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The generator coordinate method (GCM) combined with the projection method is applied to large-scale shell-
model calculations. The quadrupole deformation is taken as a generator coordinate and the GCM basis states
are prepared by the quadrupole-constrained Hartree-Fock Bogoliubov method with the variation after particle-
number projection. The resultant GCM wave function is a linear combination of the angular-momentum and
parity projected basis states. We discuss how well the present method approximates the exact solution of the
shell-model diagonalization method by the benchmark tests of 48Ca, 56Ni, and 48Cr in the p f -shell model space
and those of 132Ba and 133Ba in the 50 < N, Z < 82 model space.
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I. INTRODUCTION

Solving the quantum many-body problem is one of the
hardest challenges in modern physics. In the development of
computational many-body approaches to the investigation of
nuclear structures, two directions have been largely explored:
one is to pursue the exact solution in a rather small model
space and the other is to search for mean-field approaches
and their extensions in a comparably large single-particle
space. The nuclear shell-model calculations have belonged
mainly to the former. They were numerically solved by ex-
act diagonalization in their earliest years, especially for light
nuclei, and have seemed to be incompatible with mean-field
approaches because the single-particle space is too small to
consider the mean field. For the latter, the generator coordinate
method (GCM) has been developed beyond the mean-field
method. Especially, the GCM combined with the full angular-
momentum projection method has recently been developed
with the energy density functional theory [1–4] and has also
been applied to antisymmetrized molecular dynamics [5].
Moreover, it has been successfully applied to large-scale
shell-model calculations with realistic shell-model residual
interactions. To clarify the circumstances so far, we briefly
review the historical development of the shell-model calcula-
tions.

In the 1970s and 1980s, a conventional shell-model di-
agonalization method was developed, and systematic studies
of the sd shell were achieved [6]. In the 1990s, shell-model
studies entered into p f -shell nuclei, which were investigated
enthusiastically by using various truncation schemes. Several
realistic interactions for p f -shell nuclei were suggested [7–9].
However, toward the middle of the p f shell, the exact di-
agonalization method has faced the dimensional problem of
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the shell model space, and 2 million was the largest record
for state-of-the-art shell-model calculations in 1995 [10]. The
maximum dimension of the full p f shell reaches about 2 ×
109 in the M scheme. The shell-model dimension grows in a
combinatorial way by distributing protons and neutrons in the
shell-model orbits. It was apparent that the diagonalization
approach is limited by the combinatorial explosion of the
dimension. On the other hand, from the early 1990s, a new
trend has begun to emerge in which large-scale shell-model
calculations are carried out as precisely as possible beyond the
limit of conventional diagonalization by Monte Carlo or vari-
ational methods, i.e., the shell-model Monte Carlo (SMMC)
[11], the Monte Carlo shell model (MCSM) [12], and series of
VAMPIR approaches [13]. By making full use of state-of-the-
art computer resources, these approaches have successfully
opened new ground and widened the horizon.

Around 2000, shell-model calculations became feasible
in the p f shell and larger ones, and the reachable size of
the model was increased drastically. More light has thereby
been shed on the mean-field aspect of shell-model calcula-
tions. The GCM equipped with the full angular-momentum
projection has helped analyze the ingredients of shell-model
wave functions. For example, the GCM with an axially or
triaxially deformed Hartree-Fock (HF) wave function has
been utilized to discuss shape coexistence and backbending
phenomena [14–16]. The GCM method with Nilsson-BCS
wave functions was also discussed in the single- j shell model
[17]. The next step is clearly to carry out the GCM with
the angular-momentum projected Hartree-Fock-Bogoliubov
(HFB) basis as shell-model calculations, while there was a
known phase determination of the Onishi formula in the full
angular-momentum projected HFB [18]. This problem was,
however, completely solved with the Pfaffian by Robledo [19].

After his epochal work, we developed an angular-
momentum projected GCM with the HFB basis state, and
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we found that it gave good excitation energies for the p f
shell as partially shown in Ref. [20]. We have applied this
method to studies of the shape evolution of Nd isotopes
[21] and of N ∼ Z nuclei [22] for the PMMU Hamilto-
nian, which is a schematic interaction based on the pairing
plus QQ with monopole interactions designed for various
model spaces [23,24]. A similar GCM method was recently
introduced to shell-model calculations combined with the
Hamiltonian provided by the valence-shell in-medium sim-
ilarity renormalization-group method [25–27]. This method
was also applied to realistic shell-model interactions [28]. Ex-
tension of the GCM by introducing the Tamm-Dancoff mode
was also pursued [29].

In the present work, we discuss the details of the
angular-momentum projected GCM with the HFB basis states
obtained by the particle-number variation after projection
(HFB + GCM ) with the realistic shell-model Hamiltonian.
Especially we demonstrate how well it approximates the exact
results and how useful it is for analyzing the collectivity of
the wave function. We further discuss the feasibility of the
HFB + GCM method in comparison with the HF + GCM and
exact diagonalization methods. This paper is organized as
follows: the theoretical framework is introduced in Sec. II, the
benchmark tests are demonstrated in Sec. III, and the paper is
summarized in Sec. IV.

II. THEORETICAL FRAMEWORK

In the conventional GCM, the trial wave function is ex-
pressed as a superposition of the generated wave functions,
which are labeled by the collective coordinates. In the present
work, we always apply the angular-momentum projection
to these wave functions for precise description of low-lying
excited states. We refer to this angular-momentum projected
GCM simply as the GCM hereafter. We take the number-
projected HFB wave function as a basis state of the GCM
(HFB + GCM), while we also use the Hartree-Fock wave
function as a basis state (HF + GCM) for comparison. The
general framework of the GCM is described in Sec. II A, and
the number-projected HFB wave function for the GCM basis
state is discussed in Sec. II B.

A. Generator coordinate method

We briefly review the theoretical framework of the GCM in
this section. The GCM wave function is a linear combination
of the angular-momentum projected basis states and written
as

|�Iπ 〉 =
∑
α,K

f Iπ
α,K PIπ

MK |φα〉, (1)

where f Iπ
α,K and PIπ

MK are the coefficients of the superposi-
tion and the angular-momentum (I) and parity (π ) projector,
respectively. The details of the GCM framework and the
angular-momentum projector are given in Refs. [18,30]. The
basis state |φα〉 is a number-projected HFB wave function or
a Hartree-Fock wave function parameterized by a set of col-
lective coordinates α, which is often taken as the quadrupole
deformation and is described further in Sec. II B.

To evaluate the energy and the amplitude f Iπ
α,K , the Hamil-

tonian matrix is diagonalized in the subspace spanned by the
angular-momentum and parity projected basis states. They are
obtained by solving the generalized eigenvalue problem, or
the Hill-Wheeler-Griffin equation [31],∑

β,K

(HIπ
αM,βK − EIπN Iπ

αM,βK

)
f Iπ
βK = 0 (2)

with

HIπ
αM,βK = 〈φα|HPIπ

MK |φβ〉, (3)

N Iπ
αM,βK = 〈φα|PIπ

MK |φβ〉. (4)

To solve Eq. (2), since the HFB basis states are not orthog-
onal, we diagonalize the norm matrix N Iπ

αM,βK to orthogonalize
these states as ∑

βK

N Iπ
αM,βK uIπ

βK,λ = nIπ
λ uIπ

αM,λ, (5)

where nIπ
λ and uIπ

αM,λ are the λth eigenvalue and its eigenvector,
respectively. For numerical stability, we omit the basis states
whose eigenvalue is smaller than a certain criterion, e.g., 10−6.
It gives the orthonormalized basis state

∣∣ψ Iπ
λ

〉 =
∑
αK

uIπ
αK,λ√
nIπ

λ

PIπ
MK |φα〉, (6)

which is often called a “natural basis.” Thus, the energy eigen-
value of Eq. (2) is obtained by the eigenvalue problem∑

λ′

〈
ψ Iπ

λ

∣∣H ∣∣ψ Iπ
λ′

〉
gIπ

λ′ = EIπgIπ
λ , (7)

and the resultant GCM wave function is rewritten as

|�Iπ 〉 =
∑

λ

gIπ
λ

∣∣ψ Iπ
λ

〉

=
∑
λαK

gIπ
λ

uIπ
αK,λ√
nIπ

λ

PIπ
MK

∣∣φIπ
α

〉
. (8)

The contribution of the αth basis state to the GCM wave
function is defined as

PIπ (α) =
∣∣∣∣∣
∑
Kλ

gIπ
λ uIπ

αK,λ

∣∣∣∣∣
2

, (9)

which is often called the “collective wave function” [1,28].

B. Constrained HFB with particle-number variation
after projection

For preparing GCM basis states, we mainly adopt the HFB
wave function obtained with the particle-number variation
after projection and with quadrupole constraints, which is
referred to as the “HFB + GCM.” Instead of the HFB ba-
sis state, the Q-constrained Hartree-Fock wave function can
be used for GCM basis states, which is referred to as the
“HF + GCM” [16].
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The number-projected HFB basis state for protons is writ-
ten as

|φ(p)〉 = PZ |U (p),V (p)〉, (10)

where PZ is the proton-number projector. The intrinsic HFB
wave function |U,V 〉 is defined as

βk|U (p),V (p)〉 = 0 for any k, (11)

βk =
∑

i

(
V (p)

ik c(p)†
i + U (p)

ik c(p)
i

)
, (12)

where c(p)†
i is a creation operator of the proton single-particle

state i. This Bogoliubov quasiparticle state is parameterized
by the matrices U (p) and V (p), which satisfy the orthogonal-
ization relations

U †U + V †V = 1, UU † + V ∗V T = 1,

U TV + V TU = 0, and UV † + V ∗U T = 0, (13)

so that βk satisfies the fermion anticommutation relations. In
the present work, we do not assume any symmetries, such as
angular momentum, parity, and number, for this “intrinsic”
wave function |U,V 〉. Note that we take the matrix elements
of U and V as complex numbers without any restriction except
that the proton-neutron mixing is not included in the quasi-
particle. The neutron basis state |φ(n)〉 is defined in the same
manner, and the total number-projected state is defined as

|φ〉 = |φ(p)〉 ⊗ |φ(n)〉. (14)

The number projection is defined as

PZ |U (p),V (p)〉 = 1

2π

∫ 2π

0
dφeiφ(Ẑ−Z )|U (p),V (p)〉, (15)

where Z and Ẑ are the number of active protons and the
proton-number operator, respectively. φ in Eq. (15) is a gauge
angle, and in practice, the range of this integral can be re-
duced to (0, π ) by conserving the number parity [18,32].
Numerically, the integral is computed by the summation of
the discretized gauge angles.

The Q-constrained Hartree-Fock-Bogoliubov basis state
specified by the quadrupole deformations q0 and q2 is ob-
tained by minimizing the energy function with quadratic
constraint [18] as

E (q0, q2) = 〈φ|H |φ〉 + 1

2

2∑
m=−2

Cm(〈φ|Q̂m|φ〉 − qm)2, (16)

where q2 = q−2, q1 = q−1 = 0, Q̂m = r2Y (2)
m , and Cm are pos-

itive constants and large enough to constrain 〈Q̂i〉 = qi. The
energy minimization is performed by the conjugate gradi-
ent method [33]. In this method, the energy gradient of the
number-projected wave function is required and its formula is
given in Refs. [34] and [30]. Hereafter, we refer to the HFB
method with the particle-number variation after projection as
the “HFB.”

In addition to the constraint of the quadrupole deformation,
we can add Jx as another collective coordinate to describe
high-spin states [35]. It is introduced as a quadratic constraint,

E (q0, q2, jx ) = E (q0, q2) + 1
2Cjx (〈φ|Ĵx|φ〉 − jx )2, (17)

where Ĵx is the x component of the angular-momentum op-
erator and Cjx is taken large enough to keep the condition
〈φ|Ĵx|φ〉 = jx.

In the GCM, we diagonalize the Hamiltonian matrix in the
subspace spanned by the basis states parameterized by a set of
the collective coordinates α = (q(α)

0 , q(α)
2 , j (α)

x ). In the present
paper, typically, ∼50 sets of α = (q(α)

0 , q(α)
2 ) are distributed

with equal spacing in the (q0, q2) space. This method is called
the “HFB + GCM.” When axial symmetry is assumed, only
q0 is taken equally spaced with q2 = 0, which is called the
“axial HFB + GCM.” 〈Ĵx〉 is not constrained without special
mention.

A framework similar to the present HFB + GCM method
was discussed in the preceding work [28] by taking Ca iso-
topes as examples. In this preceding work, the U and V
coefficients in Eq. (12) were restricted to real numbers, while
we take them as complex numbers without any assumption in
the present work. Although this restriction is reasonable for
the time-reversal-invariant intrinsic state, it may deteriorate
the approximation of the HFB + GCM result as demonstrated
in Sec. III A.

In the case of the HF + GCM, the basis states are prepared
by the constrained Hartree-Fock method. Its wave function is
expressed as a Slater determinant,

|φ〉 =
Z∏

k=1

(∑
i

D(p)
ik c(p)†

i

)
N∏

l=1

(∑
j

D(n)
jl c(n)†

j

)
|−〉, (18)

which is parameterized by the matrices D(p) and D(n) [14,36].
Although it is computationally less demanding since the num-
ber projection is not required, it is not efficient to describe the
pairing correlation. The constraint condition is applied in the
same way as the constrained HFB method.

III. NUMERICAL RESULTS

In this section, we present some numerical results of the
HFB + GCM compared with the exact results. We take 48Ca,
56Ni, and 48Cr with the p f -shell model space and 132Ba and
133Ba with the j j55 model space as examples for the bench-
mark tests. The p f shell consists of the 0 f7/2, 0 f5/2, 1p3/2,
and 1p1/2 orbits for both protons and neutrons with a 40Ca
inert core. The j j55 model space consists of the 0g7/2, 1d5/2,
1d3/2, 2s1/2, and 0h11/2 orbits for both protons and neutrons
with a 100Sn inert core. In order to discuss the differences
between the various basis states for the GCM, we introduce
the axial HF + GCM, HF + GCM, axial HFB + GCM, and
HFB + GCM methods. In the HF + GCM method, both q0

and q2 are taken as collective coordinates to include the degree
of freedom of triaxial deformation. The axial HF + GCM
denotes the GCM with q0 as a collective coordinate (q2 = 0)
and the GCM basis states are generated by the Hartree-Fock
method [14]. In the axial HFB + GCM method, the GCM ba-
sis states are generated by the Q-constrained HFB and only q0

is taken as a collective coordinate. The HFB + GCM includes
the triaxially deformed basis states.

The KB3G [37], FPD6 [8], and GXPF1A [38] interactions
are successful realistic interactions for the p f -shell model
space and have been widely used also for benchmark tests. We
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FIG. 1. Excitation energies of the 0+
1,2 (black), 2+

1,2 (blue), 3+
1

(green), 4+
1,2 (red) 5+

1 (purple), and 6+
1 (orange) states of 48Ca relative

to the exact ground-state energy with the KB3G interaction [37].
Results obtained by (a) HF + GCM with axial symmetry, (b) HF
+ GCM, (c) HFB + GCM with axial symmetry, (d) HFB + GCM,
(e) exact diagonalization, and (f) the result taken from “PGCM3” in
Ref. [28].

adopt these interactions individually for the benchmark tests
of 48Ca, 56Ni, and 48Cr in order to compare our results with lit-
erature values and to demonstrate that the difference between
these interactions has little impact on the performance of the
HFB + GCM.

A. 48Ca with the p f shell

We performed the benchmark test of the GCM calcula-
tions taking 48Ca with the KB3G interaction [37] as the first
example. The M-scheme dimension of the Hamiltonian ma-
trix is 12 022 and is tractable by the exact diagonalization
method. We compare the results of the axial HF + GCM, the
HF + GCM, the axial HFB + GCM, and the HFB + GCM,
compared with the exact shell-model energies, which were
obtained by utilizing the KSHELL code [39]. For the axial
HF + GCM and the axial HFB + GCM, we prepare 15 basis
states with equally spaced q0. For the HF + GCM and the
HFB + GCM, we prepare 28 sets of (q0, q2) which are equally
spaced on the (q0, q2) plane.

Figures 1(a)–1(d) show the results obtained by the axial
HF + GCM with 15 basis states, the HF + GCM with 28
basis states, the axial HFB + GCM with 15 basis states, and
the HFB + GCM with 28 basis states, respectively. These
four methods well reproduce the exact shell-model spectrum
shown in Fig. 1(e) including the approximate degeneracy of
the 2+

1 , 4+
1 , and 3+

1 states. Among them, the HFB + GCM
method has the largest variational space and shows the best
approximation in view of the variational principle. The dif-
ferences of the ground-state energies from the exact one are
around 200 keV for the axial HFB + GCM and the HFB +
GCM, while those for the axial HF + GCM and the HF +
GCM are around 600 keV. Figure 1(f) shows the GCM result
of Bally and his collaborators [28]. Although it reproduced the

TABLE I. B(E2) transition probabilities (e2 fm4) and Q moments
(e fm2) of 48Ca obtained by the HF + GCM, HFB + GCM, and exact
diagonalization.

HF + GCM HFB + GCM Exact

B(E2; 2+
1 → 0+

1 ) 12.1 12.1 11.5
B(E2; 4+

1 → 2+
1 ) 2.3 2.4 2.0

B(E2; 4+
1 → 3+

1 ) 9.3 8.4 7.6
B(E2; 2+

2 → 0+
2 ) 24.9 23.0 21.6

Q(2+
1 ) 4.3 4.3 4.1

Q(2+
2 ) −9.8 −9.2 −8.6

Q(4+
1 ) 8.4 7.8 7.5

Q(3+
1 ) 9.7 9.0 8.5

exact spectrum reasonably, it apparently overestimated the 3+
1

excitation energy. Since the U and V matrices were restricted
as real numbers in their work, it would be important to treat
these parameters as complex numbers.

The E2 reduced transition probabilities obtained by the
HF + GCM, the HFB + GCM, and the exact diagonalization
method are presented in Table I. The effective charges are
taken as (ep, en) = (1.5, 0.5)e throughout this paper. Both
the HF + GCM and the HFB + GCM methods show good
agreement with the exact one including the Q moment of the
3+

1 state except that the HF + GCM slightly overestimates the
quadrupole collectivity compared to the HFB + GCM and the
exact one.

B. 56Ni with the p f shell

In this subsection, we compare the HFB + GCM result to
the exact one for 56Ni with the p f -shell model space and the
FPD6 interaction [8]. It is a good example for discussing the
feasibility and the restriction of the present method, since this
system has been used for benchmark tests of various trunca-
tion schemes [12–14,30,36,40–42]. The nuclear structure of
56Ni has attracted much attention because of its soft closed
core and shape coexistence [14,43,44].

Figure 2 shows the excitation energies of 56Ni with the
p f -shell model space in comparison with the exact one.
These results were obtained by the HFB + GCM method

FIG. 2. Excitation energies of 56Ni with the FPD6 interaction [8].
Results obtained by (a) the HFB + GCM method and (b) the exact
diagonalization method.
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TABLE II. B(E2) transition probabilities (e2 fm4) and Q mo-
ments (e fm2) of 56Ni obtained by the HFB + GCM and exact
diagonalization.

HFB + GCM Exact

B(E2; 2+
1 → 0+

1 ) 152.3 167.1
B(E2; 4+

1 → 2+
1 ) 234.0 153.5

B(E2; 2+
2 → 0+

2 ) 624.2 443.2
B(E2; 2+

3 → 0+
3 ) 192.7 66.9

Q(2+
1 ) 27.6 24.2

Q(4+
1 ) 32.5 26.5

Q(2+
2 ) −50.6 −46.5

Q(2+
3 ) 17.6 12.1

with 55 basis states and the exact diagonalization method
(M-scheme dimension, 1 087 455 228). The present HFB +
GCM method reproduces the excitation spectrum of the ex-
act ones well. The exact shell-model ground-state energy is
Egs = −203.198 keV, while the HFB + GCM method gives
Egs = −201.549 MeV. While various methods of the varia-
tion after angular-momentum projection, such as the Monte
Carlo shell model (Egs = −203.152 MeV) [12], its advanced
version (Egs = −203.161 MeV) [40], and the general com-
plex FED VAMPIR approach (Egs = −203.119 MeV) [13],
give energies closer to the exact one than the HFB + GCM,
these angular-momentum variations after projection generally
demand larger computational resources to compute the whole
spectrum.

Table II lists the B(E2) transition probabilities and Q mo-
ments of 56Ni. While the HFB + GCM method reproduces the
exact values reasonably, it overestimates the exact one, espe-
cially for the value of the 4+ state, which might be remedied
by introducing the mixing of the proton-neutron pairing in the
quasiparticle wave function.

Figure 3 shows the total energy surfaces as a function of
the collective coordinates Q0 and Q2. The unprojected en-
ergy surface shows the spherical minimum and shallow local
minimum at the prolate deformation. Note that “unprojected”
means angular-momentum unprojected and the number pro-
jection is always performed. In the J = 0 projected energy
surface, the global minimum is shifted to the oblate deforma-
tion.

The GCM wave functions can be analyzed by the collective
wave function P(q0, q2) defined in Eq. (9). Figure 4 shows
the collective wave functions of the 0+

1 , 0+
2 , and 0+

3 states

FIG. 3. Total energy surface of 56Ni. (a) Unprojected and (b) J =
0 projected energies. Red circles denote the minimum points.

FIG. 4. Collective wave functions of the (a) 0+
1 , (b) 0+

2 , and
(c) 0+

3 states of 56Ni obtained by the HFB + GCM.

of 56Ni obtained by the HFB + GCM method. The 0+
1 state

is dominated by the spherical and oblate basis states, which
correspond to the global minima of the unprojected surface
and the projected energy surface in Fig. 3, respectively. As
shown in Fig. 4, the 0+

2 and 0+
3 wave functions indicate

the prolate and oblate deformations, respectively. Thus, these
figures clearly show the shape coexistence of 56Ni, which is
consistent with Ref. [14].

C. Backbending of 48Cr

In this subsection, we introduce the cranked basis states to
the GCM in order to describe high-spin states more precisely.
As an example we take the yrast state of 48Cr, which is
known to exhibit the backbending phenomenon [15,16]. The
shell-model calculation is performed with the p f -shell model
space and the GXPF1A interaction [38]. Figure 5 shows the
shell-model results of the γ -ray energies, namely, the energy
differences of the yrast J+ and (J − 2)+ states, of 48Cr. While
the γ -ray energy increases as a function of J in general cases
of the rotational band, that of 48Cr shows a sudden decrease
at J = 12. This phenomenon is called backbending and origi-
nates from the band crossing [10,15].

While the HFB + GCM result with 21 basis states shows
good agreement with the exact one up to J = 6, it fails to
reproduce the energies at J � 10 because of the band crossing.
To include the higher-band components, we add the constraint
〈Jx〉 = √

I (I + 1) in Eq. (17), with I = 0, 6, and 12. We pre-
pare 63 basis states in total and perform the GCM calculation,
which is referred to as the “HFB + GCM + Jx” in Fig. 5. This
result successfully reproduces the exact ones including the
backbending. Thus, the basis states generated by the cranking
term are important for describing high-spin states and the band
crossing.

D. 132Ba with the j j55 model space

As a benchmark of a heavier-mass region than the p f -shell
nuclei, we discuss the shell-model results of 132Ba with the
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FIG. 5. Gamma-ray energies [Ex(J+
1 )-Ex((J − 2)+1 )] of 48Cr ob-

tained by the HFB + GCM (open blue diamonds with dashed line),
the HFB + GCM + Jx, (filled red triangles with dotted line), and the
exact value (filled black circles with solid line).

SN100PN interaction [45] in the j j55 model space. Although
the M-scheme dimension reaches a huge value, 2.0 × 1010,
the exact diagonalization is still feasible utilizing the KSHELL

code and a state-of-the-art supercomputer [39]. 132Ba is con-
sidered to be triaxially deformed [46], and its shell-model

FIG. 6. (A) Ground-state energies relative to the exact one and
(B) energy spectra of 132Ba with the SN100PN interaction [45].
Results obtained by (a) axial HF + GCM, (b) HF + GCM, (c) axial
HFB + GCM, (d) HFB + GCM, and (e) exact diagonalization.

FIG. 7. Total energy surfaces of 132Ba obtained by the
quadrupole-constrained HFB with the particle number variation af-
ter projection. (a) Unprojected and (b) Jπ = 0+ projected energy
surfaces.

calculation is a good benchmark target to discuss the con-
tribution of the triaxial deformation. We performed the axial
HF + GCM and axial HFB + GCM calculations with 19 basis
states and the HF + GCM and HFB + GCM calculations with
45 basis states.

The two results provided by the HF + GCM in Figs. 6(a)
and 6(b) show level schemes that are too compressed and,
thus, overestimate the moment of inertia due to underesti-
mation of the contribution of the pairing correlations by the
superposition of the deformed Slater determinants. While the
HF + GCM shows the correct ordering of the quasi-γ band,
which consists of 2+

2 , 3+
1 , 4+

2 , 5+
1 , and 6+

2 states, the axial
HF + GCM fails to give its correct ordering.

Figures 6(c) and 6(d) show the results of the axial HFB +
GCM and the HFB + GCM, respectively. The HFB basis state
enables us to include the pairing correlation appropriately.
Although the axial HFB + GCM succeeds in reproducing the
ground-state band of the exact result shown in Fig. 6(e), the
members of the quasi-γ band are shifted a few hundred keV
upward. The HFB + GCM result agrees with the exact one
excellently including the quasi-γ band except for the slight
overestimation of Ex(6+

2 ).
Figure 7 shows the unprojected and Jπ = 0+ projected

energy surfaces of 132Ba. While the unprojected energy sur-

FIG. 8. Collective wave functions of the (a) 0+
1 , (b) 2+

1 , (c) 2+
2 ,

and (d) 3+
1 states of 132Ba obtained by the HFB + GCM.
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TABLE III. B(E2) transition probabilities (e2 fm4) and Q mo-
ments (e fm2) of 132Ba obtained by the HFB + GCM and exact
diagonalization.

HFB + GCM Exact

B(E2; 2+
1 → 0+

1 ) 1317 1210
B(E2; 4+

1 → 2+
1 ) 1972 1820

B(E2; 2+
2 → 2+

2 ) 777 951
B(E2; 3+

1 → 2+
2 ) 1999 1780

Q(2+
1 ) −59.2 −52.3

Q(4+
1 ) −78.4 −74.0

Q(2+
2 ) 56.6 48.3

Q(3+
1 ) 0.5 0.8

face shows a prolate minimum with a shallow valley in the
γ direction, the J = 0+ projected energy surface has a rigid
triaxial minimum. The angular-momentum projection often
shifts the axially symmetric minimum to the rigid triaxial
minimum, which has been discussed in, e.g., [47–49].

Figure 8 shows the collective wave functions of the 0+
1 , 2+

1 ,
2+

2 , and 3+
1 states of 132Ba obtained by the HFB + GCM. The

0+
1 and 2+

1 states, which belong to the ground-state band, show
the prolate deformation with modest triaxiality. On the other
hand, the 2+

2 and 3+
1 states in the quasi-γ band show the rigid

triaxial deformation.
Table III shows the B(E2) transition probabilities and Q

moments of the low-lying states of 132Ba. The HFB + GCM
results reproduce the exact ones successfully. The Q moment
of the 3+

1 state is quite small and exhibits triaxiality, consis-
tent with the triaxial behavior of the collective wave function
shown in Fig. 8.

E. 133Ba with the j j55 model space

As an example of the applications to odd-mass nu-
clei, we discuss the HFB + GCM result for 133Ba. The
low-lying spectrum of 133Ba was studied experimentally and
with shell-model calculations in Ref. [50]. In the present
work, the shell-model interaction and the model space are
taken to be the same as in the 132Ba case. For the odd-particle
system, we keep the intrinsic wave function having an odd
number parity [18] and perform particle-number variation af-
ter projection. The overlap of the HFB wave functions having
odd number parity is calculated following the prescription in

FIG. 9. (a) Unprojected and (b) Jπ = 1/2+ projected total en-
ergy surfaces of 133Ba obtained by the Q-constrained HFB. See
caption to Fig. 7 for details.

FIG. 10. Ground-state (1/2+
1 ) energies of 133Ba relative to the

exact shell-model energy. See the caption to Fig. 6 for details.

Ref. [51]. The other procedures are the same as in the case of
even-even nuclei.

The Jπ -unprojected energy surface of 133Ba, presented in
Fig. 9(a), has a shallow valley in the γ direction with modest
triaxial deformation. The angular-momentum projection shifts
the minimum to the rigid triaxial deformation as in Fig. 9(b).
This tendency is similar to the 132Ba case.

Figure 10 shows the ground-state energies of the 133Ba
obtained by the GCM methods in comparison with the exact
shell-model energy. Those of the two HFB + GCM meth-
ods are close to the exact value within 500 keV, while the
two HF + GCM results have rather large deviations around
2 MeV. They show a similar tendency to the case of 132Ba in
Fig. 6(A). The deviation is smaller than in the case of 132Ba,
which is reasonable since the M-scheme dimension of 133Ba,
4.5 × 109, is smaller than that of 132Ba.

Figure 11 shows the energy levels obtained by the HFB +
GCM and the exact excitation energies. The HFB + GCM
result reproduces the exact one with a roughly 100-keV differ-
ence. In comparison with even-even nuclei, the level density
tends to increases in odd-mass nuclei, making the variational
approximation more difficult.

FIG. 11. Energy spectra of 133Ba with the SN100PN interaction
[45]. Left: Positive-parity states. Right: Negative-parity states. Re-
sults obtained by the HFB + GCM (open red circles) and the exact
one (blue lines) vs the total angular momentum 2J .
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TABLE IV. B(E2) transition probabilities (e2 fm4) and Q mo-
ments (e fm2) of 133Ba obtained by the HFB + GCM and exact
diagonalization.

HFB + GCM Exact

B(E2; 3/2+
1 → 1/2+

1 ) 502 216
B(E2; 3/2+

2 → 3/2+
1 ) 583 766

B(E2; 5/2+
1 → 1/2+

1 ) 779 663
B(E2; 5/2+

1 → 3/2+
1 ) 856 947

B(E2; 5/2+
1 → 3/2+

2 ) 216 46
B(E2; 5/2+

1 → 1/2+
1 ) 779 663

B(E2; 9/2−
1 → 11/2−

1 ) 1029 1035
B(E2; 7/2−

1 → 11/2−
1 ) 538 561

Q(3/2+
1 ) −32.5 −9.7

Q(3/2+
2 ) 31.1 8.3

Q(5/2+
1 ) −29.0 −26.7

Q(5/2+
2 ) −39.7 −34.2

Q(7/2+
1 ) 49.8 87.2

Q(7/2+
2 ) −25.7 −60.8

Q(11/2−
1 ) 78.3 78.8

Q(9/2−
1 ) 121.8 117.8

Q(7/2−
1 ) 28.8 34.4

Table IV presents the B(E2) transition probabilities and Q
moments obtained by the HFB + GCM and the exact results.
While the HFB + GCM results of the Q moments of the 5/2+

1 ,
5/2+

2 , 11/2−
1 , 9/2−

1 , and 7/2−
1 states agree with the exact ones,

those of 3/2+
1 , 3/2+

2 , 7/2+
1 , and 7/2+

2 show relatively large
deviations. Since the excitation energies of the 3/2+

1 and 3/2+
2

states are close to each other within 150 keV, these two wave
functions are suspected to be mixed in the HFB + GCM wave
functions. This consideration is supported by the fact that the
sum of the Q moments of 3/2+

1 and 3/2+
2 by the HFB + GCM

is close to that of the exact ones. The same situation occurs in
the 7/2+

1 and 7/2+
2 states. If the excitation energies of the yrast

and yrare states are close to each other, these two states are
prone to be mixed in the HFB + GCM wave functions and the
E2 transition and Q moment deteriorate. The B(E2) values in
Table IV show a similar tendency: while the large discrepancy
between the HFB + GCM and the exact ones is seen in the
B(E2) values concerning the 3/2+ and 7/2+ states, the other
B(E2) values show a reasonable agreement.

IV. SUMMARY

The HFB + GCM method is investigated as a variational
approximation to large-scale shell-model calculations with the
conventional diagonalization method. The HFB + GCM is a
beyond-mean-field method and is closely related to the total
energy surface and projected energy surface as the mean-field
approach and its extension. This method is naturally expected
to be more prospective in a heavier-mass region with a larger
model space, where efficient treatment of the pairing correla-

tion is required. Therefore, it is essential to use model spaces
as large as possible for the testing ground. For that purpose,
the p f -shell and j j55 model spaces were chosen for the
benchmark test. In the latter one, state-of-the-art shell-model
diagonalization has recently been carried out for some nuclei,
and thus verification of the present method is crucial to cover
all nuclei in this model space.

We have presented the benchmark tests of the axial HF +
GCM, HF + GCM, axial HFB + GCM, and HFB + GCM
methods for 48Ca and 132Ba. In the case of 48Ca, the dif-
ferences among these four methods are relatively small and
these methods well reproduce the exact ones. On the other
hand, the differences are rather large in the case of 132Ba and
only the HFB + GCM method successfully reproduces the
exact one including the quasi-γ band since it is necessary to
include appropriately both the pairing correlation and the tri-
axial deformation in this case. Not only the excitation energies
but also the B(E2) transition probabilities and Q moments
of low-lying states obtained by the HFB + GCM show good
agreement with the exact ones. For higher spin states, the 〈Jx〉
constraint is taken as an additional collective coordinate of the
HFB + GCM and its feasibility was demonstrated to describe
the backbending structure of 48Cr.

Moreover, we have discussed the HFB + GCM results for
56Ni as an example of shape coexistence and 133Ba as an
example of odd-mass nuclei. The collective wave function is
drawn for the GCM wave function and is useful to investigate
nuclear structures, such as shape coexistence. Although the
HFB + GCM gives a reasonable approximation with the re-
sults of the exact diagonalization in low-lying states, a rather
large discrepancy is seen if two states of the same spin and
parity have energies close to each other. Such a situation often
occurs in odd-mass nuclei.

We have demonstrated that the HFB + GCM method is a
good tool to approximate the exact shell-model result. Since it
demands smaller computational resources than the variational
approaches after the three-dimensional angular-momentum
projection, the present method is a good compromise between
the goodness of approximation and the computational costs.
The proton-neutron mixing of the quasiparticle vacuum might
be important for precisely estimating the nuclear matrix ele-
ment of neutrinoless double-β decay [52], and this direction
of study is in progress.
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