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Configuration mixing and K-forbidden E2 decays
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Hindrance factors for K-forbidden E2 decays from multiquasiparticle isomers are analyzed in relation to
mixing matrix elements that are often associated with chance near degeneracies, and a functional relationship
is established. Focusing on effective matrix elements for �K = 6 decays from three-quasiparticle isomers,
significant configuration dependence is demonstrated.
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I. INTRODUCTION

With half-lives ranging from nanoseconds to years, and
excitation energies up to almost 15 MeV, nuclear iso-
mers play an important role in nuclear structure, nuclear
astrophysics, physics at the atomic/nuclear interface, and ap-
plications [1–6]. In deformed nuclei, a key determinant of
electromagnetic transition rates is the K quantum number,
i.e., the projection of the angular momentum on the nuclear
symmetry axis. However, despite extensive studies [5,7], the
understanding of transition rates remains rudimentary for
transitions that involve significant changes in the K value.

Deformed nuclei have rotational bands based on differ-
ent quasiparticle (qp) configurations. It is usually assumed
that, to a good approximation, the K value is equal to the
spin of the bandhead, providing the bandhead is well defined
experimentally, such as when it is isomeric. The decays of
isomeric bandheads are often associated with so-called K-
forbidden transitions, which arise when the change in the K
value, �K , exceeds the angular momentum, λ, carried by the
decay radiation [5,7]. The degree of forbiddeness is defined
as ν = �K − λ. Due to K mixing, such transitions are not
strictly forbidden, and K-isomer half-lives are sensitive to the
amount of mixing, both in the isomers themselves and in the
states to which they decay.

Although it is tempting to say that K mixing destroys
the goodness of the K quantum number, it is notable that K
isomers typically have only small admixtures of states with
different K values. In such circumstances, it is reasonable to
specify and discuss the dominant K value that characterizes
any given K isomer.

Numerous attempts have been made to pin down the im-
portant degrees of freedom that influence K-isomer half-lives,
beyond the relatively simple dependence on transition en-
ergy, multipole character, and degree of forbiddeness [5,7].
These latter aspects can be accounted for by calculating
the Weisskopf hindrance factor, FW = (T γ

1/2/T W
1/2), where T γ

1/2

is the partial γ -ray half-life and T W
1/2 is the corresponding
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Weisskopf value, and then obtaining the reduced hin-
drance, fν = (FW )1/ν . Following this procedure, any reduced-
hindrance variations should be due to the nuclear structure.
Indeed, for different isomers, there can be large variations in
reduced hindrance, both within a given nuclide and between
different nuclides. Possible physical explanations for the fν
variations include rotational (Coriolis) K mixing, dynamic
and static axially asymmetric (γ ) distortions, statistical K
mixing due to level-density effects, and chance near degenera-
cies with states of the same spin and parity [5,7]. The reduced
hindrance may also depend on the specific qp configurations
involved [7,8]. Furthermore, reduced-hindrance correlations
have been found with other variables [5,7], such as the product
of the valence nucleon numbers, NpNn [9,10], and the isomer
energy relative to that of a rigid rotor [10–12]. However,
substantial deviations from simple correlations indicate the
importance of multiple degrees of freedom.

The present work generalizes the analysis of chance near
degeneracies, where a K isomer is close in energy to a state of
the same spin and parity but with a lower K value. Two-state
mixing [13] can then lead to enhanced E2 decay from the
isomer. The mixing matrix elements, V , are calculated and
shown to be closely related to the Weisskopf hindrance factors
through a simple formula. After allowing for near degenera-
cies, examination of E2, �K = 6 γ -ray transitions from 3-qp
isomers reveals a dependence on three factors: the isomer ex-
citation energy relative to a rigid rotor, the 1-qp configuration
of the populated state (to which the isomer decays), and the
3-qp configuration of the isomer itself.

II. TWO-STATE MIXING

In the study of isomeric decays, a recurring scenario is
when there is a near degeneracy between an isomer and a
member of the rotational band to which it decays, as repre-
sented schematically in Fig. 1. While the decay E2 transition
changes the spin by 2h̄, the relevant near degeneracy, with
energy difference �E , is between states of equal spin and par-
ity. A small mixing amplitude, β, of the rotational-band wave
function into the isomeric state can account for the half-life of
the isomer, on the basis that the mixing provides a collective

2469-9985/2021/103(6)/064305(6) 064305-1 ©2021 American Physical Society

https://orcid.org/0000-0002-9441-3011
https://orcid.org/0000-0003-2645-2569
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.103.064305&domain=pdf&date_stamp=2021-06-07
https://doi.org/10.1103/PhysRevC.103.064305


P. M. WALKER AND P. D. STEVENSON PHYSICAL REVIEW C 103, 064305 (2021)

I+2
I+1
I

I+4

I+3

isomer

en
er

gy

K = I

K = I+6
I+5
I+6

I+6ΔE

E2

FIG. 1. Schematic level scheme illustrating a multi-qp isomer,
which decays by a �K = 6, E2 transition into a rotational band.

component in the E2 decay of the isomer. For example, in the
decay of a 3-qp isomer in 171Tm [14], the energy difference
is �E = 11 keV. The isomer half-life of 1.7 μs can be un-
derstood if there is a small collective admixture in its wave
function, with a mixing matrix element of |V | = 12 ± 2 eV
(only the modulus of V is obtained, not the sign). In this case,
the collective admixture (amplitude squared) in the isomer is
β2 = 1.2 × 10−6. Mixing matrix elements of this kind have
been compared, as a function of �K , by Dracoulis et al. [15].

The analysis assumes the validity of the rotational
model [16] for the in-band reduced transition probability,

B(E2) = 5

16π
e2Q2

o| < I1K20|I2K > |2, (1)

and the rotor transition rate is

T (E2) = 1.22 × 109E5
γ B(E2) s−1 (2)

with the transition energy, Eγ , in MeV, and B(E2) in units of
e2fm4. In the present work, the intrinsic quadrupole moment
is evaluated [17] from

Qo = 3√
5π

Zer2
o A2/3β2(1 + 0.36β2) (3)

with ro ≈ 1.2 fm and the theoretical quadrupole deformation,
β2, is tabulated by Möller et al. [18]. Since the mixing strength
is a small fraction of the energy gap, �E , it is a good approx-
imation to relate the mixing matrix element to the collective
amplitude by [15]

|V | = β × �E . (4)

Finally, the Weisskopf hindrance factor for an E2 transition
can be written [7]

FW (E2) = 1.05 × 108T γ

1/2E5
γ A4/3, (5)

and the relationship between the partial half-life of the E2
transition from the isomer and the rotor E2 transition rate is

T γ

1/2(E2) = ln2

β2T (E2)
. (6)
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FIG. 2. Correlation plot for isomeric E2 transitions, showing
how the product of the mixing strength and the square root of the
Weisskopf hindrance factor, |V |√FW , varies with the energy separa-
tion, �E , between the isomer and the state with the same spin and
parity that is a member of the band to which the isomer decays. The
straight line through the data is to guide the eye.

By simple rearrangement of these equations, the following
dimensionless relationship is obtained:

√
FW = �E

|V |
0.71

Zβ2(1 + 0.36β2)| < I1K20|I2K > | . (7)

In the present study, the multi-qp isomers that will be ana-
lyzed in this way are limited to the Z ≈ 70 region, so that the Z
variations have only a small effect, and so also the quadrupole
deformations, with β2 ≈ 0.25, have little variation. More
significant differences come from the Clebsch-Gordan co-
efficients, which vary by up to a factor three for examples
considered.

In Fig. 2, the correlation of |V |√FW with �E is shown
for a range of isomers in the Z ≈ 70 region, including all
18 cases with �E < 0.1 MeV [7,14,15,19–33]. In three of
these, 174Yb [21], 174Lu [15], and 181W [27], it is necessary to
extrapolate the populated band to reach the spin of the isomer,
but the final values are not sensitive to this aspect. It can also
be noted that the maximum deviation from the straight line
through the data is for the �E = 0.081 MeV, Kπ = 43/2+
isomer of 177Ta [19] with �K = 4, which has the smallest
Clebsch-Gordan coefficient.

A striking feature of Fig. 2 is that there is a single trajectory
of the data, as specified by Eq. (7). Although the motivation
for the derivation of the equation comes from the wish to
analyze isomer decay rates associated with chance near de-
generacies, there is no empirical indication of any constraint
on the specification of “near” . The largest energy difference
represented in the figure is �E = 1.295 MeV, associated with
the E2 decay of a Kπ = 12+ isomer in 164Er, directly to the
Kπ = 0+ ground-state band [34]. It is possible, of course, to
question the validity of the two-state mixing analysis for such
widely spaced levels, but there is no sign of any systematic
effect in Fig. 2. Indeed, according to Eq. (7) there cannot
be large deviations, providing Eq. (4) remains valid, i.e., the
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TABLE I. Three-qp isomers with �K = 6, E2 decays. The 3-qp configurations and fν values are from Kondev et al. [7] except where
noted. Nuclide-specific references are also given. The 1-qp configuration refers to the populated band.

�E a |V | EK − ER 3-qp 1-qp
Nuclide Kπ T1/2 (keV) fν (eV) (keV) configuration configuration Ref.

171Tm 19/2+ 1.7 μs −11 7.7 12 936 ν5/2[512], ν7/2[633], π7/2[523] π7/2[404] [14]
175Lu 19/2+ 960 μs 368 85 3.2 681 ν5/2[512], ν7/2[514], π7/2[404] π7/2[404] [35]
171Hf 19/2+ 6.2 ns 929 13 355 907 ν7/2[633], π5/2[402], π7/2[404] ν7/2[633] [36]
175Hf 19/2+ 1.1 μs 536 24 60 723 ν7/2[633], π5/2[402], π7/2[404] ν7/2[633] [37]
173Ta 21/2− 148 ns 351 13 163 841 π5/2[402], π7/2[404], π9/2[514] π9/2[514] [38]b

175Ta 17/2+ 5.1 ns 501 7.6 569 977 π1/2[541], π7/2[404], π9/2[514] π9/2[514] [39]
175Ta 21/2− 2.0 μs 216 20 37 706 π5/2[402], π7/2[404], π9/2[514] π9/2[514] [39]
177Ta 17/2+ 5.5 ns 468 10 308 959 π1/2[541], π7/2[404], π9/2[514] π9/2[514] [19]
177Ta 21/2− 5.3 μs 53 23 7.3 511 π5/2[402], π7/2[404], π9/2[514] π9/2[514] [19]
179Ta 21/2− 322 ns −29 6.9 47 424 π5/2[402], π7/2[404], π9/2[514] π9/2[514] [23]c

181Ta 21/2− 25 μs 177 39 8.9 672 π5/2[402], π7/2[404], π9/2[514] π9/2[514] [35]
185Ta 21/2− 12 ms −272 71 4.3 490 ν3/2[512], ν11/2[615], π7/2[404] π9/2[514] [40]d

179W 21/2+ 390 ns 509 15 170 804 ν5/2[512], ν7/2[514], ν9/2[624] ν9/2[624] [26]
181W 21/2+ 182 ns 614 30 55 840 ν9/2[624], π5/2[402], π7/2[404] ν9/2[624] [27]
183W 19/2− 13 ns 33 4.3 130 1087 ν1/2[510], ν9/2[624], ν11/2[615] ν7/2[503] [29]
181Re 21/2− 250 ns 55 8.8 59 843 ν7/2[514], ν9/2[624], π5/2[402] π9/2[514] [30]
181Os 21/2+ 7 ns 848 13 464 932 ν5/2[512], ν7/2[514], ν9/2[624] ν9/2[624] [41]

aA negative sign indicates that the isomer is at lower energy than the collective state with which it mixes.
bSubsequent to Ref. [7], the 173Ta isomer decay scheme was revised by Wood et al. [38].
cThe 179Ta isomer structure is strongly mixed [23], most likely with the π5/2[402], ν7/2[514], ν9/2[624] configuration.
dExtrapolation of the collective band is necessary to obtain �E for 185Ta.

interaction matrix elements remain small, which is satisfied
by |V | = 10 eV in the 164Er example, and |V |/�E � 1.5% in
all cases.

It is worthwhile to remark that the smallest interactions ob-
tained in this way are |V | = 0.46 eV for the 174Yb, Kπ = 6+
isomer decay, where �E = 992 keV, and 1.4 eV for the 177Hf,
Kπ = 23/2+ isomer decay, where �E = −245 keV (with the
negative sign indicating that the isomer is at lower energy
than the collective state with which it mixes). In comparison,
Dracoulis et al. [15] found the smallest interactions to be in the
range |V | = 10–20 eV, but that was considering chance near
degeneracies, so the question again arises as to what criteria
should be applied, and whether or not Eq. (7) remains valid.

A significant criterion for the validity of the two-state mix-
ing analysis is that the relative B(M1) and B(E2) strengths
from a given isomer should be the same as those in the
rotational band to which the isomer decays [7,14,15,42,43].
However, as shown by Saitoh et al. [42,43], there are many
examples where this criterion is violated, suggesting more
complex mixing scenarios. In order to illustrate some specific
aspects of the problem, the present work focuses on �K = 6,
E2 decays from 3-qp isomers to 1-qp rotational bands. The
details are given in Table I. By restricting to only �K = 6
(ν = 4) transitions, any �K dependence [15] is avoided. In
addition, the mixing matrix element, |V |, can be considered
to be an effective value, obtained from the two-state mixing
equations.

III. DEPENDENCE ON EK − ER

Before focusing on the systematic behavior of the interac-
tion matrix elements, the corresponding reduced hindrances

( fν values) are presented. These are the quantities that are
more usually compared [5,7]. For three-qp isomer decays, the
reduced hindrances were already shown [10] to be correlated
with the isomer energy relative to a rigid-rotor energy, when
the isomer structure is built on three qp’s of the same nucleon
type, i.e., three protons or three neutrons. The full three-qp
data set, without the configuration restriction, but limited to
�K = 6, E2 transitions, is shown in Fig. 3, and the numerical
values are in Table I. The quantity EK − ER is the difference
between the isomer energy, EK , and a rigid-rotor energy, ER =
aI (I + 1), with I = K and a = h̄2/2J . Here, the moment of
inertia is J = 2

5 mr2(1 + 1
3β2), where m is the mass and r is the

radius. In practice, 85% of the full moment of inertia is used,
taking into account the less-than-rigid moments of inertia of
nuclei, and allowing better for a wide range of angular mo-
menta [5]. The overall decrease in fν with increasing EK − ER

can be understood [5,11] as being due to the increasing level
density as the isomer energy increases, leading to greater K
mixing and hence lower fν values.

The correlated behavior in Fig. 3 is reasonably clear, es-
pecially when it is noticed that the 177Ta and especially the
179Ta data points, at relatively low values of EK − ER, have
chance near degeneracies, with �E = +53 and −29 keV,
respectively. Therefore, two-state mixing can explain their
low fν values (i.e., lower than might be expected from the
overall trend of the data). However, there are other cases with
similar or smaller �E : 171Tm (�E = −11 keV), 183W (+33
keV), and 181Re (+55 keV). This leads to the central issue of
the present work: how the chance near degeneracies can be
accounted for in a consistent manner.

In the light of the earlier discussion and the derivation of
Eq. (7), it is here proposed that the mixing matrix element
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FIG. 3. Reduced hindrance, fν , as a function of isomer energy
relative to a rigid rotor, EK − ER, for �K = 6, E2 decays from 3-qp
isomers in the Z ≈ 70 region. The subtracted rotor energy, ER, has a
moment of inertia that is 85% of the full rigid-body value (see text).
Table I has the numerical values. Note that there are two data points
for each of 175Ta and 177Ta. The statistical uncertainties are smaller
than the data points.

|V | itself is the appropriate variable that takes into account the
closeness of the degeneracy. In order to compare with the fν
behavior of Fig. 3, it is necessary to evaluate the inverse of the
mixing matrix element. Given that 1/|V | ∝ √

FW , and FW =
( fν )ν with ν = 4, it is evident that the 1/|V | scale should, for
the simplest comparison, have twice the number of decades
as the fν scale. This becomes clear in Fig. 4, where 1/|V | is
shown as a function of EK − ER.

At first sight, the scatter of the data in Fig. 4 looks greater
than that in Fig. 3. The data points with closer near degen-
eracies have larger ordinate values compared with the overall
behavior, as seen, for example, by the differences in the two
figures for 179Ta with �E = −29 keV, and 171Tm with �E =
−11 keV. In a real sense, the 1/|V | evaluation removes the
chance effect of near degeneracies. More careful inspection
reveals some striking features, especially when the labels
specifying the populated 1-qp rotational-band configurations
are included. Of the 17 data points, seven are for decays to
a π9/2[514] band. While one of these, 179Ta, is anomalous
and will be discussed later in detail, the other six (inside the
largest ellipse) are tightly correlated with EK − ER. A similar
correlation persists with the five data points for decays to
νi13/2 (7/2[633] and 9/2[624]) bands, and the two data points
for decays to π5/2[402] bands. The common behavior of
decreasing 1/|V | with increasing EK − ER supports the level-
density effect referred to earlier. It can then be suggested that,
compared to this trend, the larger 1/|V | values for 175Lu and
171Tm (π7/2[404]) and 183W (ν7/2[503]) are due to a smaller
degree of Coriolis K mixing in these 1-qp structures, where,
with j = �, the Coriolis matrix elements, Hc ∝

√
j2 − �2,

are close to zero [44].
The immediate problem appears to be that the 175Ta and

177Ta data points in Fig. 4, at EK − ER ≈ 970 keV, also
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FIG. 4. Inverse interaction matrix element, 1/|V |, as a function
of energy relative to a rigid rotor, EK − ER, for �K = 6, E2 decays
from 3-qp isomers in the Z ≈ 70 region. The Nilsson configurations
of the populated 1-qp bands are indicated. The subtracted rotor
energy, ER, has a moment of inertia that is 85% of the full rigid-body
value. Table I has the numerical values. Note that the 181W and 181Re
data points are overlapping. The filled circle is for 179Ta, replotted
according to a three-level-mixing analysis (see text). The statistical
uncertainties are smaller than the data points.

involve decay to a 1-qp configuration, π5/2[402], with Hc ≈
0, and yet they have small 1/|V | values. However, in addition
to noting the large EK − ER values, these two data points can
be partly understood in terms of Coriolis mixing in the iso-
mers themselves. Their 3-qp configurations include the h9/2,
1/2[541] proton, which is well known for its strong Coriolis
mixing effect [39]. None of the other 3-qp configurations
involves the 1/2[541] proton.

Finally, the anomalous situation for the 1252 keV, Kπ =
21/2− isomer of 179Ta is discussed. While its 1/|V | value
(Fig. 4) is less deviant than its fν value (Fig. 3), it still
stands out as not following the trend of the other data. It
can be considered to be a special case for two reasons: (i)
there is a chance near degeneracy [7] at Iπ = 21/2−, with
�E = 29 keV, and (ii) it has been proposed [23] that there
is strong mixing with a second Kπ = 21/2− configuration.
This latter feature is unique among the 3-qp configurations
of Figs. 3 and 4. Kondev et al. [23] studied the Kπ = 21/2−

structure of 179Ta in detail and presented different mixing pos-
sibilities. Their favored interpretation is that there is ≈50/50
mixing between the two configurations given in Table I. The
higher-energy Kπ = 21/2− state is suggested [23] to be that
identified at 1628 keV. This implies that the maximum mixing
matrix element would be |V ′| = �E/2 = 188 keV, which is
similar to the 159 keV mixing between two Kπ = 8− states
in the isotone 178Hf [45]. In terms of their configurations, the
pair of states in 178Hf differ from that in 179Ta only by the
removal of the spectator 5/2[402] proton.

Such a large mixing strength of up to |V ′| = 188 keV, be-
tween two states with the same Kπ , is very different from that
associated with the chance near degeneracy, with |V | = 47 eV,
between two states that differ in K by six units, and clearly
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a three-state mixing calculation is required. While there are
insufficient constraints to determine a unique solution, a sim-
ple possibility has been evaluated [46] with the maximum
mixing strength (188 keV) between the two Kπ = 21/2−
states, so that, before mixing, the unperturbed Kπ = 21/2−
states are degenerate at 1440 keV. Equal but adjustable mixing
strengths, between the Iπ = 21/2−, π9/2[514] band mem-
ber and each of the two Kπ = 21/2− states, are chosen to
give the observed Kπ = 21/2− isomer half-life. In this way,
|V | = 33 eV is obtained, compared to 47 eV in the two-state-
mixing scenario. The new value is replotted as the filled circle
in Fig. 4, with EK − ER = 612 keV from the unperturbed
Kπ = 21/2− energy of 1440 keV. The new value is seen to
be consistent with the other data involving the population
of the π9/2[514] band. Therefore, it can be concluded that
the anomalous character of 179Ta is due to its dual mixing
components: strong mixing with another state of the same Kπ ,
and weak mixing with a state of the same Iπ but differing in
K by six units.

Just as the proton-neutron Kπ = 8− mixing in 178Hf can
be identified in its N = 106 isotone 179Ta, so also it might
be expected that the well-known proton-neutron Kπ = 6+
mixing in 176Hf [7] might be reflected in its N = 104 iso-
tone 177Ta. Indeed, the Kπ = 21/2− isomer in 177Ta presents
this possibility, which is discussed in detail by Dasgupta
et al. [19]. Nevertheless, band-mixing calculations [19] sug-
gest that, close to the Kπ = 21/2− bandhead, the structure is
predominantly of three-proton character, as given in Table I.
This, at least, is consistent with the corresponding 1/|V | value
following the general behavior seen in Fig. 4, i.e. it does not
have the anomalous behavior shown by the Kπ = 21/2− iso-
mer of 179Ta, where strong proton-neutron mixing is involved.

The stated criterion for the validity of the two-state mixing
analysis is that the B(M1)/B(E2) ratio for the isomer decay
should match that of the populated band or, equivalently, their
g factors should be equal [7,14,15,42,43]. A simple test can be
made with the rotational model expression [26],

|gK − gR|
Qo

= 0.933
EI→I−1

δ
√

I2 − 1
, (8)

where δ is the quadrupole/dipole mixing ratio for the I →
I − 1 transition and EI→I−1 is the transition energy in MeV.
The quantities gK and gR are the intrinsic and rotational g fac-
tors [26], respectively. As part of the present work, |gK − gR|
was evaluated, where the data are available, for all the 3-
qp isomer decays illustrated in Fig. 4. For example, with
Qo = 7 b, for 183W [29] it is found that |gK − gR| = 0.96(3)
for decays from the 19/2− isomer, and 0.94(5) for decays

from the 19/2− member of the 7/2[503] band. While this
good agreement suggests the validity of the two-state mixing
approach, the observation that in this case EK − ER is large
and 1/|V | is small indicates that other mixing processes are
substantial. Indeed, the overall correlation with EK − ER in
Fig. 4 suggests that level-density effects make a key contribu-
tion to the K mixing.

The |gK − gR| values also match, at least approximately,
for 171Tm, 175Lu, 173Ta, 175Ta, 179Ta, and 181Re (with black
lettering in Fig. 4), while the other ten cases (with red letter-
ing) do not, and it is hard to interpret these differences. We
suggest, therefore, that the comparison of B(M1)/B(E2) val-
ues is of limited practical value. Nevertheless, it is appropriate
to refer to the mixing matrix elements of Table I and Fig. 4 as
effective values.

By focusing in this work on E2, �K = 6 (ν = 4) tran-
sitions, the �K dependence has been avoided. While �K
is explicitly taken into account in the formulation of the
reduced hindrance, fν = (FW )1/ν , which has no units, the
mixing matrix element, |V |, has energy units, which need to
be properly accounted for if transitions with different �K
are to be compared. Nevertheless, extension of the work of
Dracoulis et al. [15] to study the �K dependence of |V | is
planned for the future. Also, it is appropriate to investigate
the role of higher qp numbers. A preliminary analysis of
this type, limited to �K = 6 transitions, has been undertaken,
but the shortage of data and the increased complexity of the
configurations make it difficult to come to conclusions about
the general behavior.

IV. CONCLUSION

In summary, for E2, K-isomer decays, a simple formula
has been established relating the Weisskopf hindrance factor,
FW , to the effective mixing matrix element, |V |, between the
isomer itself and the state of the same Iπ in the populated
band. In principle, the |V | formulation removes dependence
on the chance effect of near degeneracies. Decays with �K =
6 from 3-qp isomers in the Z ≈ 70 region have been analyzed
in detail, revealing new evidence for significant configuration
dependence, with regard to both the populated band as well as
the isomer itself. Of the 17 data points, just one, that for the
179Ta, Kπ = 21/2− isomer, appears to be inconsistent with the
general behavior, which is interpreted as being due to strong
�K = 0 configuration mixing.
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