A = p, n denotes
protons and neutrons, respectively, and the orbitals can be
different for protons and neutrons. The orbital single-particle
energies €,, correspond to a central Woods-Saxon potential
plus spin-orbit interaction [47]. The Hamiltonian is given by

2
H=Y ey, —g 3 (0100 = Y BB
a, n=-2 A=p,n
(10)
In Eq. (10), denotes normal ordering and the

quadrupole operator Ozﬂ = OA‘;M + OSM is defined by
Oéﬂ = (dVws/dr), Y25, where Vg is the Woods-Saxon
central potential. Also, P = Z(mm)w CamCam 1S the
pair annihilation operator, where |a;m) is a shell-model
single-particle state with magnetic quantum number m for
particle species A, (a;m) > 0 runs over half the states, and
|@m) = (= )atat™| g, —m) is the time-reversed partner
of |a;m). The interaction in Eq. (10) has a form similar to
that of the interaction used in Refs. [16-19], except that the
latter also included octupole and hexadecapole terms in the
multipole-multipole part of the Hamiltonian.

The static auxiliary fields consist of five complex fields
oz, (W= -2,...,2) satisfying a;"M = (—)"*a,—,, that couple
to the corresponding quadrupole operators OAZM, together with
two complex fields A, A, that couple to the corresponding
pair operators 131,, P,. We transform oy, to their intrinsic

frame components &, defined by
G0 = facosy, Q=01 =0,

5[22 = ()22_2 = & sin Y, (11)

V2
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and the three Euler angles characterizing the orientation of
the intrinsic frame. The integrand in Eq. (7) is independent
of the Euler angles and the phases of the pairing fields. After
integrating over the Euler angles and pairing field phases, the
remaining integration variables are the intrinsic deformation
parameters 8, > 0 and 0 < y < /3, and the pairing fields
Ap > 0. The SPA + RPA grand-canonical partition function
is then given by

[e'e] /3
Z(ﬂ7 Mp, Mn) :A dﬂZ/O d]/

o0 o0
X / / dA,dAM(0)Z(0)C(o), (12)
o Jo
where 0 = (82, v, Ap, A,) and the measure M (o) is

B (2B s
W(?) B3 sin By)A,A,

w e PABI2=B Y5, AL /8h (13)

M(o) =

Z(o) is given by Eq. (6), where the static one-body Hamilto-
nian h, is

~ N ~ 1 . a ~
he = Hy — x B2 [COS YOy + —=siny(Oxn + 022)}

7z
- Y [me e+ (52 -R)] a9

A=p.n

where H, is the one-body Hamiltonian in Eq. (10) that
includes a shift due to uncoupling the normal-ordered
quadrupole-quadrupole term in Eq. (10), and Nj ; is the num-
ber of single-particle states for particle species A. Including
the contribution of the chemical potentials and using a Bogoli-
ubov transformation to diagonalize Eq. (14) yields [36,39]

fla — Z /L)\N)L = Z Z[Ek,x(a;;\ak,x +a;ka,;,)\)

A=p,n A=p,n k>0
+ (xx — pa — Ex )]s (15)

where a, a’ are annihilation and creation quasiparticle
operators, respectively, &, are the eigenvalues of the particle-
number-conserving term in Eq. (14), and the quasiparticle
energies Ey ; are given by

o= (eua — o — /20 + A2 (16)

The static partition function Z(o) is then given by

Z(o) = ]_[ ]_[e—ﬂ‘sk-‘fﬂwcosh2 (@) 17)

A=p,n k>0

The RPA correction factor C(o) in Eq. (12) can be cal-
culated using Eq. (8). For the single-particle Hamiltonian
(14), the RPA matrix (9) connects only quasiparticle-state
pairs with the same total parity and total z signature. These
symmetries render the RPA matrices block-diagonal and con-
sequently make their diagonalization computationally more
efficient. We note that the computational cost of diagonalizing
the RPA matrix presents a significant challenge for extending

the SPA + RPA method to larger model spaces and to more
general interactions; see Sec. V.

C. Approximate canonical partition function

Equation (12) gives the SPA + RPA partition function
in the grand-canonical ensemble. However, to calculate state
densities of nuclei with given numbers of protons and neu-
trons, it is necessary to determine the canonical partition
function [48]. We do so approximately in the SPA + RPA by
combining exact number-parity projection with a saddle-point
approximation for particle-number projection [38,39].

The number-parity projection operator is given by

A 1 —+ me"”NK

P, = _ 1

=1 —5— (18)
A=p,n

where 1, n, = +1 (—1) for even (odd) numbers of protons

or neutrons, respectively. In the SPA + RPA, the number-

parity projected grand-canonical partition function is given by

Zy (Bt ) = / doM(0)Zy(0)Cy(o),  (19)
where

Zio) = [ Trte )21 ™)) 20)

A=p,n

is the number-parity projected partition function for a static
auxiliary-field configuration o, and fzm,\ is the one-body
Hamiltonian (15) for particle species A.> The operator e
commutes with the Hamiltonian (15), so Eq. (20) can be
evaluated explicitly [49] to give

(™), =[] tanh? <—ﬂ LZ“). 1)

k>0

C,(0) in Eq. (19) is the number-parity projected RPA correc-
tion factor, which is obtained by replacing the quasiparticle
occupation numbers in the RPA matrix (9) with the number-
parity-projected occupation numbers

fer + mle™), 7,
1 + M (emm)a

where fi 5 = (1 4+ 5+)"Land f7, = (1 — PPyl

The canonical partition function Z.(B, Ny, N,,), where N,
and N, are, respectively, the number of valence protons and
neutrons, is related to the number-parity-projected grand-
canonical partition function Z,(B, up, t,) by an inverse
Laplace transform

1= , (22)

(2/3 )2 in /2B B N
Zc(/s’ Ny, N,) = . dﬂ du«ne B Lscpn il
b QriY Joinpp "
X Zy(B, tps fn)- (23)

3We note that /, in Eqgs. (14) and (15) is the sum of proton and
neutron terms.
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The leading factors of two in the integrals over w, and u,
in Eq. (23) arise because the number-parity projection ex-
cludes half the possible particle numbers [36,50]. Following
Ref. [39], we insert Eq. (19) into Eq. (23), change the order of
the integrations over o and over (., (i,, and evaluate the inte-
grals over i, [, by applying the saddle-point approximation
to the unprojected single-particle partition function (6). We
find

Z.(B, Np, N,) ~ / d(TM(G)Z,,(G)
X ez-hz,,,,,(lﬂ & —ﬁHxNx)Cn (o), (24)
where

27 9 InZ(o)\ ?
o= 2(——) , (25)

B*  ous

and [39,49]

22 .
3*InZ(o) _ Z BEk. (g — s — %)+ AZsinh (,3Ek,,\).
prou; k>0 2BE;, cosh? (F5)

(26)
The chemical potential u; in Eq. (26) for each particle species
A is determined by the saddle-point condition [39]

_ o — M — % BE»
Ny=Y" [1 - <T>tanh< 5 )] 27)

k>0

D. State density
The state density is the inverse Laplace transform of the
canonical partition function

i

1 o0
P(E, Np, Ny) = 5— / dBePtZ.(B,N,,N,).  (28)
Tl J_

ico

We determine the average state density by evaluating the
integral in Eq. (28) in the saddle-point approximation [48],

2 -1z
p(E,Np, Ny) = (FC(ﬁO 5P, (29)
where

Se(B) = BE:(B) +InZ.(B) (30)

is the canonical entropy and C = dE./dT is the canonical
heat capacity.* In Eq. (29), B is a function of E determined
by the saddle-point condition

d0InZ.(B)

E=E(p) ="

3D

“For simplicity of notation, we have omitted the explicit depen-
denceon N, N, in Z., E, S., and C.

III. PRACTICAL METHODS FOR CALCULATING
SPA + RPA STATE DENSITIES

A. Monte Carlo method

In previous applications of the SPA + RPA, the integration
over the static fields o was evaluated using quadrature meth-
ods [30-39]. Although quadrature methods could in principle
be used for the pairing plus quadrupole interaction, the com-
putational cost of such methods scales as the exponent of the
number of static fields and thus becomes prohibitive for more
general effective nuclear interactions, such as the interaction
used in Refs. [16-19]. Since our purpose is to show that the
SPA + RPA can be a practical alternative to existing methods
for calculating CI shell-model state densities in heavy nuclei,
it is important to use a computational method that can be
applied to more general interactions.

Here we introduce a Monte Carlo method to calculate
the SPA 4+ RPA canonical energy and heat capacity, from
which we obtain the partition function, canonical entropy, and
state density. We evaluate the canonical energy E. defined by
Eq. (31) using the approximate canonical partition function Z,
in Eq. (24). Using dimensionless integration variables

x=/BxBo Vs VBI&r A N BI2n A, (32)

we rewrite Eq. (24) in the form

Z.(8) ~ / dxM(x)Z, (), (33)

where
Z,(x) = Z,(x)eXr ME—BNIC, (1), 34

and M (x) is the measure in Eq. (13). M (x) becomes indepen-
dent of B when expressed as a function of x. Using Eq. (33) in
Eq. (31), we find®

[ dxW ()]G (022

E, = — , 35
() [ dxW (x)Cp(x) (35)
where W (x) is the positive-definite weight function
M(x)Z
W) = XOZ) 47 (e ho—hud - (36)
C,(x)
Equation (35) can be rewritten as
<C77 (-x) 2 lnazﬂﬂ (X) >W
EB)=——r"7T—"" 37
(Cy(Nw

where the expectation value (f(x))y of a function f(x) with
respect to a weight function W (x) is defined by

_ [dxW () f(x)

(fC)w = T dxW (o) (38)

SWe note that the canonical energy E.(8) = —d1nZ./dB calcu-
lated in Eq. (35) is not the same as the thermal expectation value
of the Hamiltonian in the SPA + RPA. In our approach, the basic
quantity is the partition function, and the canonical energy is defined
by the saddle-point condition (31).
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To evaluate the expectation values in Eq. (37), we use a stan-
dard Monte Carlo method in which the values of x are sampled
according to the weight function W (x). Specifically, we per-
form a random walk in the space of integration variables
x, updating configurations of x according to the Metropolis-
Hastings algorithm [51]. We calculate the observables at
sample configurations separated by a sufficient number of
steps to ensure that the samples are decorrelated. We then use
the jackknife method [52] to calculate expectation values and
statistical errors of the thermodynamic observables, such as E,.
in Eq. (37).% Further details are provided in the Supplemental
Material repository that accompanies this article [53]. This
Monte Carlo method is similar to the one implemented in the
SMMC method [20].

Having calculated E.(B) using Eq. (37) for a sufficient
number of B values, we obtain the partition function by in-
tegrating Eq. (31)

B
anC(ﬁ)ZSC(O)—/ dp'E.(B"). (39)

0
S.(0) in Eq. (39) is the canonical entropy at 8 = 0 given by

S0 =>In <NN:> (40)
A=p,n
where N; ; is the dimension of the single-particle model space
and N, is the number of valence particles for particle species
. The heat capacity C(8) = p?3>1InZ./dB> can also be ex-
pressed in terms of expectation values of the form (38) via

82 anC N (Cn(x)[azlzjf;n(x) + (3]1‘lazf;](x))2]>w

9P (C,w
Tlam™29), T
Cow |

Using Egs. (37) and (39)—(41) together with Egs. (30) and
(29), we calculate the canonical entropy and state density,
respectively.

For importance sampling, it would have been preferable
to include the RPA correction factor C,(x) in the weight
function. However, diagonalizing the RPA matrix is the most
computationally intensive part of the calculation. We have
therefore chosen W (x) in Eq. (36) that does not include C, (x).
We find that the Monte Carlo method with W (x) as the weight
function samples the configuration space efficiently enough
for our calculations.

(41)

B. Ground-state energy

Equation (29) expresses the state density as a function of
the absolute energy E. However, in statistical reaction theory,
state densities have to be known as functions of the excitation
energy E, = E — Ej, where Ej is the ground-state energy.
However, the SPA + RPA breaks down at low but nonzero
temperature, and therefore the ground-state energy cannot
be calculated directly. A similar problem occurs in SMMC

®In practice, dIn Z,(x)/dp in Eq. (37) for a given sample x is
evaluated using a finite-difference formula.

calculations in nuclei with an odd number of valence protons
or neutrons with good-sign interactions, where the projection
on an odd number of particles introduces a Monte Carlo sign
problem at low temperatures [20,54] and the ground-state
energy cannot be accessed directly. In Ref. [42], the partition
function extrapolation method was introduced to determine
the ground-state energy Ey of such nuclei from the calculated
SMMC partition function at higher temperatures. We apply
this method, summarized below, to the SPA + RPA partition
function in order to estimate the ground-state energy.

We define the excitation partition function Z.(8; Eer) with
respect to some reference energy E.t by

Z/(B; Eret) = Zo(B)ePE. (42)

In particular, if E.s = Ey, the excitation partition function is
the Laplace transform of the state density p(E,) given as a
function of the excitation energy

[e.¢]

2B E) = 2B = [ aBpENe L @
0

The excitation partition function for an arbitrary reference

energy is related to the excitation partition function in Eq. (43)

by

InZ/(B; Eret) = InZ[(B5 Eo) — B(Ey — Erer).  (44)

The main idea behind the partition function extrapolation
method is to use a reliable model for the state density in
Eq. (44). For even-even nuclei, it was shown [16] that the state
density is well described by the Gilbert-Cameron composite
formula [55]

1 L(Ex—E1)/Th E E

e <

;Ocomp(Ex) = { T N M (45)
PBBF(Ex) E, > Ey,

where Ej; is a matching energy, and pggr is the backshifted
Bethe formula (BBF) [56]

JT 2VAE=D)

12a'* (E, — AY/* (46)

peBE(Ey) =

Below Ej, the state density is described by the constant-
temperature formula with parameters E;, 7;, which are
determined from the parameters a and A of the BBF formula
by the conditions that the state density and its derivative are
continuous at Ej,. Inserting the composite state density for-
mula (45) into Eq. (43), we can fit Eq. (44) to the SPA + RPA
excitation partition function above the method’s breakdown
temperature.

We carry out the fit in two steps [42]. In the first step, we
evaluate Eq. (43) in the saddle-point approximation using the
BBF formula for p(E,) to find

In Z/(B: Exer) ~ 5 +1In (ﬁ) —ps, (4D

¢ B 6a
where s = Ey — Ert + A. Choosing E..¢ sufficiently close to
the yet-to-be-determined ground-state energy Ey, we calculate
In Z/(B; Erer) from the SPA + RPA data and fit Eq. (47) to this
data at moderate temperatures (for which the BBF holds). This
yields the fitted parameters (&, §). In the second step, we use
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FIG. 1. The canonical entropy as a function of inverse temperature 8 for the even-mass samarium isotopes 48130-12.1349m For each
isotope, the SPA + RPA entropy (orange circles) is compared with the SMMC entropy (blue squares) and the HFB entropy (green dashed-dotted
lines). The error bars on the SMMC and SPA + RPA results are statistical errors due to the Monte Carlo sampling. The insets show an expanded

scale at large values of 8.

a fit function obtained by substituting the complete composite
formula pcomp(Ex) for p(Ey) in Egs. (43) and (44),

o0
InZ.(B; Exr) ~ In / AE, peomy(Ex)e ™ — B(Ey — Eng),
0

(48)
where a is fixed, A =5 — (Ep — Ewf), and the integral is
carried out numerically. Equation (48) depends on only two
parameters: Ey and Ej;, which we determine with a x 2 fit.

If the backshift parameter A is negative, we find that the
fitted value of E), is small, and the composite formula is
essentially equivalent to the BBF (46). In practice, we then use
pBBF instead of peomp in the second step of Eq. (48). We note
that for negative A, the BBF is well defined down to E, = 0.

IV. APPLICATION TO SAMARIUM ISOTOPES

Here, we apply the SPA + RPA method discussed in
Secs. II and III to a chain of samarium isotopes 43-13°Sm,
which describes the crossover from spherical to well-
deformed nuclei. We use a model space consisting of the
following orbitals: Og7/2, 1d5/2, 1d3/2, 2S1/2, Ohll/z, and 1f7/2
for pI'OtOIlS; 0]’11]/2, 0]’19/2, 1f7/2, 1f5/2, 2[)3/2, 2p1/2, Oi13/2, and
189> for neutrons. The selection of these orbitals is discussed
in Ref. [16]. The single-particle energies and wave functions
correspond to a Woods-Saxon central potential plus spin-
orbit interaction with the parameters described in Ref. [16].
The quadrupole interaction parameter in Eq. (10) is given
by x = kzxo, where o is determined self-consistently [57]
and k, is a renormalization factor accounting for core polar-
ization. The pairing strengths g,y = Y8, Where g, =
10.9/Z(N) MeV (Z and N are the total number of protons
and neutrons, respectively), and y is a renormalization factor.
ky and y are parametrized by

0.5
—1225(072 - — 2>
v ( (N —90) +5.3>

ky = 2.15 4 0.0025(N — 87), (49)

This parametrization is similar to the one used in the SMMC
calculations of Refs. [17,19], except that y is increased by

22.5% to account for the absence of higher-order multipoles
in the interaction.

In the SPA 4 RPA, we calculate the canonical energy E,
and heat capacity C with the Monte Carlo method described
in Sec. lIT A, using Egs. (37) and (41), respectively. We define
a sweep as an update of each of the four integration variables
x. For each 8 value, we initially carry out 50 sweeps to make
sure that the Monte Carlo walk is thermalized, i.e., the walk
has reached a representative region of the configuration space
according to the weight function W (x). We then calculate the
observables every 70 sweeps to ensure that their values are
sufficiently decorrelated. In the Supplemental Material repos-
itory, we show that these numbers of sweeps yield acceptable
thermalization and decorrelation [53]. We use ~1000-2000
samples per B value in the calculation of the observables.

From the energy E.(B), we calculate InZ.(8) using
Eqg. (39) and the canonical entropy S.(8) using Eq. (30). We
then calculate the state density from Eq. (29). The Monte
Carlo results and computer codes used to analyze them are
provided in the Supplemental Material repository [53].

Below, we compare the SPA 4+ RPA results with exact
(up to statistical errors) SMMC results and with mean-field
finite-temperature HFB results. In the SMMC, we calculate
the thermal canonical energy as the expectation value of the
Hamiltonian (H) for fixed proton and neutron numbers; for
details, see Ref. [20]. We also calculate the heat capacity using
the method of Ref. [58], which reduces significantly the statis-
tical errors. Using the canonical energy and heat capacity, we
obtain the entropy and state density using Egs. (30) and (29),
respectively.

For the finite-temperature HFB, we calculate the self-
consistent HFB solution at each temperature using the code
of Ref. [59], together with the particle-number-projected par-
tition function using the method of Ref. [60]. We then apply
Egs. (31), (30), and (29) to obtain, respectively, the energy,
entropy, and state density.

A. Even-mass samarium isotopes

In Fig. 1, we show the canonical entropy S, as a function
of inverse temperature f for the SPA + RPA (orange circles),
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TABLE I. The ground-state energies (in MeV) for the SMMC,
SPA + RPA, and HFB for '#%1°015%15%gm_The SPA + RPA esti-
mates are obtained with the partition function extrapolation method
described in Sec. III B, with errors arising from the x? fit to the
SPA + RPA partition function data. The SMMC values are obtained
by taking a weighted average of the thermal energies at large B
values.

SMMC SPA + RPA HFB

148Sm —234.180 + 0.016 —234.131 +0.021 —230.979
0§m  —254.019+0.014  —253.859+£0.015  —251.127
26m  —273.756 £0.010  —273.242 +£0.017  —271.153
154Sm —293.2924+0.010  —292.680 £0.017  —290.449

SMMC (blue squares), and HFB (green dashed-dotted lines)
for the even-mass samarium isotopes '48:150:152.154gm The
SPA + RPA entropies are shown up to values of 8 close to
the value above which the approximation breaks down. For
each of the isotopes, we find the SPA 4 RPA entropy to be in
excellent agreement with the SMMC entropy. The two kinks
in the HFB entropy for '*8Sm indicate the proton and neutron
pairing phase transitions, and the additional kink at lower g
for the other isotopes is due to the shape phase transition from
a spherical to a deformed mean-field solution.

At B values above the shape transition, the HFB entropy
significantly underestimates the SPA 4+ RPA and SMMC
entropies because the HFB does not describe the contribu-
tion of rotational bands that are built on intrinsic mean-field
band heads [48]. The SPA + RPA restores the rotational
symmetry that is broken in the HFB and thus reproduces
this rotational enhancement of the entropy. Furthermore, in
the pairing phase, the HFB entropy becomes unphysically
negative because of the inherent breaking of particle-number
conservation in the HFB approximation [60]. In contrast, the
SPA + RPA entropy remains non-negative (within statistical
errors) because the SPA 4 RPA repairs the intrinsic violation
of particle-number conservation. Finally, as the neutron num-
ber increases, the SPA 4+ RPA and SMMC entropies remain

TABLE II. The parameters obtained from the partition func-
tion extrapolation method discussed in Sec. IIIB applied to the
SPA + RPA. For “%130Sm, we used the composite formula (45) in
the second step of the fit, while for '32!%*Sm, we used the BBF (46).

a(MeV™h A (MeV) Ey (MeV)
148Sm 17.09 £ 0.11 1.07 £0.03 1.452
1508 18.28 + 0.06 0.62 +0.02 0.95
1528m 19.14 £+ 0.10 —0.17 £0.03
154Sm 18.89 £+ 0.13 —0.38 £ 0.03

nonzero to increasingly large values of §, indicating the pres-
ence of a rotational enhancement down to lower temperatures
in nuclei with larger deformation.

We used the partition function extrapolation method sum-
marized in Sec. IIIB to estimate the ground-state energy
from the SPA 4 RPA partition function above the breakdown
temperature of the approximation. For '*3159Sm, we used the
composite formula (45) in the second step of the fit, whereas
for '92154Sm the backshift parameter A is negative, and it
was simpler to use the BBF formula (46). In Table I, we
compare the SPA + RPA ground-state energy estimates to
the SMMC and HFB ground-state energies. We calculated the
SMMC ground-state energies by taking a weighted average
of the thermal energy at large B values (8 ~ 8-20 MeV™!).
Table I shows that the SPA + RPA misses at most ~600 keV
of ground-state correlation energy, whereas the HFB misses a
few MeV of correlation energy in each isotope. The agreement
between the SPA + RPA estimate and the SMMC ground-
state energy improves with decreasing deformation, and the
two agree with each other for the spherical isotope '“¥Sm. In
Table II, we show the parameters a, A, E of the state density
formulas obtained from the ground-state energy fits.

Using the corresponding ground-state energies in Table I,
we calculated the SMMC, SPA + RPA, and HFB state den-
sities for '48:150.152.134gm  Figure 2 shows these densities,
using a similar convention as in Fig. 1. In each isotope, the
SPA + RPA state density is in good agreement with the

1010 _

0 2 4 6

Ex (MeV) Ex (MeV)

8 1012 0 2 4 6 8 10 12

6 8 10 12
Ex (MeV)

FIG. 2. The state density p as a function of excitation energy E, for the even-mass samarium isotopes. The SPA + RPA state density
(orange circles) is compared with the SMMC density (blue squares) and the HFB density (green dashed-dotted lines) for each isotope. The
gray dashed lines show the composite formula (45) for *:1°Sm and the BBF (46) for '**!3*Sm, with the parameters from Table II (see text).
Experimental neutron resonance data (red triangles) and low-energy level counting data (black histograms) are also shown. The error bars

show statistical errors in the SPA + RPA and SMMC results.
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FIG. 3. The energy E (top panel) and excitation energy E, (bot-
tom panel) as functions of inverse temperature B for '>>Sm. The
SPA + RPA energies (solid orange circles) are compared with
the SMMC energies (solid blue squares) and HFB energies (green
dashed-dotted lines). The gray dashed-dotted line in the bottom panel
indicates the neutron separation energy S,.

SMMC state density. In contrast, the HFB state density signif-
icantly underestimates the SMMC and SPA + RPA densities.
As the neutron number increases, the enhancement of the
SMMC and SPA + RPA state densities over the HFB state
density persists to higher excitation energy. This enhance-
ment originates in the contribution of rotational bands that
are included in the SMMC and SPA + RPA densities but
are not described by the HFB approximation. We observe an
additional enhancement of the SPA + RPA and SMMC state

TABLEIIL. The ratios of the SMMC, SPA + RPA, and HFB state
densities to the state densities extracted from neutron resonance data
at the neutron separation energy S, for *5130:1528m_No experimental
value of Dy is available for *Sm.

Sy MeV) o™/ o o R e PR
148Sm 8.14 0.84 £+ 0.09 0.63 £+ 0.05 0.65
1598 m 7.99 1.02 £ 0.10 0.84 £+ 0.08 0.17
1528m 8.26 1.68 +0.16 2.00 £+ 0.34 0.14

densities over the HFB density at very low excitation energies,
which is due to the unphysical negative entropy in the pairing
phase of the HFB. This latter enhancement is particularly
apparent in the spherical nucleus “¥Sm.

In Fig. 2 we also show the phenomenological composite
or BBF state densities calculated with the parameters re-
ported in Table II. We find good agreement between these
fit parametrizations and the SPA 4 RPA state densities. This
agreement demonstrates that the partition function extrapola-
tion method to extract the ground-state energy described in
Sec. III B is reliable.

It is worth considering how the differences between the
ground-state energies of the SPA 4+ RPA and SMMC af-
fect the agreement between their state densities. Despite the
discrepancies between the SPA + RPA and SMMC ground-
state energies (up to ~600 keV in '*Sm), we find that the
SPA + RPA excitation energies are in good agreement with
the SMMC excitation energies as functions of temperature.
Because the SPA + RPA entropies agree well with the SMMC
entropies for the even-mass samarium isotopes (see Fig. 1),
the SPA + RPA state densities ultimately agree well with the
SMMC densities. We note that a similar effect occurs in the
HFB approximation. The HFB ground-state energies differ
from their SMMC values by a few MeV, but the systematic de-
viations of the HFB state densities from the SMMC densities
are smaller than these large ground-state energy differences
would suggest due to the good agreement between the HFB
and SMMC excitation energies as functions of temperature.
We show typical results for >Sm in Fig. 3, in which we
compare the absolute energies (top panel) and excitation en-
ergies (bottom panel) calculated in the HFB, SPA + RPA and

10?5

A4 1485m 1SOSm 1|‘ lSZSm 154Sm

5 ‘Il 1 wlng nf

(O] Il ¢ 5 88y

GE) 101? ‘;+ '{ﬂ | *ﬁm!-.‘“."- ] *'ﬁiﬁm o,

2 i gL g

5 \. b

g ...I
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FIG. 4. The enhancement factor K = p/pygg for the SPA 4+ RPA (orange circles), the SMMC (blue squares), and the neutron resonance
data (red triangles) for the even-mass samarium isotopes. The error bars indicate statistical errors from the Monte Carlo sampling.
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FIG. 5. The canonical entropy as a function of inverse temperature 8 for the odd-mass samarium isotopes '4%131:133-155§m_The SPA 4+ RPA
entropy (orange circles) is compared with the SMMC entropy (blue squares) for each isotope. The error bars show statistical errors arising

from the Monte Carlo sampling. The insets show an expanded scale at large values of 8.

SMMC. In this case, the agreement of both the SPA + RPA
and HFB excitation energies with the SMMC results (as a
function of B) is better than it is for the respective absolute
energies. Results for the other even-mass samarium isotopes
are provided in the Supplemental Material repository [53].
The systematic error inherent in the partition function extrap-
olation method will be investigated in detail in Ref. [42].

In Fig. 2 we also compare the calculated state densities
with experimental state densities obtained from level counting
at low excitation energies [61] (black histograms) and the
average s-wave neutron-resonance spacings Dy at the neutron
separation energy S, [62] (red triangles). We used a spin cutoff
model [63,64] with rigid-body moment of inertia to convert
Dy values to state densities. The agreement between the exper-
imental data and the SPA + RPA and SMMC state densities
is good overall, in particular for 48159Sm_ In 152154Sm, the
calculated densities overestimate the experimental data. In
contrast, the mean-field HFB densities do not agree well with
the experimental data.

To make the comparison between the theoretical and exper-
imental state densities more quantitative, we show in Table III
the ratios of the theoretical state densities to their experimental
values at the neutron separation energy S, for '48150:152§m
In each case, the theoretical values for the state densities (in-
cluding their statistical errors in the SMMC and SPA + RPA)
are obtained by interpolating from the excitation energies
closest to S,. For 154Sm, the experimental value at the neu-

tron separation energy is unavailable. The SMMC provides
the best agreement with the experimental values and is in
particularly close agreement with experiment for '*°Sm. The
SPA + RPA provides somewhat less good agreement but is
within a factor of two for all cases. The HFB is comparable to
the SPA + RPA for '*8Sm but significantly underestimates the
experimental state densities in the more deformed samarium
isotopes because this mean-field method does not include
rotational correlations. The better performance of the HFB in
148Sm results from the fact that the neutron separation energy
is above the pairing phase transition in this nucleus (see the
left-most panel of Fig. 2).

To demonstrate even more clearly how well the
SPA + RPA describes correlations that are missing in the
mean-field approximation, we show in Fig. 4 the state den-
sity enhancement factor K = p/pypg for the SMMC (blue
squares) and SPA + RPA (orange circles). The SPA + RPA
enhancement factors are in good agreement with the SMMC
enhancement factors. In the spherical nucleus *¥Sm, the en-
hancement factor differs significantly from one only at the
lowest excitation energies and is due entirely to the unphys-
ical negative entropy in the pairing phase of the HFB. In
the deformed isotopes '2*132134Sm, a significant rotational
enhancement of ~10 appears and persists to increasing exci-
tation energy as the neutron number increases. This change in
the enhancement factor indicates the crossover from pairing-
dominated to rotational collectivity in the chain of samarium

TABLE IV. Ground-state energies E, and a, A values from fitting the BBF (46) to the SPA + RPA and SMMC excitation partition

functions for the odd-mass samarium isotopes.

Ey (MeV) a(MevV™) A (MeV)
1998 m SPA + RPA —242.957 + 0.008 18.36 + 0.04 —0.13+0.01
SMMC —243.327 £ 0.019 17.97 £ 0.04 —0.04 £0.02
151§ m SPA + RPA —262.913 &+ 0.006 19.24 £ 0.07 —0.39 +0.02
SMMC —262.909 + 0.047 18.63 £ 0.06 —0.77 £ 0.05
1538m SPA + RPA —282.384 + 0.005 19.57 £0.12 —0.84 +0.02
SMMC —282.449 + 0.031 18.78 +0.09 —1.25+0.05
1558m SPA + RPA —301.949 £ 0.003 19.07 £0.12 —1.00 +0.03
SMMC —302.077 £+ 0.021 18.27 +0.10 —1.39 4+ 0.04
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FIG. 6. The state density p as a function of excitation energy E, calculated with the SPA 4 RPA (orange circles) and SMMC (blue squares)
for the odd-mass samarium isotopes '#13!:15%:155§m_The BBF calculated with parameters obtained from fitting the SPA 4+ RPA ground-state
energies (gray dashed lines) and fitting the SMMC ground-state energies (black dotted lines) are also shown. Experimental neutron resonance
data (red triangles) and low-energy level counting data (black histograms) are shown as well.

isotopes [17,40,41]. Figure 4 also shows that the SPA + RPA
and SMMC results are in good agreement with the neutron
resonance data (red triangles) in '*3159Sm. The calculated
enhancement factors somewhat overestimate the neutron res-
onance data in >?Sm.

B. Odd-mass samarium isotopes

Having established the accuracy of the SPA + RPA state
densities for the even-mass samarium isotopes, we next
benchmark the SPA + RPA state densities for the odd-mass
samarium isotopes '4%151:153:1559m In Fig. 5, we compare
the SPA + RPA canonical entropy (orange circles) with the
SMMC canonical entropy (blue squares) for the odd-mass iso-
topes. In each isotope, the SPA 4 RPA entropy is in excellent
agreement with the SMMC entropy. The odd-mass sign prob-
lem leads to large fluctuations of the SMMC entropy at high
values of 8, as is shown in the insets of Fig. 5. The SPA + RPA
entropy remains reliable to slightly lower temperatures than
the SMMC entropy. Both the SPA + RPA and SMMC en-
tropies appear to converge to a nonzero limit, indicating the
magnetic degeneracy of the nonzero-spin ground state of the
odd-mass system.

The projection on the odd number of neutrons introduces
a Monte Carlo sign problem in the SMMC at low tempera-
tures [20,54] that prevents the ground-state energy from being
calculated directly. To obtain the SMMC and SPA 4 RPA
state densities as functions of excitation energy, we used the
partition function extrapolation method, which is summarized
in Sec. III B, to determine the ground-state energies Ej in both
approaches. We used the BBF (46) in the second step of the

TABLE V. The ratios of the SMMC and SPA + RPA state den-
sities to the state densities extracted from neutron resonance data at
the neutron separation energy S, for 14%131:153:155g

Sy (MeV) P/ ot Pra T ot
1498m 5.87 0.60 + 0.08 0.93 +0.08
151§ m 5.60 0.81 +0.09 0.65 £ 0.06
153Sm 5.87 2.69 £+ 0.28 2.25+0.29
155Sm 5.81 4.8440.54 4.16 +0.65

fits. Table IV shows the extracted values of Ey and the BBF
state density parameters a, A for the SMMC and SPA + RPA.
The agreement between the SMMC and SPA 4 RPA ground-
state energy estimates is even better than for the even-mass
isotopes, with the largest discrepancy of ~300 keV in “*Sm.

In Fig. 6, we compare the state densities calculated with the
SMMC (blue squares) and SPA + RPA (orange circles) and
find them to be in good agreement with each other. We also
show available experimental data from level counting [61]
(black histograms) and the average s-wave neutron resonance
spacings [62] (red triangles). The agreement between the cal-
culated and experimental state densities degrades somewhat
as the neutron number increases. These results are similar to
those obtained in Ref. [19] using an interaction that included
contributions from higher-order multipoles. We also show in
Fig. 6 the BBF state densities calculated with the parameters
tabulated in Table IV. These fitted BBF densities are in good
agreement with the calculated state densities.

In Table V, we show the ratios of the SMMC and
SPA + RPA state densities to the experimental state densities
at the neutron separation energy. The SPA + RPA and SMMC
exhibit similar agreement with experiment, but both signifi-
cantly overestimate the experimental values for '33!3Sm.

V. CONCLUSION AND OUTLOOK

Here we benchmarked state densities calculated with the
SPA + RPA in the CI shell-model framework against exact
(up to controllable statistical errors) SMMC state densities for
a chain of samarium isotopes **>>Sm. We implemented a
Monte Carlo method to calculate the canonical energy and
heat capacity in the SPA 4+ RPA, from which we determined
the canonical entropy and state density. The SPA + RPA
ground-state energy was estimated from the excitation parti-
tion function above the SPA + RPA breakdown temperature
using the partition function extrapolation method [42].

We found good agreement between the SPA + RPA state
densities and SMMC state densities for all the isotopes consid-
ered. For the even-mass samarium isotopes, we also calculated
mean-field state densities using the finite-temperature HFB
approximation. The main deficiencies of the mean-field ap-
proximation arise from the broken rotational symmetry in
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deformed nuclei and the inherent violation of particle-number
conservation in the pairing condensate. Consequently, the
mean-field approximation cannot reproduce the contribution
of rotational bands that are characteristic of deformed nuclei
and yields an unphysical negative entropy in the pairing phase
of the HFB. The SPA + RPA resolves these deficiencies
of the mean-field approximation. In particular, it reproduces
well the rotational collective enhancement of the state density
relative to the mean-field density in deformed nuclei. This
enhancement persists to higher excitation energies as the neu-
tron number increases, demonstrating that the importance of
rotational collectivity increases with deformation. Overall, our
results show that the SPA + RPA provides state densities in
the CI shell-model framework that are in agreement with exact
SMMC densities.

A significant limitation of the SPA 4 RPA method is the
computational cost of diagonalizing the RPA matrix at each
sampled configuration of the static fields. The dimension of
the RPA matrix scales as %Nip + N?, [where N; , (Ny,) is
the number of proton (neutron) single-particle states], and the
cost of diagonalizing this matrix scales as the cubic power
of this dimension.” Calculating the canonical energy and heat
capacity in the SMMC scales as a lower power of the number
of single-particle states, specifically as ~Nf for each particle
species. It would therefore be useful to investigate methods
for speeding up the calculation of the RPA correction factor.
One such method was proposed in Ref. [65].

In comparing the SPA + RPA to the SMMC, it is also use-
ful to consider the limits of the applicability of each method.
The SPA 4+ RPA method requires that the single-particle
Hamiltonian A, in Eq. (3) be a Hermitian operator for any
configuration o of the static auxiliary fields. This condition
is guaranteed if all terms in the Hamiltonian are attractive
when written in the separable form OAi of Eq. (1), where each
operator O, is Hermitian. Moreover, this condition guarantees
that, at temperatures above the breakdown temperature of

7For the case considered here, calculating the RPA correction factor
C,(x) takes ~3 minutes on a standard laptop (2 GHz Intel Core i5
MacBook Pro with 32 GB of RAM) and must be calculated three
times per Monte Carlo sample due to the finite-difference calculation
of the energy and heat capacity.

the SPA + RPA, the weight function W (o) of the Monte
Carlo method discussed in Sec. III A and the RPA correction
factor C, (o) are both real and positive for any static field
configuration o. Consequently, W (o) can be used as a weight
function to sample the static fields, and the Monte Carlo
method described in Sec. III A will not have a sign problem. In
contrast, for the SMMC method to have a good Monte Carlo
sign, the Hamiltonian must be invariant under time reversal,
and all of its interaction terms must be attractive when written
as a sum over terms of the form {O,, O,} where O, is the
time reverse of O, [20-22]. It can be shown that the time-
reversal and Hermitian conjugate of a tensor one-body density
operator are related by a sign. Thus, in some cases, either the
SPA + RPA or SMMC would have a good sign while the
other method would have a sign problem, and the two methods
would complement each other. Furthermore, the SPA + RPA
can be applied if time-reversal symmetry is broken, e.g., in the
presence of a cranking term —a)fi (i = x,y, z), which would
cause a sign problem in the SMMC.

A method for approximately including repulsive interac-
tions in the SPA + RPA framework was proposed in Ref. [43].
It would be interesting to benchmark this method for realistic
nuclear interactions that include repulsive components.

Finally, statistical reaction codes require as input spin-
and parity-dependent level densities, rather than just state
densities. To calculate these level densities, it is necessary to
extend the SPA 4 RPA formalism to include spin and parity
projections.
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