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Electric dipole polarizability in neutron-rich Sn isotopes as a probe of nuclear isovector properties
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The determination of nuclear symmetry energy and, in particular, its density dependence is a long-standing
problem for the nuclear physics community. Previous studies have found that the product of electric dipole
polarizability αD and symmetry energy at saturation density J has a strong linear correlation with L, the slope
parameter of symmetry energy. However, the current uncertainty of J hinders the precise constraint on L. We
investigate the correlations between electric dipole polarizability αD (or times symmetry energy at saturation
density J) in Sn isotopes and the slope parameter of symmetry energy L using the quasiparticle random-phase
approximation based on the Skyrme Hartree-Fock-Bogoliubov model. A strong linear correlation between
αD and L is found in neutron-rich Sn isotopes where pygmy dipole resonance (PDR) gives a considerable
contribution to αD, attributed to the pairing correlations playing important roles through PDR. This newly
discovered linear correlation would help one to constrain L and neutron-skin thickness �Rnp stiffly if αD is
measured with high resolution in neutron-rich nuclei. Additionally, a linear correlation between αDJ in a nucleus
around the β-stability line and αD in a neutron-rich nucleus can be used to assess αD in neutron-rich nuclei.

DOI: 10.1103/PhysRevC.103.064301

I. INTRODUCTION

The determination of the nuclear equation of state (EoS)
at high density is a challenge for both experimental and theo-
retical nuclear physics [1,2], which is crucial for constraining
current theoretical models [3,4] and understanding many phe-
nomena in astrophysics [5,6]. The biggest uncertainty of EoS
comes from its isovector parts, which are governed by the
nuclear symmetry energy S(ρ). The symmetry energy can be
expanded as a function of ε = (ρ − ρ0)/3ρ0 by

S(ρ) = J + Lε + 1
2 Ksymε2 + . . . (1)

where J = S(ρ0) is the symmetry energy at saturation density

ρ0, while L = 3ρ0( ∂S
∂ρ

)|ρ=ρ0
and Ksym = 9ρ2

0 ( ∂2S
∂ρ2 )|ρ=ρ0

cor-
respond to the slope and curvature parameters at saturation
density, respectively.

The slope parameter of symmetry energy L determines
the behavior of symmetry energy at high density; however,
it varies a lot in different nuclear models. Constraints on L
can be obtained from heavy-ion collisions [1,7], properties
of neutron stars [5,8], and nuclear properties of ground and
excited states of finite nuclei [9]. For example, it is revealed
that L is proportional to the neutron-skin thickness �Rnp by
the droplet model [10,11], which is further confirmed by many
microscopic models [12,13]. However, obstacles in the mea-
surements of neutron radius hinder access to high-resolution
neutron-skin data. As an alternative, charge radii difference
�Rc between mirror nuclei is proposed as another possible
way to constrain L [14–16], which also faces difficulties in
the measurements of charge radius in a proton-rich nucleus.
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The electric dipole (E1) excitation in a nucleus is mainly
composed of giant dipole resonance (GDR), which is formed
by the relative dipole oscillation between neutrons and pro-
tons, thus reflecting asymmetry information in nuclear EoS.
The electric dipole polarizability αD, being proportional to
the inverse energy-weighted sum rule of E1 excitation, can
serve as a possible probe for nuclear isovector properties.
Theoretically, the (quasiparticle) random-phase approxima-
tion [(Q)RPA] approach is widely used to describe small
oscillations of nuclei, such as E1 excitations. Self-consistent
(Q)RPA models have been developed based on Skyrme den-
sity functionals [17–19], Gogny density functionals [20,21],
and relativistic density functionals [22–25]. Global properties
of GDR, such as centroid energies and electric dipole polariz-
abilities, can be well described within this approximation.

Based on these self-consistent (Q)RPA models, correla-
tions between electric dipole polarizability αD and other
nuclear isovector properties have been investigated in re-
cent years. Calculations performed by RPA model based on
Skyrme density functionals in the SV-min series [26] and
relativistic density functionals in the RMF-δ-t series in 208Pb
suggested a strong linear correlation between αD and neutron-
skin thickness �Rnp [27]. However, when one combines the
results from a host of different nuclear density functionals,
this linear correlation is not universal anymore [28]. Start-
ing from the droplet model, and further supported by RPA
calculations based on many different Skyrme and relativistic
density functionals in 208Pb, the product of dipole polariz-
ability and symmetry energy at saturation density αDJ was
suggested to be much better correlated with neutron-skin
thickness and symmetry energy slope parameter L than αD

alone is [29]. Based on this correlation, L = 43 ± (6)expt ±
(8)theor ± (12)est MeV was given by using the experimental αD
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value in 208Pb [29], and the intervals J = 30–35 MeV and L =
20–66 MeV were further obtained by combining the measured
polarizabilities in 68Ni, 120Sn, and 208Pb [30]. Below satura-
tion density, αD in 208Pb was also found to be sensitive to
both the symmetry energy S(ρc) and slope parameter L(ρc)
at the subsaturation cross density ρc = 0.11 fm−3 [31]. Since
S(ρc) is well constrained, L(ρc) can be strongly constrained
from experimental αD in 208Pb [31]. At ρr = ρ0/3, another
linear correlation was built between α−1

D and S(ρr ) [32]. Ad-
ditionally, αD between two different nuclei [33], as well as
αDJ between two different nuclei [30], were also shown to
have good linear correlations.

In recent years, the electric dipole polarizabilities αD in
208Pb [34], 48Ca [35], and stable Sn isotopes [33,36,37] were
measured with high resolution via polarized proton inelastic
scattering at extreme forward angles [38]. For unstable nu-
cleus 68Ni, αD was also extracted by Coulomb excitation in
inverse kinematics [39]. However, there are problems when
one uses these high-resolution dipole polarizability data to
constrain isovector properties: the constraint on L or �Rnp

is either with big uncertainties due to the uncertainty of J
or with very big model uncertainties. One way to solve the
problem and constrain L stiffly is to find a stronger and direct
correlation between αD and L. Although the previous studies
have shown that the model-independent linear correlation only
exists between αDJ and L, it was only limited to stable nuclei
or nuclei near the β-stability line. It is well known that exotic
phenomena will be present when approaching nuclei far from
the β-stability line, such as novel shell structures [42–46],
new types of excitations [23,47,48], and so on. Previous stud-
ies have shown that properties of neutron-rich nuclei with
N ≈ 2Z , such as binding energy, show stronger sensitivity to
the symmetry energy parameters [40,41]. For E1 excitations,
pygmy dipole resonance (PDR) appears in neutron-rich nu-
clei [23,47,48], which would cause different characteristics of
E1 excitations compared to the ones around the β-stability
line, and further affect αD. So an interesting question is if the
linear correlation between αDJ and L observed in stable nuclei
still holds and new correlations would appear in neutron-rich
nuclei.

Therefore, in our paper we will explore the correlations
between αD and nuclear isovector properties such as slope
parameter L and neutron-skin thickness �Rnp in even-even Sn
isotopes from neutron-deficient 100Sn to neutron-rich 164Sn.
The calculations are performed by QRPA based on the Skyrme
Hartree-Fock-Bogoliubov (HFB) model, in which the spher-
ical symmetries are imposed. The linear correlations are
evaluated by a least-square regression analysis. Based on the
newly discovered correlations, constraints on L and neutron-
skin thickness will be discussed.

II. THEORETICAL FRAMEWORK

We carry out a self-consistent HFB + QRPA calcula-
tion of E1 strength using 24 Skyrme functionals: SIII,
SIV, SV, SVI [49], SLy230a, SLy230b, SLy4, SLy5,
SLy8 [50,51], SAMi [52], SAMi-J30, SAMi-J31, SAMi-
J32, SAMi-J33 [53], SGI, SGII [54], SkM [55], SkM* [56],
Ska [57], MSk1, MSk2 [58], MSk7 [59], BSk1 [60],

BSk2 [61]. The detailed formulas of QRPA on top of HFB
can be found in Ref. [18]. The density-dependent zero-range
surface pairing force is implemented in the particle-particle
channel:

Vpp(r1, r2) = V0

[
1 − ρ(r)

ρ0

]
δ(r1 − r2) (2)

where r = (r1 + r2)/2, and ρ0 = 0.16 fm−3 is the nuclear sat-
uration density, while V0 is adjusted by fitting neutron pairing
gaps of 116∼130Sn according to the five-point formula [62]. The
electric dipole polarizability αD is given by

αD = 8πe2

9
m−1, m−1 =

∑
ν

∣∣〈ψν‖F (IV)
1 ‖ψ0〉

∣∣2

Eν

(3)

where ψν and Eν are the eigenstates and eigenvalues of
QRPA equations, and ψ0 is the ground state. m−1 is the in-
verse energy-weighted sum rule, which is calculated using the
isovector dipole operator:

F (IV)
1μ = N

A

Z∑
p=1

rpY1μ − Z

A

N∑
n=1

rnY1μ (4)

where A, N , and Z denote mass number, neutron number, and
proton number, and Y1μ are the spherical harmonics. In our
calculations, the quasiparticle energy cutoff Ecut is set as 90
MeV and the total angular momentum cutoff of quasiparticle
jmax is set as 21/2 to ensure the convergence of numerical
results.

III. RESULTS AND DISCUSSIONS

A. Correlations between αD and nuclear isovector properties

First of all, we study if the previously discovered linear
correlation between αDJ and L holds in all tin isotopes from
neutron-deficient ones to neutron-rich ones. So in Table I,
Pearson correlation coefficients (or Pearson coefficient) r be-
tween αDJ and L in even-even Sn isotopes from 100Sn to
160Sn, as well as the corresponding slopes k of the regres-
sion lines, are shown based on the HFB+QRPA calculations
using 24 Skyrme density functionals. Pearson coefficient r
is a statistic that measures linear correlation between two
variables, which is defined by the covariance of two variables
divided by the product of their standard deviations. A value
of |r| = 1 means that the two observables are fully linearly
correlated while r = 0 means they are totally uncorrelated.
From Table I, one can see the Pearson coefficients r in all Sn
isotopes are all above 0.95, showing strong linear correlations
between αDJ and L. So it further proves this linear correlation
is a universal one which exists not only in stable nuclei as
revealed in previous studies [29] but also in neutron-deficient
and neutron-rich nuclei. The corresponding slope k of the
regression line shows a clear increase trend with the increase
of neutron number. The larger k value means a more rapid
increase of αDJ as a function of L, which gives a smaller
range of L under the same uncertainty of αDJ . So the slope
k of the regression line is an important quantity to select good
candidate nuclei as probes of nuclear isovector properties,
which will be discussed in detail in Sec. III B.
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TABLE I. Pearson coefficient r between the product of dipole polarizability and saturated symmetry energy αDJ and the slope parameter
of symmetry energy L in Sn isotopes, as well as the corresponding slope k of the regression line (αDJ as a function of L), calculated by QRPA
based on HFB with 24 Skyrme density functionals.

Nucleus 100Sn 110Sn 120Sn 130Sn 140Sn 150Sn 160Sn

r 0.975 0.977 0.981 0.971 0.975 0.967 0.951
k (fm3) 0.837 1.071 1.361 1.503 2.234 2.837 3.406

Although the above correlation is universal, it cannot pro-
vide a stiff constraint on the slope parameter of symmetry
energy L due to the uncertainty in the symmetry energy J .
For example, by adopting J = 31 ± 2 MeV, Roca-Maza et al.
obtained L = 43 ± (6)expt ± (8)theor ± (12)est MeV, where the
uncertainty ±12 MeV comes from the uncertainty of J [29].
So it would be better to find a direct correlation between αD

and L. Previous studies have shown that L and αD have a good
linear correlation within some specific parameter family [27];
however, by including different parameter families, this cor-
relation becomes bad; for example, in 208Pb the Pearson
coefficient r was given as r = 0.62 [29] and r = 0.77 [28].
Here we recheck the correlation between the dipole polar-
izability αD and the slope parameter L of symmetry energy
for all tin isotopes from neutron-deficient ones to neutron-rich
ones, as shown in Fig. 1, to see if the previous conclusions
still hold. In stable nucleus 120Sn, for some specific Skyrme
parameter family, such as SAMi (green diamonds) or SIII-SVI
(up blue triangles), one can observe a good linear correlation,
in agreement with Ref. [27]. However, when one includes
more different Skyrme parameter sets, the linear correlation
becomes poor, and the Pearson coefficient r is around 0.85,
again in agreement with the case in 208Pb [28,29]. Similar
situations still exist in nuclei not far from the stability line
such as 100,110,130Sn.

However, the cases become totally different in the neutron-
rich nuclei. The coefficients are above 0.9 for the isotopes
with mass number A � 136, which present strong correlations
between αD and L in the neutron-rich Sn isotopes. After
A � 146, where the neutron number is nearly equal to twice
the proton number, the correlation between αD and L is even
better than the one between αDJ and L. We stress here that the
assessments are carried out by a variety of different Skyrme
functional families. However, it needs to be further checked
by the inclusion of more nuclear models. For the neutron-rich
nuclei of A � 136 with a clear linear correlation, we further
give the slopes k of the regression lines. It is seen that k
becomes larger with the increase of neutron number, which
implies that the more neutron rich the nucleus is, the better
the probe it can serve as for nuclear isovector properties.
This result also supports the previous findings in Ref. [41]
that the properties of extreme neutron-rich systems play a
predominant role in narrowing down the uncertainties in the
various symmetry energy parameters.

To understand the above strong linear correlations in
neutron-rich Sn isotopes, we first investigate the role of pair-
ing correlations. So in Fig. 2 the correlations between αD and
L in 120,140,150,160Sn are studied without considering pairing
effects. For stable nucleus 120Sn, the correlation between αD

and L is similar to the case with pairing correlations, where

FIG. 1. Plots for dipole polarizability αD against slope parameter of symmetry energy L in Sn isotopes calculated by QRPA based on
HFB with 24 Skyrme density functionals: SIII, SIV, SV, SVI (blue up triangles); SLy230a, SLy230b, SLy4, SLy5, SLy8 (red circles); SAMi,
SAMi-J30, SAMi-J31, SAMi-J32, SAMi-J33 (green diamonds); SGI, SGII, SkM, SkM*, Ska (black squares); MSk1, MSk2, MSk7, BSk1,
BSk2 (navy blue down triangles). A regression line (red solid line) is obtained by a least-square linear fit of the calculated αD as a function of
L. r is Pearson coefficient and k (fm3/MeV) is the slope of the regression line.
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FIG. 2. The same as Fig. 1 but for 120,140,150,160Sn without the
pairing correlations.

the Pearson coefficient is only slightly reduced without the
inclusion of pairing correlations. Going towards neutron-rich
nucleus 140Sn, the linear correlation coefficient reduces more.
For more neutron-rich nuclei 150,160Sn, the linear correla-
tions become much worse, where the Pearson coefficients are
largely reduced to the values 0.915 and 0.917, respectively.
This shows that the pairing correlations play important roles
in keeping strong linear correlations between αD and L in
neutron-rich Sn isotopes.

On the other hand, for neutron-rich nuclei, the PDR ap-
pears in the low-energy part of the E1 transition strength
distribution, which would give big contributions to the dipole
polarizability. Since PDR represents an oscillation between
the neutron skin and the nearly isospin-saturated core, the
correlations between its strengths and symmetry energy were
also explored [27,63–65], although it is still an open question.
Inspired by this, we extract the contributions of PDR to αD

in Sn isotopes in Fig. 3, where the total dipole polarizabilities
and contributions from PDR as functions of mass number A
in even-even Sn isotopes calculated by QRPA and RPA using
Skyrme functional SLy4 are plotted. According to the dipole
strength distributions and the transition densities, different
energies are selected as the upper boundaries of PDR for
different Skyrme functionals, which are 8.5 MeV for MSk
and BSk families; 9.0 MeV for SVI; 10.0 MeV for SIII, the
SLy family, SkM, SkM*, and SGII; 10.5 MeV for Ska and the
SAMi family; 11.0 MeV for SGI; 12.0 MeV for SIV; and 13.0
MeV for SV.

Starting from 132Sn, the PDR appears and starts to con-
tribute to the dipole polarizability αD. When the neutron
number increases, the contribution from PDR becomes larger
and larger, which dominates the evolution trend with mass
number of the total αD. With the pairing correlations being
turned off, the contribution from PDR to αD is greatly reduced,
which almost keeps a small constant with the increase of
neutron number. As a result, the total αD is also reduced a

FIG. 3. The dipole polarizabilities as functions of mass number
A in even-even Sn isotopes calculated by QRPA (square line) and
RPA (circle line) using Skyrme functional SLy4. The total dipole po-
larizabilities (red) and the contributions from PDR (blue) are shown,
respectively.

lot, and its increase trend with mass number becomes as slow
as that before 132Sn. Before 132Sn, the pairing correlations
only have very small influences on αD. Therefore, it can be
seen that the pairing correlations play their important roles
on dipole polarizabilities and further the linear correlations
between αD and L through PDR.

In Fig. 4 we further study the correlation between dipole
polarizabilities αD contributed by PDR and the slope pa-
rameter L of symmetry energy in 134Sn, 140Sn, 150Sn, and
160Sn isotopes. It shows that polarizability αD of PDR has
a good correlation with the slope parameter L in general,

FIG. 4. Plots for dipole polarizability contributed by PDR
against slope parameter of symmetry energy in 134,140,150,160Sn
isotopes calculated by QRPA based on HFB with 24 Skyrme den-
sity functionals: SIII, SIV, SV, SVI (blue up triangles); SLy230a,
SLy230b, SLy4, SLy5, SLy8 (red circles); SAMi, SAMi-J30, SAMi-
J31, SAMi-J32, SAMi-J33 (green diamonds); SGI, SGII, SkM,
SkM*, Ska (black squares); MSk1, MSk2, MSk7, BSk1, BSk2 (navy
blue down triangles). A linear fit is done for each nucleus (red solid
line) with a corresponding Pearson coefficient r.
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FIG. 5. Plots for neutron-skin thickness �Rnp against dipole po-
larizability αD in 150,160Sn calculated by QRPA based on HFB with
24 Skyrme density functionals: SIII, SIV, SV, SVI (blue up triangles);
SLy230a, SLy230b, SLy4, SLy5, SLy8 (red circles); SAMi, SAMi-
J30, SAMi-J31, SAMi-J32, SAMi-J33 (green diamonds); SGI, SGII,
SkM, SkM*, Ska (black squares); MSk1, MSk2, MSk7, BSk1, BSk2
(navy blue down triangles). A regression line (red solid line) is ob-
tained by a least-square linear fit of the calculated �Rnp as a function
of αD. r is Pearson coefficient and k (fm−2) is the slope of regression
line.

which enhances the linear correlations between the total αD

and symmetry energy slope parameter L.
Apart from the correlation between αD and L, the corre-

lation between αD and another important isovector property,
i.e., neutron-skin thickness, is also investigated, and the plots
for neutron-skin thickness against dipole polarizability in
150,160Sn are shown in Fig. 5. Not surprisingly, the linear cor-
relations between �Rnp and αD in 150Sn and 160Sn are strong
with r = 0.952 and 0.958, respectively, since the neutron-skin
thickness �Rnp and L are reported to have a good linear corre-
lation when |N − Z| is large [15]. The slopes k of regression
lines, fitted by �Rnp as a function of αD, are generally small in
these neutron-rich nuclei, suggesting that αD in neutron-rich
nuclei can provide an effective constraint on neutron-skin
thickness of the corresponding nuclei.

B. αD as a probe of nuclear isovector properties

In Sec. III A, the correlations between αD (or αDJ) and
nuclear isovector properties, e.g., L and �Rnp, are investigated
for all tin isotopes, so in the following we will analyze what
information we can obtain from these correlations, and which

nucleus could be treated as a proper probe of nuclear isovector
properties in terms of dipole polarizabilities.

Experimentally, the dipole polarizabilities of 208Pb [34],
68Ni [39], 48Ca [35], and stable Sn isotopes [36] were mea-
sured with high resolution. The correlations between αDJ
and L are always strong for both stable nuclei and nuclei far
from the stability line from previous studies and our results in
Sec. III A. So in Table II we show the constraints on the slope
parameter of symmetry energy L from experimental dipole
polarizability values α

exp.
D using correlation between αDJ and

L in these experimentally measured nuclei. The correlations
between αDJ and L are obtained by QRPA calculations using
24 Skyrme density functionals as done in Sec. III A. The cor-
responding Pearson coefficients r and slopes k of regression
lines fitted by αDJ as a function of L are also given in Table II.
It can be seen that the linear correlations are well kept for
all these nuclei with r > 0.95. J = 31.7 ± 3.2 MeV from the
statistic analysis of various available constraints [2] is adopted
for deducing the L value. The uncertainty of L is determined
by �L = (J�αD + αD�J )/k, where �αD and �J are the
uncertainties of αD and J , respectively. From Table II, it can be
seen that L has remarkable uncertainties which are all larger
than ±30 MeV. In the limiting case �αD = 0, the uncertainty
of slope parameter �Lmin comes only from the uncertainty of
J , which is also given in Table II, which shows that the uncer-
tainty of J contributes more than half of the total uncertainties
of L, which hinders the effective constraints on L from the
correlation between αDJ and L. However, with the increase
of neutron number in Sn isotopes, �Lmin has the tendency to
become smaller. This is because the slope k of the regression
line increases faster than the dipole polarizability αD with the
increase of neutron number, and hence αD/k becomes smaller.
So the uncertainty caused by �J would become small if one
finds a nucleus with a small αD/k value.

Based on the analysis of neutron-rich Sn isotopes with
24 Skyrme functionals in Sec. III A, a strong correlation be-
tween αD and L appears in neutron-rich nuclei (seeing Fig. 1)
where the PDR gives a considerable contribution to the inverse
energy-weighted sum rule m−1. So it provides a more effective
way to constrain L directly from dipole polarizability. More-
over, the slope k of the regression line (in Fig. 1) becomes
larger with the increase of neutron number, which makes the

TABLE II. Constraints on the slope parameter of symmetry energy L from experimental dipole polarizability values α
exp.
D [30,34–36,39]

using linear correlation between αDJ and L obtained by Skyrme QRPA calculations using 24 Skyrme functionals. The Pearson coefficient r
and the slope k of the regression line fitted by αDJ as a function of L are also given. J = 31.7 ± 3.2 MeV is adopted [2]. �Lmin denotes the
uncertainty coming from the uncertainty of J .

Nucleus α
exp.
D (fm3) r k (fm3) L (MeV) �Lmin (MeV)

208Pb 19.6 ± 0.60 0.98 2.632 38.07 ± 31.05 ± 23.83
68Ni 3.88 ± 0.31 0.97 0.554 33.29 ± 40.16 ± 22.42
48Ca 2.07 ± 0.22 0.97 0.323 15.76 ± 42.11 ± 20.51
112Sn 7.19 ± 0.50 0.98 1.106 12.81 ± 35.13 ± 20.80
114Sn 7.29 ± 0.58 0.98 1.154 10.62 ± 36.16 ± 20.22
116Sn 7.52 ± 0.51 0.98 1.225 12.03 ± 32.85 ± 19.64
118Sn 7.91 ± 0.87 0.98 1.299 18.44 ± 40.72 ± 19.49
120Sn 8.08 ± 0.60 0.98 1.362 17.67 ± 32.98 ± 19.00
124Sn 7.99 ± 0.56 0.98 1.439 8.46 ± 30.10 ± 17.77
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FIG. 6. The dipole polarizability αD (a) in 208Pb and (b) in 160Sn
as a function of the dipole polarizability in 150Sn. The dipole polariz-
ability αD (c) in 208Pb and (d) in 124Sn times the symmetry energy
at saturation density J as a function of the dipole polarizability
in 150Sn. Calculations are done by QRPA based on HFB with 24
Skyrme density functionals: SIII, SIV, SV, SVI (blue up triangles);
SLy230a, SLy230b, SLy4, SLy5, SLy8 (red circles); SAMi, SAMi-
J30, SAMi-J31, SAMi-J32, SAMi-J33 (green diamonds); SGI, SGII,
SkM, SkM*, Ska (black squares); MSk1, MSk2, MSk7, BSk1, BSk2
(navy blue down triangles). r is the Pearson coefficient. Utilizing the
experimental values of αD in 208Pb [30,34] and in 124Sn [36], and
assuming J = 31.7 ± 3.2 MeV [2], the dipole polarizability of 150Sn
is predicted to be between 14.18 and 16.27 fm3.

constraints on L from this correlation in neutron-rich nuclei
more stiff. For example, an uncertainty of ±0.5 fm3 in αD

of 140Sn, which is about the present accuracy for experimen-
tal measurement in dipole polarizability, could constrain L
within ±10 MeV, while with the same uncertainty of αD in
160Sn, L can be constrained within ±6.5 MeV. However, for
these neutron-rich nuclei, the experimental data for dipole
polarizabilities are still unavailable, so we first need to make
predictions on αD in neutron-rich nuclei.

In Fig. 6(a), we study the correlations of αD between 208Pb
and 150Sn. Although it was found that αD between two stable
nuclei, e.g., between 208Pb and 120Sn, have a good linear
correlation [30,33]; this correlation is no longer well kept
when it is extended to αD between one stable nucleus and
one neutron-rich nucleus, e.g., between 208Pb and 150Sn, as
seen in Fig. 6(a). The correlation between two neutron-rich
nuclei, e.g., between 160Sn and 150Sn, is further checked in
Fig. 6(b), and it becomes strong again. So one fails to predict
αD of neutron-rich nuclei from αD of stable nuclei directly.
Since both αDJ in stable nuclei and αD in neutron-rich nuclei
linearly correlate with L, αDJ in stable nuclei should also lin-
early correlate with αD in neutron-rich nuclei. This is checked
by our calculations in Fig. 6, where αDJ in 208Pb [Fig. 6(c)]
and in 124Sn [Fig. 6(d)] as a function of αD in 150Sn are
plotted. Good linear correlations with r = 0.963 and 0.974 are
found, respectively, which can be used for the predictions of
αD in 150Sn as well as other neutron-rich nuclei. Utilizing the
experimental αD values of 208Pb and 124Sn, shown in Table II,

and adopting J = 31.7 ± 3.2 MeV [2], αD ∈ [12.31, 16.27]
and [14.18, 18.28] fm3 are obtained for 150Sn. The overlap
αD ∈ [14.18, 16.27] fm3 is finally taken as the predicted value
for 150Sn.

The same process can be done for other neutron-rich nu-
clei. The predicted αD from 140Sn to 160Sn are given in
Table III, with which the corresponding constraints on L and
neutron-skin thickness �Rnp are deduced and presented in
Table III from the correlations between αD and L, as well
as between �Rnp and αD. The corresponding Pearson coef-
ficients r of both correlations are shown in Table III, and it
can be seen that the linear correlations are very well kept
for all these neutron-rich nuclei. Here since the L values are
constrained from the linear correlation between αD and L
directly, the uncertainties become much smaller compared to
those shown in Table II. With the increase of neutron number,
the slope of the regression line fitted by αD as a function of
L becomes larger, and as a result the uncertainty of L also
becomes smaller until 156Sn even with an increasing uncer-
tainty in the predicted αP

D. For the neutron-skin thickness, the
slope of the regression line fitted by �Rnp as a function of αD

keeps almost constant with increasing neutron number, yet the
uncertainties of constrained neutron-skin thickness become
larger due to the increasing uncertainties in αP

D.
Making use of the direct correlations between αD and

L, small uncertainties in the value of L can be obtained, if
the αD values of neutron-rich nuclei can be measured with
the same accuracy as the stable nuclei. However, since the
correlations between αD and L are studied within Skyrme
density functionals, the uncertainties may become bigger with
the introduction of different theoretical models. Due to the
lack of experimental data of αD in neutron-rich nuclei, the
present constraints on L shown in Table III in fact do not
give new information compared to the L values obtained from
the correlation between L and αDJ in 208Pb and in 124Sn.
Nevertheless, the direct correlation between αD and L would
show its special importance and effectiveness in constraining
nuclear isovector properties when the experimental data of αD

in neutron-rich tin isotopes are available, so measurements of
dipole polarizability towards neutron-rich nuclei are strongly
called for.

IV. SUMMARY

The correlations between electric dipole polarizability αD

(or times symmetry energy at saturation density J) and slope
parameter of symmetry energy L are studied in Sn isotopes
preformed by QRPA based on Skyrme HFB theory. The previ-
ously found correlation between αDJ and L is confirmed in all
Sn isotopes from neutron-deficient ones to neutron-rich ones.
The linear correlation between αD and L is not strong in sta-
ble tin isotopes and their surroundings; however, it becomes
better for mass number A > 132, and strong correlations are
found when A � 136 with the correlation coefficients r > 0.9,
where PDR gives a considerable contribution to αD. After
A � 146, where the neutron number is nearly equal to twice
the proton number, the correlation between αD and L is even
better than the one between αDJ and L. The enhancement of
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TABLE III. Predictions of the dipole polarizabilities in neutron-rich Sn isotopes from experimental dipole polarizabilities of 208Pb [30,34]
and 124Sn [36,37] using the correlations shown in Figs. 6(c) and 6(d). The constrained values of slope parameter of symmetry energy L and
neutron-skin thickness of neutron-rich Sn isotopes are also given from the correlations shown in Figs. 1 and 5. The Pearson coefficients r and
slopes of regression line k fitted by dipole polarizability αD as a function of L, as well as by neutron-skin thickness �Rnp as a function of αD,
are also shown, respectively.

αD as a function of L �Rnp as a function of αD

Nucleus αP
D (fm3) r k (fm3/MeV) L (MeV) r k (fm−2) �Rnp(fm)

140Sn 12.07 ± 0.88 0.93 0.050 19.9 ± 17.7 0.91 0.034 0.295 ± 0.030
142Sn 12.67 ± 0.93 0.94 0.053 20.4 ± 17.4 0.92 0.034 0.317 ± 0.031
144Sn 13.31 ± 0.96 0.96 0.056 20.9 ± 17.1 0.93 0.034 0.338 ± 0.033
146Sn 13.95 ± 1.00 0.97 0.059 21.3 ± 16.8 0.94 0.034 0.359 ± 0.034
148Sn 14.59 ± 1.02 0.97 0.062 21.7 ± 16.5 0.95 0.034 0.379 ± 0.035
150Sn 15.22 ± 1.04 0.98 0.064 22.0 ± 16.3 0.95 0.034 0.398 ± 0.036
152Sn 15.83 ± 1.07 0.99 0.066 22.3 ± 16.1 0.95 0.034 0.417 ± 0.036
154Sn 16.41 ± 1.10 0.99 0.069 22.5 ± 16.0 0.96 0.033 0.434 ± 0.037
156Sn 16.94 ± 1.13 0.99 0.071 22.7 ± 15.8 0.95 0.033 0.451 ± 0.037
158Sn 17.48 ± 1.18 0.99 0.074 22.6 ± 15.9 0.96 0.032 0.465 ± 0.038
160Sn 17.96 ± 1.23 0.99 0.077 22.6 ± 15.9 0.96 0.032 0.479 ± 0.039

this correlation between αD and L is attributed to the pairing
correlations, which play important roles through PDR.

With the available high-resolution data of αD, the con-
straints on L are obtained from the correlation between αDJ
and L. Large uncertainties of L are found, where more than
half are contributed by the uncertainty from symmetry energy
�J = ±3.2 MeV. A proper candidate nucleus for constraining
L is the one with a small αD/k value, where k is the slope of
the regression line fitted by αDJ as a function of L. In stable Sn
isotopes, the αD/k becomes smaller towards the neutron-rich
side.

With the strong correlation between αD and L in neutron-
rich Sn isotopes, L can be constrained directly and more
stiffly if experimental data of αD with high resolution in these
nuclei are known. At the moment, αD in neutron-rich nuclei
are predicted using the linear correlation between αDJ in a
stable nucleus with experimental data and αD in a neutron-rich
nucleus.

The constraints on nuclear isovector properties are ob-
tained based on the strong correlations between αD and
nuclear isovector properties in neutron-rich nuclei. Neverthe-
less, present calculations are still limited to Skyrme density
functionals. More verifications of these correlations between
αD in neutron-rich nuclei and nuclear isovector properties
based on different theoretical models are encouraged. At the
same time, measurements of electric dipole polarizability to-
wards neutron-rich nuclei are called for.
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