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Baryonic matter and the medium modification of the baryon masses
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We investigate the properties of baryonic matter within the framework of the in-medium modified chiral
soliton model by taking into account the effects of surrounding baryonic environment on the properties of in-
medium baryons. The internal parameters of the model are determined based on nuclear phenomenology at
nonstrange sector and fitted by reproducing nuclear matter properties near the saturation point. We discuss the
equations of state in different nuclear environments such as symmetric nuclear matter, neutron, and strange
matters. We show that the results for the equations of state are in good agreement with the phenomenology of
nuclear matter. We also discuss how the SU(3) baryons masses undergo changes in these various types of nuclear
matter.
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I. INTRODUCTION

It is of paramount importance to understand how the
masses of hadrons undergo changes in nuclear medium, since
it is deeply rooted in the restoration of chiral symmetry and
even the quark confinement in quantum chromodynamics
(QCD) [1–4]. As discussed in Ref. [1], the chiral condensate
is known to be modified in nuclear matter, which reveals the
mechanism as to how the spontaneous broken chiral symmetry
is restored as the nuclear density increases. This also implies
the changes of hadron masses in it, since the dynamical quark
mass arises as a consequence of the spontaneous breakdown
of chiral symmetry. Thus, understanding the medium modifi-
cation of the nucleon mass has been one of the most significant
issues well over decades [5]. Experimental data also indicate
that the nucleon is modified in nuclei [6–11]. This means that
other baryons may also undergo changes in nuclear medium
[12–18]. When one considers the medium modification of
baryons, one should keep in mind that nuclear matter itself
is also affected self-consistently by the changes of baryons.
However, it is very difficult to relate the medium modifica-
tion of baryons to nuclear medium consistently, even in the
isolated case of normal nuclear matter.

In the present work, we investigate the medium modifi-
cation of the low-lying SU(3) baryons in symmetric matter,
asymmetric matter, neutron matter, and strange baryonic mat-
ter consistently, based on a pion mean-field approach [19].
The general idea is based on the seminal paper by Witten
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[20,21]. In the large Nc (the number of colors) limit, the
nucleon can be viewed as a state of Nc valence quarks bound
by the meson mean fields that is produced self-consistently
by the presence of the Nc valence quarks, since the mesonic
quantum fluctuations are suppressed by the 1/Nc factor. This
approach has been successfully applied for describing the
various properties of both light and singly heavy baryons
in a unifying manner [22–31]. The main idea of the pion
mean-field approach is not to compute dynamical parameters
within the chiral quark-soliton model [19,32], which realizes
the pion mean-field approach explicitly, but to fix all relevant
dynamical parameters by using the experimental data. For
example, the masses of the baryon decuplet can be predicted
by using the experimental data on those of the baryon octet
and the mass of the � baryon [23]. Actually, this method was
already used in the Skyrme model long time ago [33].

The pion mean-field approach can be also extended to
the description of light and singly heavy baryons in nuclear
medium. However, since the model is based on the quark
degrees of freedom, one should consider the quark chemical
potential [34], which means that it is rather difficult to connect
the results from this approach directly to the properties of the
baryons in nuclear matter. Thus, we will follow a variational
approach that was adopted in the medium modified Skyrme
models [35,36]. In these modified Skyrme models various
properties of the nucleon and � isobar have been described
in nuclear matter [36–39], and in finite nuclei [40–42]. The
model enables one also to investigate nuclear matter proper-
ties [43–45].

Thus, we will show in this work how the pion mean-
field approach can be extended to the investigation of the
SU(3) baryon properties in both nuclear and strange bary-
onic environments. This can be achieved by introducing the
density-dependent functionals as variational parameters. The
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density functionals will be parametrized and fitted completely
in the SU(2) sector by taking into account available experi-
mental and empirical data, the linear-response approximation
being emphasized. This enables us to describe the strange
baryonic matter and properties of baryons in different me-
dia (isospin symmetric, asymmetric, and strange baryonic
matter).

The present paper is organized as follows. In Sec. II, we
briefly review the pion mean-field approach, discussing the
collective Hamiltonian and SU(3) baryon states in free space.
Then we will proceed to consider a possible modification of
the model to take into account the influence of the surrounding
baryon environment on the properties of a single baryon in
medium. In Sec. III, we discuss the results for the binding
energy in symmetric matter and determine the variational
parameters. The discussion of the properties of baryons in
nuclear and strange nuclear matter will be followed in Sec. IV.
We will also show how to fit the remaining part of the pa-
rameters. Then, we are able to discuss the properties of an
arbitrary baryonic matter and the numerical results for the
medium modifications of SU(3) baryons. Section V is devoted
to the summary and conclusion of the present work and will
give an outlook for future investigations. Some details of the
model are compiled in the Appendix.

II. GENERAL FORMALISM

In the pion mean-field approach, the dynamics of the va-
lence and sea quarks generates the chiral-quark soliton with
hedgehog symmetry [21,46–48]. Hedgehog symmetry can be
regarded as the minimal generalization of spherical symmetry,
which can keep the pion mean fields effectively [48]. We are
able to derive the effective collective Hamiltonian by consid-
ering the zero-mode quantization with hedgehog symmetry,
taking into account the rotational 1/Nc corrections and the
strange current-quark corrections from the explicit breaking
of flavor SU(3) symmetry. Note that in the present approach
the presence of Nc valence quarks constrains the right hyper-
charge Y ′ = Nc/3, which picks up safely the lowest allowed
representations such as the baryon octet (8) and decuplet
(10). However, Y ′ is constrained by the Wess-Zumino-Witten
term in the SU(3) Skyrme model [49–51]. In this section,
we will directly start from the collective Hamiltonian. For a
detailed derivation, we refer to Ref. [52] (see also a review in
Ref. [32]).

A. Pion mean-field approach

A pion mean-field approach, which is also called the chiral
quark-soliton model, is based on the effective chiral action

Seff = −NcSp ln(i/∂ + iMU γ5 + im̂), (1)

where Sp represents the functional trace over the four-
dimensional Euclidean, spin, and flavor spaces. M stands for
the dynamical quark mass that arises from the spontaneous
breakdown of chiral symmetry. m̂ designates the mass matrix
of the current quarks m̂ = diag(mu, md, ms). We often write
the mass matrix of the quarks in terms of the unity and Gell-

mann matrices

m̂ = m01 + m3λ3 + m8λ8, (2)

where

m0 = mu + md + ms

3
,

m3 = mu − md

2
,

m8 = mu + md − 2ms

2
√

3
. (3)

Since we consider the isospin asymmetry in the present work,
we need to include m3. We will treat m̂ as a perturbation to the
first order. The U γ5 denotes the chiral field that is defined by

U γ5 (r) = exp[iπaλaγ5] = 1 + γ5

2
U + 1 − γ5

2
U †. (4)

The pseudo-Goldstone field πa(r) has flavor indices a =
1, · · · N2

f − 1. Since we consider here the flavor SU(3) sym-
metry, we have Nf = 3. In flavor SU(2) symmetry (Nf = 2),
the three components of the pion field are coupled with the
axes of the three-dimensional Euclidean space. This is often
called the hedgehog ansatz and is also called hedgehog sym-
metry [21,46–48]. Thus, the pion field in SU(2) is expressed
as

πa(r) = naP(r), na = xa

r
, (5)

with r = |x|. P(r) is called the profile function for the soliton.
In SU(3), we keep this hedgehog ansatz by the trivial embed-
ding [21], so that the U field is expressed as

U (x) = exp(iπaλa) =
(

exp[i(n · τP(r)] 0

0 1

)
. (6)

In fact, the symmetry of hedgehog ansatz imposes properly
certain restrictions on the sytmmetry of the SU(3) soliton
such that the spectrum of SU(3) baryons is correctly described
[32,51,52]. P(r) is called the profile function of the chiral
soliton.

In the present pion mean-field approach, a baryon is viewed
as a state consisting of the Nc valence quarks bound by
the pion mean fields. This mean fields are created by the
presence of the Nc valence quarks and interact with them
self-consistently. Computing the baryonic correlation function
in the large Euclidean time, we can derive the classical mass
of the baryon. In fact, this mass is given as a functional of
the chiral field. By minimizing this functional with respect
to the profile function, we derive the equation of motion. We
can solve it in a self-consistent manner, which can be found
in Ref. [32] for technical details, we obtain the minimized
classical mass and the profile function P(r). The Ucl(x) with
P(r) is called the chiral soliton or the hedgehog soliton. How-
ever, since we take in the present work a “model-independent
approach”, we will not carry out the self-consistent calculation
in the model. We will rather fix all the dynamical parame-
ters by using the physical spectrum of the low-lying SU(3)
baryons.

The mean-field solution or the classical solution Ucl(x) cor-
responds to the minimized classical nucleon that is required
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to be quantized. Ucl(x) is not invariant under translation and
rotation. This means that the soliton does not have proper
quantum numbers to be a physical baryon. Thus, we perform
the semiclassical quantization for the chiral soliton. We rotate
Ucl(x) both in usual three-dimensional and flavor spaces in
such a way that the classical mass remains unchanged. This
is also called the zero-mode quantization. The axes of the
three-dimensional space undergo the transformation as

xi → Oi jx j . (7)

This orthogonal matrix Oi j can be represented in terms of the
SU(2) matrix S and Pauli matrices

Oi j = 1
2 Tr(SτiS

†τ j ). (8)

Then Ucl (x) is transformed as

exp[i(n′ · τ)P(r)] = S exp[i(n · τ )P(r)]S†. (9)

This leads to the expression for the transformed Ucl both in
usual three-dimensional and flavor spaces,

RUcl(Ox)R† = R

(
Sei(n·τ)P(r)S† 0

0 1

)
R†, (10)

where R is the matrix in SU(3) flavor space. Note that there
are seven zero modes in flavor SU(3) case, since the rotation
with λ8 commutes with Sei(n·τ )P(r)S†. In fact, this gives a
constraint on the quantization, so that the right hypercharge
YR is constrained to be

YR = −Nc

3
(11)

by the Nc valence quarks. In the Skyrme model, this is
constrained by the Wess-Zumino term. This procedure of
the zero-mode quantization yields the collective Hamiltonian,
which we will discuss in the next subsection.

B. Collective Hamiltonian and Baryon states

If we consider both the explicit breakdowns of flavor SU(3)
symmetry and isospin symmetry, we have four different con-
tributions to the collective Hamiltonian, given as follows:

H = Mcl + Hrot + Hsb + Hem, (12)

where Mcl, Hrot, and Hsb denote, respectively, the classical
soliton mass, the 1/Nc rotational and symmetry-breaking cor-
rections including the effects of isospin and flavor SU(3)f

symmetry breakings [23,53]. The last term Hem stands for
the term arising from the isospin symmetry breaking caused
by the electromagnetic self-energies [22]. We can neglect the
modification of the electromagnetic self-energies in nuclear
matter [42]. The classical energy arises from the Nc valence
quarks in the pion mean fields and the sea quarks coming
from the vacuum polarization in the presence of the Nc valence
quarks: Ecl = NcEval + Esea. By minimizing Ecl with respect
to the pion fields, we get the pion mean-field solution self-
consistently, which yields the classical soliton mass Mcl.

The rotational 1/Nc corrections, i.e., Hrot, can be derived by
the zero-mode collective quantization, since the zero modes
are not at all small, one should take into account them com-
pletely. Regarding the angular velocities of the chiral soliton

as small parameters, we can expand the quark propagator
perturbatively in terms of the angular velocities, we find the
rotational 1/Nc term Hrot as

Hrot = 1

2I1

3∑
i=1

Ĵ2
i + 1

2I2

7∑
p=4

Ĵ2
p . (13)

This Hamiltonian depends on two moments of inertia I1,2 and
expressed in terms of the operators Ĵi corresponding to the
generators of the SU(3) group. I1 and I2 give the splitting
between different representations of the SU(3) group. The
symmetry breaking part of the Hamiltonian has the following
form:

Hsb

= (md − mu)

(√
3

2
α D(8)

38 (A) + β T̂3 + 1

2
γ

3∑
i=1

D(8)
3i (A)Ĵi

)

+ (ms − m̄)

(
α D(8)

88 (A) + β Ŷ + 1√
3
γ

3∑
i=1

D(8)
8i (A)Ĵi

)
,

(14)

where α, β, and γ depend on the moments of inertia that are
expressed as

α = −
(

2

3

�πN

mu + md
− K2

I2

)
,

β = −K2

I2
, γ = 2

(
K1

I1
− K2

I2

)
. (15)

Here K1,2 represent the anomalous moments of inertia of the
soliton. mu, md, and ms denote the current-quark masses of the
up, down, and strange quarks, respectively. The m̄ designates
the average current-quark mass of the up and down quarks.
The D(R)

ab (A) indicate the SU(3) Wigner D functions in the
representation R. The Ŷ and T̂3 are the operators of the hyper-
charge and the third component of the isospin, respectively.

In the representation (p, q) of the SU(3) group, the sum of
the generators can be expressed in terms of p and q,

8∑
i=1

J2
i = 1

3
[p2 + q2 + p q + 3(p + q)], (16)

which yields the eigenvalues of the rotational collective
Hamiltonian Hrot in Eq. (15) as follows:

E(p, q), J = 1

2

(
1

I1
− 1

I2

)
J (J + 1) − 3

8I2

+ 1

6I2
[p2 + q2 + 3(p + q) + p q]. (17)

A corresponding eigenfunction is called the collective wave
function for a SU(3) baryon with the quantum numbers of
flavor F = (Y, T, T3) and spin S = (Y ′, J, J3),

ψ (R)
B

(A) =
√

dim(R)(−1)J3+Y ′/2D(R)∗
FS (A), (18)

where D(R)∗
FS are again the Wigner D functions in a represen-

tation R and dim(R) designates the corresponding dimension
of the representation R.
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Knowing the eigenvalues and eigenfunctions of the SU(3)
baryon states, we can get their masses of which the explicit
forms are presented in the Appendix. For a detailed formalism
relating to the collective Hamiltonian and baryon states, we
refer the reader to Ref. [23], where all dynamical parameters
such as I1, I2, K1, K2, α, β, and γ are determined by using
the experimental data in a “model-independent way,” so that
we can avoid a specific dynamics of the chiral soliton models.
We now turn to how the model can be extended to nuclear
medium.

C. Solitons in nuclear matter

Since we have determined all the dynamical parameters
by incorporating experimental information, we will follow the
same strategy also in nuclear matter. We will fix the density-
dependent variational parameters by using the experimental
and empirical data on the properties of nuclear matter. So,
we start from the average energy E∗ per baryon in a baryonic
system1

E∗

A
= ZM∗

p + NM∗
n + ∑3

s=1 NsM∗
s

A
, (19)

where Z and N are the numbers of protons and neutrons, re-
spectively, and Ns is the corresponding number of the strange
baryons with the corresponding strangeness S, s = |S|. A
stands for the total number of the baryons A = Z + N + N1 +
N2 + N3. Having carried out a simple manipulation, we can
rewrite E∗/A as

E∗

A
= M∗

N

(
1 −

3∑
s=1

δs

)
+ 1

2
δM∗

np +
3∑

s=1

δsM
∗
s , (20)

where M∗
N = (M∗

p + M∗
n )/2 denotes the average mass of nu-

cleons, M∗
np = M∗

n − M∗
p designates the mass difference of

the neutron and the proton in medium. In addition, we in-
troduce the parameter for isospin asymmetry δ = (N − Z )/A.
δs = Ns/A represents the parameter for the strangeness frac-
tion with the corresponding value of subscript s. We can take
s = 1, 2, or 3, depending on the hyperons with strangeness S
we put.

The binding energy per baryon in a baryonic matter can be
defined as the difference of the medium average energy per
baryon E∗/A and the energy per baryon E/A for the noninter-
acting baryonic system. If one takes the number of the baryons
to be infinity, which we can call it the infinite baryon-matter
approximation, then we express the binding energy per baryon
in terms of the following external parameters: a normalized
baryonic density λ = ρ/ρ0, the isospin asymmetry parameter
δ, and the strangeness fraction parameter δs with given s.

1Asterisks “∗” in the superscripts denote in-medium modified
quantities.

Consequently, the binding energy is then written as

ε(λ, δ, δ1, δ2, δ3) = E∗(λ, δ, δ1, δ2, δ3) − E

A

= �MN (λ, δ, δ1, δ2, δ3)

(
1 −

3∑
s=1

δs

)

+ 1

2
δ �Mnp(λ, δ, δ1, δ2, δ3)

+
3∑

s=1

δs�Ms(λ, δ, δ1, δ2, δ3), (21)

where �MN = M∗
N − MN denotes the isoscalar mass change,

whereas �Mnp = M∗
np − Mnp stands for the neutron-proton

mass change in nuclear medium. They are explicitly expressed
in terms of the in-medium modified functionals of the chiral
soliton

�MN = M∗
cl − Mcl + E∗

(1,1)1/2 − E(1,1)1/2

− D∗
1 − D∗

2 + D1 + D2, (22)

�Mnp = d∗
1 − d∗

2 − d1 + d2, (23)

where the explicit expressions for D1,2 and d1,2 in free space
are given in the Appendix [see Eqs. (A9)–(A12)]. D1,2 rep-
resent the linear ms corrections of flavor SU(3) symmetry
breaking whereas d1,2 denote the effects of isospin symmetry
breaking. They are related to the model functionals to be
discussed below through α, β, and γ defined in Eq. (15). Note
that for the mass differences of the hyperons �Ms = M∗

s − Ms

(s = 1, 2, 3) we have the different expressions for the baryon
octet and decuplet. For the moment, let us concentrate on the
strange baryonic medium made of the hyperons in the baryon
octet as in the case of the nonstrange baryons. Thus, we adopt
the following expressions for �Ms:

�M1 = M∗
� + M∗

�

2
− M� + M�

2
= M∗

cl − Mcl + E∗
(1,1)1/2 − E(1,1)1/2, (24)

�M2 = M∗
� − M�

= M∗
cl − Mcl + E∗

(1,1)1/2 − E(1,1)1/2 + D∗
2 − D2, (25)

�M3 = 0. (26)

We now discuss how we can modify the dynamical param-
eters of the pion mean-field approach in nuclear medium. We
follow the strategy presented in Refs. [44,45] and assume that
the dynamical parameters discussed in Subsection II B, i.e.,
Mcl, I1,2 and K1,2/I1,2, will be modified as follows:

Mcl → M∗
cl = Mcl fcl(λ, δ, δ1, δ2, δ3), (27)

I1 → I∗
1 = I1 f1(λ, δ, δ1, δ2, δ3), (28)

I2 → I∗
2 = I2 f2(λ, δ, δ1, δ2, δ3), (29)

(md − mu)
K1,2

I1,2
→ E∗

iso

= (md − mu)
K1,2

I1,2
f0(λ, δ, δ1, δ2, δ3), (30)
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(ms − m̄)
K1,2

I1,2
→ E∗

str

= (ms − m̄)
K1,2

I1,2
fs(λ, δ, δ1, δ2, δ3), (31)

where fcl, f0,1,2, and fs represent the functions of nuclear
densities for nuclear medium. We will parametrize them based
on information about nuclear matter in the next section. One
should keep in mind that in general one can consider density
dependencies in a different manner, depending on the isospin
splitting and the mass splittings in different representations
[see Eqs. (30) and (31)]. As mentioned previously, we assume
that the electromagnetic corrections to the neutron-proton
mass difference is only weakly affected by nuclear medium.
So, we will not consider them in the present work. We ignore
also the effects of isospin symmetry breaking coming from
baryons on the binding energy except for the nucleons, as-
suming the small strangeness fraction up to normal nuclear
matter densities.

III. NUCLEAR PHENOMENOLOGY

In the present section, we will discuss the results related to
symmetric nuclear matter, isospin asymmetric nuclear matter,
and more general baryonic matter, one by one. We first start
with ordinary symmetric nuclear matter.

A. Symmetric nuclear matter

We first consider isospin symmetric and nonstrange ordi-
nary nuclear matter with the external parameters δ = 0 and
δs = 0. Then we can parametrize the density functions such
as fcl, f1 and f2. In consequence, we are able to determine the
values of the corresponding parameters phenomenologically.
For example, they are related to the properties of isospin-
symmetric nuclear matter near the saturation point, i.e., at
the normal nuclear matter density ρ0 ∼ (0.16–0.17) fm−3. We
remind that in the case of isospin-symmetric nuclear matter
the binding energy per unit volume is given by

E ≡ εV (ρ)
A

V
= ρ0λ εV (λ). (32)

Following the ideas presented in Refs. [44,45], we choose
the parametrization of the three medium functions fcl, f1, and
f2, which are independent of the asymmetry parameter δ and
the strangeness fraction parameters δs. Furthermore, we will
parametrize them for simplicity in a linear density-dependent
form

fcl(λ) = (1 + Cclλ), f1,2(λ) = (1 + C1,2λ). (33)

It is enough to employ this linear-density approximation,
since the equations of state (EoS) for nuclear matter are
well explained. However, if the density of nuclear matter
becomes larger than the normal nuclear matter density, then
one may need to consider higher-order corrections to the
parametrization we use. Nevertheless, we will compute the
baryon properties as functions of the nuclear matter density up
to 3ρ0 to see how far the linear-density approximation works
well.

The properties of symmetric nuclear matter near the satura-
tion point can be related to the isoscalar nucleon mass change
in the nuclear medium

εV (λ) = ε(λ, 0, 0, 0, 0) = �MN (λ). (34)

This implies that α, β, and γ will not be changed in symmetric
nuclear medium. We will see that they will come into play
when we consider asymmetric nuclear and strange baryonic
matter. Then we can easily obtain the following formula for
the density dependence of the volume energy

εV (λ) = MclCclλ − 3C1λ

8I1(1 + C1λ)
− 3C2λ

4I2(1 + C2λ)
. (35)

We now proceed to calculate the properties of nuclear mat-
ter near the saturation point λ = 1 by expanding the volume
energy with respect to the nuclear density. The expansion
coefficients have clear physical meanings related to the prop-
erties of nuclear matter at the saturation point. They are given
as follows:

aV = εV (1), P0 = ρ0λ
2 ∂εV (λ)

∂λ

∣∣∣∣
λ=1

,

K0 = 9λ2 ∂2εV (λ)

∂λ2

∣∣∣∣
λ=1

, (36)

where aV denotes the value of the volume energy, P0 stands
for that of the pressure, and K0 represents the compressibility
of nuclear matter at the saturation point. The value of the
coefficient of the volume term aV is well known from the
analysis of atomic nuclei according to the semi-empirical
Bethe-Weizsäker formula [54,55]. So, we choose the well-
known value aV = −16 MeV. The stability of nuclear matter
requires the zero value of the pressure P0 = 0 at the saturation
point. The compressibility of nuclear matter within various
approaches is found to be K0 ∼ (290 ± 70) MeV [56–61].
Based on a comprehensive reanalysis of recent data on the en-
ergies of the giant monopole resonance (GMR) in even-even
112−124Sn and 106,100−116Cd and earlier data on 58 � A � 208
nuclei in Ref. [62], the value of the compressibility can be
taken to be K0 ∼ (240 ± 20) MeV [63]. Following this analy-
sis, we choose K0 = 240 MeV in the present work. Thus, the
three parameters in the density functions given in Eq. (33) can
be fitted to be

Ccl = −0.0561, C1 = 0.6434, C2 = −0.1218. (37)

Now we can predict the skewness of symmetric nuclear mat-
ter, which is defined from the fourth coefficient in the series
of the volume energy:

Q = 27λ3 ∂3εV (λ)

∂λ3

∣∣∣∣
λ=1

= −117

2

(
C3

1

(1 + C1)4I1
− 2C3

2

(1 + C2)4I2

)

= −182 MeV. (38)

The result is consistent with those from other model calcu-
lations. For example, one can find similar results from the
Hartree-Fock approach based on the Skyrme interactions [64]
and the isospin- and momentum-dependent interaction (MDI)
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model [65]. We want to emphasize that these coefficients in
the expansion of the volume energy can be used for under-
standing the properties of symmetric nuclear matter.

B. Asymmetric nuclear matter

Since the asymmetric nuclear matter arises from the
isospin symmetry breaking, Eq. (45) plays the key role in de-
scribing the asymmetric nuclear matter. Following the strategy
taken from Refs. [44,45], we find that the density function f0

can be defined as a function of the normalized density λ and
isospin asymmetry parameter δ in the following form:

f0(λ, δ) = 1 + Cnumλ δ

1 + Cdenλ
, (39)

where Cnum and Cden can be determined phenomenologically.
This parametrization is also chosen under the simple assump-
tion: that is, if δ is zero or ρ is zero, then the value of f0 is
equal to 1. Moreover, using the parametrized form given in
Eq. (39), one can see that various properties of asymmetric
nuclear matter are well described, e.g., the binding energy of
asymmetric nuclear matter will be given as a quadratic form
with respect to the asymmetry parameter δ.2

The nuclear symmetry energy is defined as the second
derivative of the binding energy with respect to δ:

εsym(λ) = 1

2!

∂2ε(λ, δ, 0, 0, 0)

∂δ2

∣∣∣∣
δ=0

. (40)

As in the case of the volume energy, we can expand εsym

around the saturation point λ = 1 as follows:

εsym(λ) = asym + Lsym

3
(λ − 1)

+ Ksym
(λ − 1)2

18
+ · · · , (41)

from which we obtain the value of the nuclear symmetry
energy at saturation point asym, that of its slope parameter
Lsym, and the asymmetric part of the compressibility Ksym.
They are explicitly written as

asym = − 9

20

Cnum(b − 7r/18)

(1 + Cden)
, (42)

Lsym = −27

20

Cnum(b − 7r/18)

(1 + Cden)2 , (43)

Ksym = 81CdenCnum(b − 7r/18)

10(1 + Cden)3
, (44)

where b = (md − mu)β and r = (md − mu)γ .
The value of the nuclear symmetry energy at the saturation

point is known to be in the range εsym(1) ∼ 30−34 MeV. So,
we can take the average value asym = 32 MeV. The correlation
between the value of the symmetry energy at the saturation
density and that of its slop parameter taken from the neutron
skip thickness experiments of 68Ni, 120Sn, and 208Pb indicates
the tendency that heavier the nucleus yields larger the value

2Note that there is another δ factor in Eq. (21).

TABLE I. Possible sets of the parameters for the symmetry energy.

asym [MeV] Lsym [MeV] Cnum Cden

Set I 32 60 65.60 0.60
Set II 32 50 78.72 0.92

of Lsym, which corresponds to that of asym [66]. As a result,
one can choose Lsym = 60 MeV for the asymmetric nuclear
matter. We mainly use these values of asym and Lsym in the
course of the present calculation, if it is not specified other-
wise.3 The empirical values of these two quantities will adjust
those of Cnum and Cden, respectively. To check the stability of
the present results for to neutron matter (δ = 1), however, we
have analyzed the different choices for the asym and Lsym with
small variations. Note that the results are very insensitive to
asym in the range of its values discussed above. Thus, we will
only show the variations of Lsym and the possible two choices
of Lsym in this work are listed in Table I. All the parameters
are actually fitted in this way in relation to nuclear matter
properties at the saturation density, so the present model can
be regarded as a simple model of nuclear matter with five pa-
rameters. Using the values of the parameters for the symmetry
energy listed in Table I, we are able to discuss the EoS for
asymmetric nuclear matter, extrapolating to the low and high
density regions, and to predict various properties of nuclear
matter. In particular, employing Set I, we can calculate the
third coefficient in the expansion of the symmetry energy,
which leads to Ksym = −135 MeV. The following quantities,
which are related to Ksym, can be also determined as

Kτ = Ksym − 6Lsym = −495 MeV,

K(0,2) = Kτ − Q

K0
Ls = −450 MeV. (45)

The calculated values of Kτ and K0,2 are in good agreement
with the results from other approaches. As an example, we
can compare the range of K0,2 value with that from the phe-
nomenological momentum-independent model −477 MeV �
K0,2 � −241 MeV [67].

Figure 1 draws illustratively the density dependence of
binding energy per nucleon, given the different values of the
asymmetry parameter δ. We find that the results are rather
stable to the change of values of the parameters asym and Lsym.
In particular, the present results change only slightly as the
values of Lsym are varied from 50 to 60 MeV.

It is natural that the neutron matter gets less bound rela-
tively to the symmetric matter, as already shown in Fig. 1.
The density dependence of the binding energy per nucleon in
symmetric matter and neutron matter are in agreement with
those from other models and phenomenological ones. In par-
ticular, it is consistent with Akmal-Pandharipande-Ravenhall
(APR) predictions [68] in the range of λ, where the simple
linear-density approximation is justified for the medium mod-
ification of the corresponding soliton functionals in nuclear
matter. As λ increases, the present EoS becomes stiffer such

3We will not use any other input data in the strangeness sector.
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FIG. 1. Binding energy per nucleon ε(λ, δ) ≡ ε(λ, δ, 0, 0, 0) as
a function of the normalized nuclear matter density λ = ρ/ρ0 in unit
of MeV. The blue solid curve depicts the symmetric matter δ = 0
whereas the red dot-dashed and green dashed curves illustrate those
of neutron matter δ = 1 for the possible two sets of symmetry energy
parameters, respectively. The present results are compared with those
given in APR predictions [68] that are given by the yellow circles and
boxes, respectively.

that one can get the larger masses of neutron stars than the
solar mass. However, as the density becomes higher than
λ = 2, the linear density approximation may not be enough,
which requires one to introduce higher-order nonlinear terms.

The nuclear symmetry energy plays a very important role
in understanding the EoS of nuclear matter and, in particu-
lar, of the neutron matter. Figure 2 exhibits how the nuclear
symmetry energy depends on λ. We present the results with
the two sets of the parameters asym and Lsym listed in Table I.
When the value of the slop parameter Lsym gets smaller, the

FIG. 2. Nuclear symmetry energy εsym(λ) as a function of the
normalized nuclear density λ = ρ/ρ0 in unit of MeV. The results
with the possible two sets of parameters for the symmetry energy are
represented by the red solid and green dashed curves, respectively.
The results are compared with those from Ref. [68], which are
marked by the blue circles and those from the IAS constraints [69]
shown by the shaded region.

FIG. 3. Numerical results for the pressure P(λ, δ, 0, 0, 0). In
panel (a), the results are drawn for the symmetric nuclear matter
(δ = 0), compared with the data taken from GMR [70,71], flow [72],
flow+20% [73,74], and kaon [71,75] experiments, whereas in panel
(b) those for the neutron matter (δ = 1) are depicted, compared with
the data from Pb experiment [76], NS 95% [73], NS 68% [73], and
Quantum Monte Carlo calculations [76–78]. In the neutron matter,
the present results are obtained for the two sets of the parameters:
red solid and green dashed curves draw the results with Set I and Set
II, respectively.

symmetry energy becomes slightly larger than that obtained
by using the larger value of Lsym till the normal nuclear mat-
ter density (λ = 1), then it becomes smaller than that with
Lsym = 60 MeV. Note that, however, the present results are
quite stable as the parameters vary, and are consistent with
those obtained from other approaches and extracted data. In
particular, the results are in good agreement with APR pre-
dictions till the density reaches λ = 2. At large nuclear matter
densities the results of the symmetry energy become smaller
than the values of the APR symmetry energy. The present
results are also in good agreement with the bounded values of
the symmetry energy, obtained from the analysis of isobaric
states (IAS) [69], which is represented by the shaded region
in Fig. 2.

For completeness, we present in Figs. 3(a) and 3(b) the
density dependence of the pressure in the symmetric nuclear
matter and and in the neutron matter, respectively. The present
results for the pressure are in good agreement with those
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obtained from other approaches and the extracted data, in
particular, in the range of ρ ∈ [0, 3ρ0].

For example, in Fig. 3(a) the result of this work for the
pressure P(λ, 0, 0, 0, 0) in the symmetric matter (δ = 0),
which is drawn in the blue solid curve, is compared with
the data extracted from various experiments. In particular,
the present result is in good agreement with the data in
the range of 1.2 � λ � 1.7 extracted from the GMR exper-
iments [70,71] for heavy nuclei, which are shown by the
dashed curve. However, in Ref. [72] the flow experimen-
tal data on 197Au nuclei collision are analyzed, which are
illustrated by the red-shaded region and correspond to the
zero-temperature equation of state for the symmetric nuclear
matter. Additional studies are presented in Refs. [73,74],
which were extended to the range of the validity taking into
account the mass-radius relation of neutron stars from ob-
servational data. In Fig. 3(a) data in the extended region are
denoted as “Flow + 20%.” One can see that our equations
of state are consistent with the newly predicted range. The
EoS for the symmetric nuclear matter in the range of 1.2 �
λ � 2.2 can also be constrained by the kaon production data
from high-energy nucleus-nucleus collision [71,75]. They are
shown in the green-colored region. The present results lie also
within that region and, in general, are consistent with all the
data extracted from different methods.

In Fig. 3(b), the results for the pressure are presented in
the neutron matter (δ = 1). We again depict the results for
P(λ, 1, 0, 0, 0) with the two sets of the parameters asym and
Lsym. They are represented by the red solid and green dashed
curves, respectively, in Fig. 3(b). One can see that EoS ob-
tained in the present work are quite stable with the varying
parameters that define the symmetric energy. We compare the
results with those extracted from the several experiments. For
example, the weighted average of the experimental data on the
neutron skin thickness in 208Pb is indicated by the red-colored
star at subnuclear density [76]. The studies in Ref. [73] pro-
vide a constraint for the pressure values of neutron star matter
from astrophysical observation data. In Fig. 3(b), this con-
straint is labeled as “NS 95%” and “NS 68%” for the two
different confidence limits. There are also results at the low-
density region from the quantum Monte Carlo calculation
(QMC) [76–78]. They are denoted by the gray-shaded region.
One can see that our results are in an excellent agreement with
all extracted data in the different ways in all density regions
presented in the figure.

In short summary, this simple five-parametric model
for nuclear matter within the framework of the model-
independent chiral soliton approach describes the isospin-
symmetric and neutron matter properties very well. This
implies that the meson mean-field approach quite success-
ful not only for explaining various properties of light and
singly-heavy baryons in free space [23] but also for describing
phenomenologically nuclear matter properties, based on min-
imal phenomenological information in the nonstrange sector.

C. Baryonic matter

We now proceed to baryonic matter properties in a more
general case taking into account also the strange baryons.

So far, we have concentrated on the nonstrange sector and
fitted our parameters according to the nuclear phenomenology
in nonstrange sector. We have also parametrized the influ-
ence of surrounding nuclear matter to the in-medium nucleon
properties in such a way that the binding energy per nucleon
appears as a quadratic term in the isospin asymmetry param-
eter δ. Following the strategy used in the nonstrange sector
we can parametrize the influence of baryonic matter with
the strangeness content. In doing that, we will consider the
simplicity as a guiding principle. Therefore, as a first step
we will not introduce any new parameter and try to describe
the strangeness-mixed baryonic matter. For that purpose, we
expand the binding energy per baryon into the series in the
region with the small values of the isospin-asymmetry param-
eter δ and strangeness-mixing parameters δs. Consequently,
the series of the binding energy per nucleon at the small values
of isospin asymmetry and hyperon mixture parameters δ and
δs (i = 1, 2, 3) given in Eq. (31) can be written as

ε(λ, δ, δ1, . . . ) = εV (λ) + εsym(λ)δ2

+
3∑

s=1

∂ ε(λ, δ, δ1, . . . )

∂ δs

∣∣∣∣
δ=δ1=···=0

δs

+ 1

2

3∑
s,p=1

∂2 ε(λ, δ, δ1, . . . )

∂ δs∂δp

∣∣∣∣
δ=δ1=···=0

δsδp

+ · · · , (46)

where, for convenience of discussion, the terms of the stan-
dard volume and symmetry energies for ordinary nuclear
matter are explicitly separated as the first and the second ones.
It is obvious that the linear terms in δ are absent due to the
quadratic dependence of the binding energy per baryon on it.

Next, assuming that the contributions of higher-order terms
in δs are negligible, we can choose fs’s similar to f0 [see
Eq. (39)] as a linear form in δs.4 Furthermore, we parametrize
fs in such a way that there is no δ dependence. These
parametrization will keep all our discussions in the nonstrange
sector intact. Then we have the following forms of the remain-
ing density functions

fs(λ, δ, δ1, . . . ) = 1 + gs(λ)δs. (47)

We also assume that the third term in Eq. (46) is equals to
zero. This leads to the following form of gs:

gs(λ) = sg(λ),

g(λ) = −5(M∗
cl − Mcl + E∗

(1,1)1/2 − E(1,1)1/2)

3(ms − m̂)

×
(

6
K2

I2
+ K1

I1

)−1

. (48)

This final expression is a reasonable one, because the
strangeness content of nuclei is negligible and gs at small
densities in Eq. (48) maximizes the energy for δs = 0. This
choice is advantageous, since it allows one to fit all parameters

4Note that this is also the simplest choice.

064306-8



BARYONIC MATTER AND THE MEDIUM MODIFICATION … PHYSICAL REVIEW C 103, 064306 (2021)

FIG. 4. Binding energy per nucleon ε(λ, δ, χ ) as a function of
the normalized nuclear matter density λ = ρ/ρ0. The results are
drawn for the ordinary isospin symmetric matter in the blue solid
curve, the strangeness mixed isospin-symmetric matter in the red
dashed one, the pure neutron matter in the green dotted one and
the strangeness-mixed isospin-asymmetric matter in the gray space-
dashed one, respectively. The parameters of the symmetry energy are
taken from Set I in Table I.

in the SU(2) sector. As a result, we have no internal density
parameters in the SU(3) sector and we do not need to relate
this approach to the strange matter phenomenology. All results
in the strangeness sector can be considered as predictions in
this simplified work.

In the medium-modified SU(3) sector, we have only one
external free parameter, which is the fraction of strange matter.
In order not to distinguish the species of strange matter, we
introduce the strangeness-mixing parameter χ defining it as
the following simple and reasonable way: δs = sχ . So, we can
discuss the strangeness effects by considering nonzero values
of the free parameter χ .

The strangeness effects due to the surrounding environ-
ment may come from the different combinations, e.g., the
isospin-symmetric matter with the strangeness-mixing or
the isopin-asymmetric matter with the strangeness mixing.
The binding energies per nucleon for different nuclear mat-
ters are presented in Fig. 4, which shows clearly how the
binding energy undergoes modification as the strangeness
content varies together with δ changed. For comparison, we
again depict the binding energy for symmetric matter in the
blue solid curve, for the isospin-asymmetric matter in the
red-dashed one, for the strangeness-mixed isospin-symmetric
matter in the green-dotted curve and the strangeness-mixed
isospin-asymmetric matter in the gray space-dashed curve,
respectively. One can see that the strangeness mixing leads
to the less bound system at subnuclear matter densities while
the binding energy per nucleon varies rather slowly as λ

increases, so that its magnitude becomes even larger than
those in both isosymmetric and isoasymmetric nuclear matter
at supranuclear matter densities, i.e., compare the blue solid
curve and the green dotted one or the red dashed and grey
dashed ones, respectively. At large densities the strange matter

may be a more favorable system so that strange quark stars are
allowed to exist with a smaller mass due to the softening EoS
in comparison with neutron stars.

The present results are in line with those from an extended
Brueckner-Hartree-Fock formalism [79]. Although their ap-
proach has a problem in reproducing the correct value of the
binding energy per nucleon at normal nuclear matter density,
the tendency of the strangeness fraction is very similar to the
present one. They also found that strangeness mixing leads
to the shallowing of the curve for the binding energy and
negligible shifting to the higher density region. We also want
to mention that the present results are consistent with those
from other approaches and model calculations. For example,
see a recent review [13] about theoretical approaches to the
production of hyperons, baryon resonance and hyperon matter
in heavy-ion collision (see also Ref. [80]). In particular, the
dependence of the binding energy on nuclear matter density
with the strangeness mixed was discussed in Ref. [13] and
the results are qualitatively similar to the present ones. In
Ref. [81] the G-matrix formalism was used with the Nijmegen
soft-core baryon-baryon potentials plugged in. Since they
consider the fraction of strangeness in terms of the �, �,
and � baryons, it is not easy to make a direct comparison
with the present work. As the fraction of strangeness (� + �)
increases in Ref. [81], the magnitude of the binding energy
gets larger until it reaches around χ�+� ≈ 0.3. Then, it starts
to decrease. This indicates that as the strangeness fraction
increases by more than 30%, the tendency of the binding
energy becomes similar to the present result drawn in Fig. 4.
However, the results from Ref. [81] at higher densities behave
differently, compared with the present ones. The results for
the binding energy from Ref. [82], which employed the rela-
tivistic mean-field approximation with the Nijmegen soft-core
baryon-baryon potentials incorporated, exhibit dependence on
the strangeness fraction similar to those from Ref. [81].

We now show the results for the pressure. In general,
the effect from the isospin asymmetric environment is much
stronger than that from strangeness mixing. These results
also can be seen from the density dependence of the pres-
sure shown in Fig. 5, where we draw the results for the
dependence of the pressure on λ for possible four different
cases, as discussed in the case of binding energy dependence
on normalized nuclear matter density. One can see that the
strangeness mixing will bring about the softening of EoS,
comparing the blue solid curve with the green dotted ones or
the red dashed and grey dashed ones.

IV. BARYONS MASSES IN DIFFERENT
BARYON ENVIRONMENTS

We are now in a position to discuss how the masses
of the SU(3) baryons undergo the changes in ordinary and
strangeness-mixed nuclear matter. Since all the medium func-
tions have been already fixed, we can study the modification of
the baryon masses in different nuclear media. While we have
considered only the baryon octet in formulating the nuclear
matter, we will investigate the medium modifications of both
the baryon octet and decuplet in nuclear matter.
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FIG. 5. Pressure P(λ, δ, χ ) as a function of the normalized nu-
clear matter density λ = ρ/ρ0. Notations and parameters are the
same as described in the caption of Fig. 4.

The contributions from the surrounding baryon environ-
ment can be divided into two parts: the change of the classical
soliton mass �Mcl = M∗

cl − Mcl [see Eq. (14)] and that of
quantum fluctuations �Mqf = �MB − �Mcl, where �MB =
M∗

B − MB denotes the shift in the baryon mass. From the
values of the parameters in Eq. (37), one can see that the
classical soliton mass is homogeneously dropped in nuclear
matter. The soliton mass in free space in the present work is
737.6 MeV. Its change in the medium at the normal nuclear
matter density (λ = 1) is given as −41.38 MeV. In the case of
quantum fluctuations the situations is not at all trivial, because
different parts of the quantum fluctuations may behave in a
different way depending on the content of the surrounding
baryon environment.

The masses of octet and decuplet member baryons in the
different baryon environments at normal nuclear matter λ = 1
density are predicted and are listed in Table II. One can see
that the change of quantum fluctuations and, consequently, the
changes of baryons masses in the different environments are
different. In the symmetric ordinary nuclear matter (λ = 1 and
δ = 0) the masses of the baryon octet and decuplet decrease
as λ increases (compare third and fourth columns in Table II).
Figure 6 illustrates the density dependence of the mass shifts
of the nucleon and � isobar in the isospin symmetric nuclear
matter. As shown in Fig. 6, the mass shift of the nucleon
decreases very slowly as λ increases. However, it is almost
saturated in the vicinity of the normal nuclear matter density
and then starts to increase very slightly. However, the mass
shift of the � isobar falls off monotonically as λ increases.
Since the mass difference of the nucleon and � comes from
the zero-mode quantization of the chiral soliton, the medium
modification of the zero-mode quantum fluctuation for the �

comes into essential play. This fact makes the mass shift of �

turn out to be very different from that of the nucleon. We find
the very similar results for the other members of the baryon
octet and decuplet.

However, the situation is changed in isospin-asymmetric
matter. The mass shift of the SU(3) baryons in the isospin
asymmetric environment depends on the third component of
baryons isospin. Thus, the mass shifts of the baryons are more
pronounced, in particular, for the baryon with negative T3. For
example, the mass shift of the proton in pure neutron matter
(δ = 1) at normal nuclear matter density (λ = 1) is obtained to
be −48.79 MeV, while that of the neutron becomes positive,
i.e., +15.20 MeV (see also Table II). This implies that the up
and down quarks may undergo changes in a different manner.

The results for the mass shifts of the baryon octet and
decuplet in the pure neutron matter are shown in Figs. 7(a) and
7(b), respectively. First of all, one can explicitly see that the

TABLE II. Masses of the baryon octet and decuplet both in free space and in the different baryon environments at normal nuclear matter
density λ = 1. The parameters for the symmetry energy are taken from Set I in Table I. All the masses are given in units of MeV.

Baryon Exp Free space δ = 0, χ = 0 δ = 1, χ = 0 δ = 0, χ = 0.1 δ = 0.4, χ = 0.1

p 938.76 938.01 921.97 889.97 918.23 905.43
n 940.27 939.52 922.47 955.47 919.73 932.53
� 1109.61 1108.86 1092.82 1092.82 1092.77 1092.77
�+ 1188.75 1188.00 1171.96 1106.74 1172.01 1145.92
�0 1190.20 1189.45 1173.41 1173.41 1173.46 1173.46
�− 1195.48 1194.73 1178.69 1243.91 1178.74 1204.83
�0 1319.30 1318.55 1302.51 1269.29 1306.21 1292.92
�− 1321.31 1323.78 1307.74 1340.96 1311.40 1324.72
�++ 1230.55 1247.79 1137.60 1041.30 1133.94 1095.42
�+ 1234.90 1248.61 1138.42 1106.31 1134.75 1121.91
�0 1231.3 1250.79 1140.59 1172.70 1136.93 1149.77
�− 1230 to 1234 1254.33 1144.14 1240.44 1140.48 1179.00
�∗+ 1382.80 1387.73 1277.54 1213.34 1277.54 1251.86
�∗0 1383.70 1389.91 1279.72 1279.72 1279.72 1279.72
�∗− 1394.20 1393.46 1283.27 1374.47 1283.27 1308.95
�∗0 1531.80 1529.03 1418.84 1386.74 1422.50 1409.66
�∗− 1535.0 1532.58 1422.39 1454.49 1426.05 1438.89
�− 1672.45 1671.70 1561.51 1561.51 1568.84 1568.84
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FIG. 6. The result for the mass shift �MB = M∗
B − MB of the

nucleon B = N in the isospin symmetric nuclear matter is drawn in a
solid curve, whereas that of the B = � isobar is depicted in a dashed
one.

effects of the isospin mass splitting are clearly shown in the
isospin-asymmetric nuclear environment. Depending on the
charges of the baryon octet, we can see that their mass shifts
behave in a very different way. As shown Fig. 7(a), the neutron
mass increases as λ increases, whereas the proton mass drops
off as λ increases. In general, the masses of the members in the
baryon octet with the negative values of T3 rises in the neu-
tron matter as λ increases. However, the masses of the octet
baryons with the positive values of T3 drop off as λ decreases.
However, while the mass of �0 is identical to that of the
proton, those of �0 and �0, which are also identical to each
other, fall off slowly and then are saturated as λ increases. This
is originated from the fact that the in-medium functionals for
the quantum fluctuations near the third component of isospin
are quite sensitive to the medium effects and they are identical
for the baryons that have the same isospin components.

The isospin factor in neutron matter was also studied in
Ref. [83] based on the low-energy hyperon-nucleon scattering
data and on the hypertriton derived from an effective field the-
ory to the next-to-leading order at low densities. In Ref. [83]
the � mass decreases in both symmetric and asymmetric
matters. This behaviors are in qualitative agreement with the
present ones. On the contrary, the mass of � increases in
symmetric matter from Ref. [83] while the present results
show opposite tendency, that is, the � mass increases as the
density increases.

The general tendency and the effects of the isospin factor
can be seen also in the case of decuplet baryons, which are
given in Fig. 7(b), but the mass shifts are larger than those of
the baryon octet. For example, the mass shift in the isospin
averaged � in normal nuclear matter is around two times
smaller than the �++ mass shift in neutron matter at normal
nuclear matter density λ = 1. For example, one can see this by
comparing the red dashed curve in Fig. 6 with the black solid
one in Fig. 7(b). The isospin component factor is similar to
the octet case and some baryons masses such as �∗0 and �+
have the identical dependence on λ. Due to the isospin factor,
the �− mass in neutron matter remains almost constant which

FIG. 7. Results for the mass shifts �MB of the baryon octet and
the decuplet in the pure neutron matter (δ = 1) are drawn in panels
(a) and (b), respectively. The parameters for the symmetry energy are
taken from Set I in Table I.

is seen from the red dashed curve in Fig. 7(b). The present
results are in qualitative agreement with those from Ref. [84].

The present work shows that the mass shifts are more pro-
nounced in the isospin asymmetric matter in comparison with
those in the symmetric matter. Similar results were obtained in
a chiral SU(3) quark mean-field model [16]. The mass shifts
of hyperons in nuclear matter were also studied in Ref. [85],
of which the results are also in qualitative agreement with the
present ones.

For completeness, we show also the mass changes of the
baryons in the strangeness-mixed asymmetric environment.
In Fig. 8, the results for the mass shifts of the nucleon and
� in strangeness-mixed asymmetric matter are presented as
functions of λ, which we choose them as the representatives
of the baryon octet and decuplet, respectively. For the sake of
the illustration, we include the changes of isospin-averaged
masses of the nucleon and � by the black solid curves in
Figs. 8(a) and 8(b), respectively. Figure 8 explicitly shows the
isospin factor in nuclear matter, which are explained above. It
also depicts how the strength of the mass are changed due to
the environment content. Comparing Figs. 7 and 8, one can
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FIG. 8. Mass shifts M∗
B − MB of the nucleon (a) and � isobar

(b) in the strangeness mixed isospin-asymmetric matter.

conclude that the changes in neutron matter are stronger than
those in strange matter. In general, the results in strangeness-
mixed matter are rather similar to those in pure neutron
matter.

V. SUMMARY AND OUTLOOK

In the present work, we have investigated the various
baryonic matters such as the symmetric nuclear matter, pure
neutron matter, and strangeness-mixed baryonic matter, based
on the meson mean-field approach or the generalized SU(3)
chiral soliton model. All the dynamical parameters for the
baryon masses in the model were determined by using the
experimental data in free space and then we have introduced
the parametrizations for the density-dependent parameters. As
a starting point, we took a “model-independent approach”
for the SU(3) baryon properties in free space, which de-
scribed successfully the baryon masses of the baryon decuplet
and other properties of baryons in free space [23,24]. In
the present work, the medium modifications of the model
functionals were carried out by employing the linear density-
dependent forms. Having determined the parameters for the
medium modification by using the empirical data related to
nuclear matter such as the binding energy per nucleon, the
compressibility, and the symmetry energy, we were able to

describe the equation of states for various nuclear environ-
ments including the nonstrange sector. We found that the
present results were in good agreement with the data extracted
from the phenomenology and experiments and with the results
from other approaches. We also discussed the properties of
the strangeness-mixed matter and they also were in agree-
ment with the phenomenology. Finally, we predicted the mass
shifts of the baryon octet and decuplet in various baryonic
environments with different content of the isospin asymmetry
and strangeness. We scrutinized the changes of the masses of
the baryons with different values of the third components of
isospin and found that the masses of the baryons with negative
charges show very different dependence on the nuclear matter
density from those with positive and null charges.

Since we have formulated the equations of states for
isospin-asymmetric and strangeness-mixing baryonic matter,
one can directly apply the present model to investigate proper-
ties of neutron stars. The corresponding investigation is under
way.

ACKNOWLEDGMENTS

The present work was supported by Basic Science
Research Program through the National Research Foundation
of Korea funded by the Korean government (Ministry of
Education, Science and Technology, MEST), Grants No.
2019R1A2C1010443 (Gh.-S.Y.), No. 2018R1A2B2001752
and No. 2018R1A5A1025563 (H.-Ch.K.), and No.
2020R1F1A1067876 (U.Y.).

APPENDIX: MASSES OF BARYONS IN FREE SPACE

The masses of baryon octet are expressed as

MN = Mcl + E(1, 1), 1/2 + 1
5

(
c8 + 4

9 c27
)
T3

+ 3
5

(
c8 + 2

27 c27
)(

T 2
3 + 1

4

)
− (d1 − d2)T3 − (D1 + D2), (A1)

M� = Mcl + E(1, 1), 1/2 + 1
10

(
c8 − 2

3 c27
) − D2, (A2)

M� = Mcl + E(1, 1), 1/2 + 1
2

(
T3 − 1

5

)
c8

+ 2
9

(
T 2

3 − 7
10

)
c27 − (

d1 + 1
2 d2

)
T3 + D2, (A3)

M� = Mcl + E(1, 1), 1/2 + 4
5

(
c8 − 1

9 c27
)
T3

− 2
5

(
c8 − 1

9 c27
)(

T 2
3 + 1

4

)
−(d1 + 2d2)T3 + D1, (A4)

where E(1,1),1/2 can be obtained from Eq. (24). The masses of
the baryon decuplet are given by the following expressions:

M� = Mcl + E(3, 0) 3/2 + 1
4

(
c8 + 8

63 c27
)
T3

+ 5
63 T 2

3 + 1
8

(
c8 − 2

3 c27
)

− (
d1 − 3

4 d2
)
T3 − (

D1 − 3
4 D2

)
, (A5)

064306-12



BARYONIC MATTER AND THE MEDIUM MODIFICATION … PHYSICAL REVIEW C 103, 064306 (2021)

M�∗ = Mcl + E(3, 0), 3/2 + 1
4

(
c8 − 4

21 c27
)
T3

+ 5
63 c27

(
T 2

3 − 1
) − (

d1 − 3
4 d2

)
T3, (A6)

M�∗ = Mcl + E(3, 0), 3/2 + 1
4

(
c8 − 32

63 c27
)
T3

− 1
4

(
c8 + 8

63 c27
)(

T 2
3 + 1

4

)
− (

d1 − 3
4 d2

)
T3 + (

D1 − 3
4 D2

)
, (A7)

M� = Mcl + E(3, 0), 3/2 − 1
4

(
c8 − 4

21 c27
)

+2
(
D1 − 3

4 D2
)
, (A8)

where E(3,0),3/2 can be obtained from Eq. (24). Here d1,2 and
D1,2 are defined as

d1 = (md − mu)
[− 1

5α − β + 1
5γ

]
, (A9)

d2 = (md − mu)
[− 1

10α − 3
20γ

]
, (A10)

D1 = (ms − m̄)
[− 1

5α − β + 1
5γ

]
, (A11)

D2 = (ms − m̄)
[− 1

10α − 3
20γ

]
. (A12)

The explicit forms of c8 and c27, which denote the wave-
function corrections, can be found in Ref. [23].
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