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Constraining the nonanalytic terms in the isospin-asymmetry expansion
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We examine the properties of the isospin-asymmetry expansion of the nuclear equation of state from chiral
two- and three-body forces. We focus on extracting the high-order symmetry energy coefficients that consist of
both normal terms (occurring with even powers of the isospin asymmetry) as well as terms involving the loga-
rithm of the isospin asymmetry that are formally nonanalytic around the expansion point of isospin-symmetric
nuclear matter. These coefficients are extracted from numerically precise perturbation theory calculations of
the equation of state coupled with a new set of finite difference formulas that achieve stability by explicitly
removing the effects of higher-order terms in the expansion. We consider contributions to the symmetry energy
coefficients from both two- and three-body interactions. It is found that the coefficients of the logarithmic
terms are generically larger in magnitude than those of the normal terms from second-order perturbation theory
diagrams, but overall the normal terms give larger contributions to the ground state energy. The high-order
isospin-asymmetry terms are especially relevant at large densities where they affect the proton fraction in
β-equilibrium matter, and in particular we find that at twice saturation density they can reduce the proton fraction
by up to 0.02.
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I. INTRODUCTION

The equation of state (EOS) of nuclear matter at arbitrary
proton fraction and density is crucial for understanding the
structure and dynamics of neutron stars [1–4], the properties
of neutron-rich nuclei [5–9], and data from terrestrial heavy-
ion collision experiments [10–12]. For many years it has been
assumed that the isospin-asymmetry expansion of the nuclear
EOS at zero temperature follows a Maclaurin series

Ē (n, δ) = A0(n) + A2(n)δ2 + A4(n)δ4 + · · · , (1)

where Ē is the energy per particle, n is the total baryon number
density, δ is the isospin asymmetry defined by δ = (nn −
np)/(nn + np) with nn and np the number densities of neutrons
and protons, and we have neglected the small neutron-proton
mass splitting which would give rise to odd powers of δ.
Previous microscopic calculations [13–16] with realistic nu-
clear forces have found that the sum of the higher-order terms
(A2i�4) is relatively small around saturation density. However,
the convergence of the isospin-asymmetry expansion of the
nuclear matter equation of state at higher densities is poorly
known [17]. Recent studies have shown that when the den-
sity is high, the terms A2i�4 are significant for understanding
neutron star structure. In particular the quartic term, and even
the δ6 term, may enhance the proton fraction of β-equilibrium
nuclear matter at high density [4,18], which can modify the
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critical density for the direct URCA process [1] and lead to
faster cooling of neutron stars [19]. Note that even when the
density is low, the density dependence of A2 is important for
studying the collisions of neutron-rich nuclei [20].

Recently, in Ref. [21] it was discovered that perturbation
theory calculations beyond the Hartree-Fock approximation
can give rise to a modified form of the isospin-asymmetry
expansion

Ē (n, δ) = A0(n) + A2(n)δ2

+
∑
i>1

(
A2i(n) + A2i,l (n) log |δ|)δ2i, (2)

which involves nonanalytic logarithm contributions that van-
ish at both δ = 0 and δ = 1. The form in Eq. (2) was obtained
through analytic calculations carried out with a model zero-
range contact potential [21] and later verified numerically [22]
with a set of realistic chiral nuclear forces. In Ref. [22] it was
also shown that the nonanalytic nature of Ē (n, δ) in the vicin-
ity of δ = 0 appears to persist at low temperature and high
density, though only a qualitative threshold region could be
identified. A series expansion in the isospin asymmetry, such
as Eqs. (1) and (2), allows for an efficient representation of the
energy per particle and associated derivatives with respect to
the isospin asymmetry once the coefficients are determined at
a given nuclear density. These coefficients can be extracted
from a small set of precisely calculated energies at a few
different values of δ through finite difference methods as we
show in detail below.
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The modified form of the isospin-asymmetry expansion in
Eq. (2) has important implications for the nuclear symmetry
energy Esym(n), which is defined as the difference between
the pure neutron matter equation of state and the isospin-
symmetric nuclear matter equation of state at a given density:
Esym(n) = Ē (n, δ = 1) − Ē (n, δ = 0), which is the sum of
the coefficients of the regular terms Esym(n) = ∑

i>0 A2i(n) in
the expansion Eqs. (1) and (2). In other works, the symmetry
energy is defined as 1

2∂2E/∂δ2|δ=0, which is the coefficient
A2(n) in the expansions of Eqs. (1) and (2). Both definitions of
the symmetry energy, however, contain no information about
the strength of the logarithmic contributions, which affect the
ground state energy of nuclear matter at intermediate values of
the isospin asymmetry δ. This could be especially important
in the context of neutron stars, since the δ4 ln |δ| contribution
peaks at a value of δ = e−1/4 � 0.78, and the higher-order
terms peak at even larger values of δ close to that found
in neutron stars. Nevertheless, recent studies [22,23] have
suggested that around saturation density the regular terms
of the isospin-asymmetry expansion of the nuclear EOS are
dominant over the logarithmic terms.

In the present work we extract for the first time the
high-order terms of the isospin-asymmetry expansion of the
nuclear EOS up to sixth order in powers of δ. We em-
ploy chiral effective field theory (EFT) nuclear interactions
including two-body and three-body forces. In chiral EFT,
the nuclear interactions are organized in a systematic ex-
pansion of the ratio (Q/�χ )v , where Q is the characteristic
energy scale of the system (or the pion mass) and �χ ≈
1 GeV is the chiral symmetry breaking scale. The interac-
tions in chiral EFT naturally include short-, intermediate-, and
long-range interactions [24,25]. The short-range two-body
interactions are fitted to nucleon-nucleon (NN) data, such
as nucleon-nucleon scattering phase shifts and properties of
the deuteron. The three-nucleon forces (3NF) that appear at
N2LO (next-to-next-to-leading order) in chiral EFT are es-
sential for microscopic descriptions of nuclei [26–31] and
the properties of nuclear matter in neutron stars [32–41]. For
the chiral nuclear forces employed in the present work, the
low-energy constants associated with short-range three-body
interactions are fitted to the binding energies of 3H and 3He as
well as the β-decay lifetime of 3H [42–44].

To extract the high-order isospin-asymmetry coefficients,
we employ a modified finite difference method extended to
account for both the normal and divergent logarithm terms,
A2i and A2i;l . In addition, the method explicitly eliminates the
influence of higher-order terms, leading to enhanced conver-
gence. By varying the step size in the normal finite difference
method, we can build a chain of equations to solve for the
coefficients A2i and A2i;l numerically. After applying this
method, we find that the second-order term A2δ

2 remains
the dominant component of the asymmetric nuclear matter
equation of state, but the inclusion of the logarithmic terms
increases the precision of the isospin-asymmetry expansion.

As an application, we consider the proton fraction in
β-equilibrium nuclear matter, which can be determined by
enforcing chemical equilibrium for the weak reactions

n → p + e− + ν̄e, p + e− → n + νe (3)

that comprise the direct URCA process [1]. The equilibrium
of the above two processes is closely related to the symme-
try energy, and by expanding the EOS up to sixth order in
powers of δ we extract the associated proton fraction. We
find that for all chiral potentials employed in this work, the
fourth-order terms reduce the proton fraction at low densities
n < 1.5n0, where n0 = 0.16 fm−3 is the saturation density of
nuclear matter. At higher densities, however, there is greater
model dependence on the choice of chiral interaction. Since
the regular terms receive contributions at both the Hartree-
Fock level and second-order perturbation theory, they play a
more important role in the proton fraction than the logarithmic
terms.

The paper is organized as follows. In Sec. II we briefly
review the formalism for computing the nuclear matter equa-
tion of state in many-body perturbation theory. In Sec. III the
normal and modified finite-difference methods are described
in detail. In Sec. IV we extract the numerical results for the
coefficients A2, A2i, and A2i,l from Hartree-Fock and second-
order perturbation theory calculations of the asymmetric
nuclear matter equation of state obtained from the modi-
fied finite difference method. We end with a summary and
discussion.

II. EOS FROM MANY-BODY PERTURBATION THEORY

To calculate the ground state energy of nuclear matter, we
start with the Hamiltonian

H =
∑

i

p2
i

2M
+ 1

2

∑
i j

Vi j + 1

6

∑
i jk

Vi jk = H0 + HI , (4)

where �pi is the momentum of nucleon i, Vi j is the two-body
interaction between nucleon i and j, and Vi jk is the three-
body interaction between nucleons i, j, and k. The perturbing
interaction is defined by HI = 1

2

∑
i j Vi j + 1

6

∑
i jk Vi jk .

At the Hartree-Fock level

E = 〈�0|HI |�0〉, (5)

where |�0〉 is the noninteracting ground state and HI is the in-
teraction part of nuclear Hamiltonian. The two-nucleon force
contribution reads

E (1)
NN = 1

2

∑
i j

〈i j|Vi j |i j〉, (6)

where i, j refer to filled states in the noninteracting Fermi sea.
For homogeneous nuclear matter at zero temperature in the
thermodynamic limit

E (1)
NN = 1

2

∑
s1,s2

∑
t1,t2

[
	

(2π )3

]2 ∫
d3 pid

3 p j〈xi j |Vi j |xi j〉

× �
(
ki

F − | �pi|
)
�

(
k j

F − | �p j |
)
, (7)

where 	 is the volume, ki
F is the Fermi momentum of particle

i, and

|xi j〉 = |si, ti, �pi; s j, t j, �p j〉. (8)

The values of ki, j
F depend on the Fermi momentum of symmet-

ric nuclear matter kF and the isospin-asymmetry parameter δ.
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For neutrons we have kn
F = kF (1 + δ)1/3, while for protons we

have kp
F = kF (1 − δ)1/3. Similarly, for three-body interactions

the Hartree-Fock contribution to the ground state energy of
nuclear matter is

E (1)
3NF = 1

6

∑
i jk

〈i jk|Vi jk|i jk〉

= 1

6

[
	

(2π )3

]3 ∑
si,s j ,sk

∑
ti,t j ,tk

∫
d3 p1d3 p2d3 p3

× 〈xi jk|Vi jk|xi jk〉�
(
ki

F − | �pi|
)
�

(
k j

F − | �p j |
)

× �
(
kk

F − | �pk|
)
, (9)

where

|xi, j,k〉 = |si, ti, �pi; s j, t j, �p j ; sk, tk, �pk〉 (10)

is the state specified by the spin, isospin, and momentum of
particles i, j, and k.

The energy per particle at the Hartree-Fock level can
be expanded with respect to δ in a Maclaurin series
[22],

E (1)

A
= A0 + A2δ

2 + O(δ4) + · · · , (11)

where A = ρ	 is the number of particles and ρ = 2k3
f /3π2

is the nucleon number density. The value of these parameters
A2i can be extracted by the normal finite difference method
described in the next section.

The second-order perturbative contribution to the ground-
state energy is given by

E (2) = 〈�0| HI

E0 − H0
(1 − |�0〉〈�0|)HI |�0〉, (12)

where E0 is the energy of the noninteracting ground
state. The contribution from two-body forces alone
reads

E (2)
NN = − 1

4

∑
si,s j ,sl ,sm

∑
ti,t j ,tl ,tm

∑
�pi �p j �pl �pm

× 〈xi j |Vi j |xlm〉2

Ei + Ej − El − Em
�

(
kl

F − | �pl |
)

× �
(
km

F − | �pm|)�(| �pi| − ki
F

)
�

(| �p j | − k j
F

)
, (13)

where Ei = p2
i /2M2 is the kinetic energy of particle i as-

suming a free spectrum. The contribution to the ground-state
energy from three-body interactions at second order in per-
turbation theory can be conveniently approximated using
the two-body normal-ordering approximation [26]. Below
we will discuss specific features of this approximation as
it relates to the extraction of higher-order symmetry energy
coefficients.

III. FINITE DIFFERENCE METHOD

In this section, we describe the normal and modified finite
difference methods. The normal finite difference method can
be used to extract the coefficients in a Maclaurin or Taylor

series. We note if a function f (δ) can be expanded according
to a Maclaurin series of the form f (δ) = ∑

A2iδ
2i, then the

2ith-order derivative of this function at position δ = 0 is δ-
independent and proportional to the coefficient A2i. However,
the presence of a term such as log |δ| in Eq. (2) breaks the
Maclaurin series and makes the coefficient A2i + A2i;l log |δ|
explicitly δ-dependent.

A. Normal finite difference method

The original finite difference method can be used to extract
the coefficients in a Maclaurin series

Ē = A0 +
∞∑

i=1

A2iδ
2i = A0 +

∞∑
i=1

A2iη
i, (14)

where η = δ2. The finite difference method uses a certain
number of points N and uniform grid space �δ to calcu-
late the numerical value of the derivative of a function for
a given accuracy O(�δA). Derivatives with respect to the
variable η in Ē can be obtained from the forward finite
difference

∂ iĒ

∂ηi
≈ 1

�δ2i

N (A)∑
m=0

ωi;A
m Ē (

√
m�δ) + O(�δA). (15)

The number of points N and the coefficients ωi;A
m are de-

termined by the order of derivative 2i and the accuracy A.
Specific values for the coefficients can be found in Ref. [45].
Therefore, the coefficient A2i in the Maclaurin series can be
calculated numerically by

A2i ≈ AA;�δ
2i = 1

i!�δ2i

N (A)∑
m=0

ωi;A
m Ē (

√
m�δ) + O(�δA).

(16)

The normal finite difference method is suitable when there
are no divergent log |δ| terms in a Maclaurin series. We can
always choose a high accuracy to remove the influence from
higher-order terms in the numerical value AA;�δ

2i . For example,
if the accuracy is A = 4, there will not be terms proportional
to �δ0<i<4 in the expression of AA;�δ

2i , and the influence from
high-order powers of �δ can be ignored when a small uniform
grid space is applied. However, we will see that when there are
log terms in the expansion of the EOS, we cannot remove the
influence from high-order �δ terms by simply increasing the
accuracy.

B. Modified finite difference method

The isospin-asymmetry dependence of the EOS at
second order in perturbation theory can be expanded
according to

Ē = A0 + A2η +
∞∑

i=2

(
A2i + 1

2
A2i;l log |η|

)
ηi. (17)

This expression contains logarithmic terms for which the nor-
mal finite difference method fails to extract coefficients at a
given order of δ free from the influence of higher orders. To
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illustrate this point, we show the formulas for AA;�δ
4 and AA;�δ

6
produced by the normal finite difference method when the
accuracy is A � 2:

AA;�δ
4 = 1

2�δ4

N (A)∑
m=0

ω2;A
m Ē (

√
m�δ)

= A4 + A4;l log �δ + C4;A
1 A4;l + C4;A

2 A6;l�δ2

+ O(�δ4), (18)

AA;�δ
6 = 1

6�δ6

N (A)∑
m=0

ω3;A
m Ē (

√
m�δ)

= A6 + A6;l log �δ

+ C6;A
1 A6;l + C6;A

2 A4;l

�δ2
+ C6;A

3 A8;l�δ2 + O(�δ4),

(19)

where the coefficients Ci depend on the accuracy A. Note that
the O(�δ2) terms, A6;l�δ2 and A8;l�δ2, influence the numer-
ical results for AA;�δ

4 and AA;�δ
6 , respectively, even though a

high accuracy is applied. The appearance of these terms is due
to the presence of the logarithmic term at the next order and
cannot be removed by the normal finite difference method. We
now develop an extended finite difference method to remove
them.

The values of A4, A4;l , A6, and A6;l can be deduced by using
a set of accuracies that will give us a chain of equations to
solve {A4, A4;l , A6, A6;l } as unknown factors and to remove
other terms from the next order. We choose three different
accuracies A1,A2,A3 to calculate AA;�δ

4 :

AAi ;�δ
4 ≈ A4 + A4;l log �δ

+ C4;Ai
1 A4;l + C4;Ai

2 A6;l�δ2, i = 1, 2, 3. (20)

The differences between the three AAi;�δ
4 will generate

D1−2 = AA1;�δ
4 − AA2;�δ

4

C4;A1
1 − C4;A2

1

≈ A4;l + KD
1 A6;l�δ2,

D2−3 = AA2;�δ
4 − AA3;�δ

4

C4;A2
1 − C4;A3

1

≈ A4;l + KD
2 A6;l�δ2, (21)

where KD
1(2) are constants. By using D1−2 and D2−3, we can

derive

A4;l ≈
[D1−2

KD
1

− D2−3

KD
2

]
KD

1 KD
2

KD
2 − KD

1

. (22)

The idea to extract A4 is similar. We can make A6;l terms
vanish at first by

R1−2 = AA1;�δ
4

C4;A1;�δ
2

− AA2
4

C4;A2
2

≈ KR;1−2
1 A4;l + KR;1−2

2 A4;l log �δ + KR;1−2
3 A4

= FR;1−2[�δ] + KR;1−2
3 A4, (23)

R2−3 = AA2;�δ
4

C4;A2
2

− AA3;�δ
4

C4;A3
2

≈ KR;2−3
1 A4;l + KR;2−3

2 A4;l log �δ + KR;2−3
3 A4

= FR;2−3[�δ] + KR;2−3
3 A4. (24)

Therefore, the A4 can be extracted by

A4 ≈
( R1−2

FR;1−2[�δ]
− R2−3

FR;2−3[�δ]

)

× FR;1−2FR;2−3

FR;1−2[�δ]KR;2−3 − FR;2−3[�δ]KR;1−2
. (25)

The modified finite difference method can remove the
O(�δ2) terms coming from higher-order log terms. Since
these terms are removed, the precision of the extracted values
of {A4, A4;l , A6, A6;l } is increased. We will show below that
these relations can be used to obtain stable values of {A4, A4;l ,
A6, A6;l } by tuning the uniform grid spacing �δ. The constants
used to extract {A4, A4;l} are listed in Table I.

IV. NUMERICAL RESULTS

In this section, we employ the strategy outlined above
to extract the numerical values for the high-order isospin-
asymmetry coefficients in the nuclear equation of state. We
consider contributions from two-body forces and three-body
forces up to second order in many-body perturbation the-
ory. For three-body forces at second order, we employ an
in-medium NN interaction V med

NN [37,46,47] derived from the
N2LO chiral 3N force, neglecting the explicit dependence on
the center-of-mass momentum that arises due to the presence
of the medium. We show that the normal finite difference
method works well for both NN and 3N forces at the Hartree-
Fock level. Comparing our numerical results using V med

NN with
exact calculations in Ref. [35], we find very good agreement
despite the approximations that enter into the derivation of
V med

NN . We then consider the equation of state at second-order
in perturbation theory and use the modified finite difference
method to extract the coefficients of the regular terms {A4, A6}
and the logarithmic terms {A4;l , A6;l } in Eq. (2) when different
potentials from chiral EFT are applied. We also study the
density dependence of these higher-order isospin-asymmetry
coefficients.

A. NN and 3N forces in Hartree-Fock approximation

The Maclaurin series coefficients of the isospin asymmetry
expansion of the nuclear equation of state from both two-
body and three-body chiral nuclear forces have already been
studied in Ref. [22] at the Hartree-Fock approximation. Here
we review and verify some of the key results from Ref. [22]
and expand the discussion related to three-body forces. In
all cases we find that the Hartree-Fock approximation admits
a Maclaurin series expansion in even powers of the isospin
asymmetry δ.

In Fig. 1 we show the density dependence of the Maclaurin
series coefficients A2, A4, and A6 when the nuclear EOS is
calculated at the Hartree-Fock [Ē (1)(ρ, δ)] level from five
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TABLE I. The values of the coefficients in the modified finite difference method of Eqs. (20)–(25). The set of accuracies employed is
{A1,A2,A3} = {2, 3, 4}.

C4;2
1 C4;3

1 C4;4
1 C4;2

2 C4;3
2 C4;4

2 KD
1 KD

2 KR;1−2
1 KR;1−2

2 KR;1−2
3 KR;2−3

1 KR;2−3
2 KR;2−3

3

0.3007 0.1325 0.0322 −1.8705 −1.1041 −0.8415 −4.5568 −2.6181 0.3710 −0.0407 0.3710 0.2827 −0.0818 0.2827

different N2LO and N3LO two-body potentials with cutoffs
varying from � = 414, 450, 500 MeV [48,49]. We observe
that A2 and A6 grow monotonically with the density, but A4

starts out positive at low densities and has a negative second
derivative that in most cases causes the sign of A4 to change.
In all cases, the trends are consistent across the five different
chiral potentials considered. Since the fourth-order and sixth-
order terms often contribute with opposite sign, the dominant
role played by A2 is enhanced. Although there is clear evi-
dence that A2 
 A4 and A2 
 A6, we find that A4 and A6 are
comparable in the density range 0 < n < 0.20 fm−3. How-
ever, in Fig. 2 we show the finite difference method extraction
of the A8 Maclaurin series coefficient for various chiral NN
interactions at the density n = 0.15 fm−3 for various spacings
�δ. The plateaus in �δ indicate that the value of A8 is much
less than A4 and A6, which suggests that the Maclaurin series
converges efficiently. Although the behavior shown in Fig. 2
is just for a single density, we have verified that the coefficient
remains small at other densities.

We next compare the A2 coefficients from the N2LO chi-
ral 3NF obtained without any approximating assumptions in
Ref. [35] to those from the density-dependent NN interaction
V med

NN calculated in this work. Specifically, we build the in-
medium NN interaction [26] by summing the third particle

5

10

15

20

A
2

(M
eV

)

(a)

VNN : Ē(1)

−0.1

0.0

0.1

A
4

(M
eV

)

(b)

0.050 0.075 0.100 0.125 0.150 0.175 0.200

n (fm−3)

0.1

0.2

A
6

(M
eV

)

(c)

N2LO450

N2LO500

N3LO414

N3LO450

N3LO500

FIG. 1. Density dependence of the A2, A4, and A6 Maclaurin
series coefficients of the isospin asymmetry expansion of the nuclear
EOS for various chiral NN interactions at the Hartree-Fock level.

over the filled states α in the noninteracting Fermi sea:

V̂ med
NN = 1

4

∑
αi jlm

〈αi j|V3N |αlm〉â†
i â†

j âmâl , (26)

where

∑
α

→
∑
sαtα

∫
d3kα

(2π )3
θ (k f − kα ). (27)

In general, the medium will induce contributions to V med
NN

that depend on the center-of-mass momentum �P. In the
following we construct V med

NN by setting �P = 0 and in ad-
dition assuming on-shell scattering for which the incoming
and outgoing two-particle relative momenta are equal: | �p | =
| �p ′|. These approximations result in a medium-dependent
NN interaction with the same form as the free-space NN
potential.

The N2LO chiral three-body interaction consists of a con-
tact interaction V ct

3N proportional to the low-energy constant
cE , a one-pion-exchange interaction V 1π

3N proportional to the
low-energy constant cD, and a two-pion-exchange interac-
tion V 2π

3N with terms proportional to the low-energy constants
c1, c3, c4. In Fig. 3, we show as the solid blue curves the exact
A2 coefficients for V ct

3N , V 1π
3N , and V 2π

3N as a function of den-
sity without any applied regulator or simplifying assumptions
[35]. The low-energy constants associated with these terms of
the chiral N2LO interaction are cE = −0.106, cD = −0.24,
c1 = −0.81 GeV−1, c3 = −3.4 GeV−1, and c4 = 3.4 GeV−1.
We also show as the orange dots the results from the as-
sociated density-dependent NN interaction V med

NN without a

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Δδ

0.00

0.01

0.02

0.03

A
8

(M
eV

)

n = 0.15 (fm−3)

VNN : Ē(1)

N2LO450

N2LO500

N3LO414

N3LO450

N3LO500

FIG. 2. The A8 Maclaurin series coefficient in the isospin asym-
metry expansion of the nuclear EOS at density n = 0.15 fm−3

calculated in the Hartree-Fock approximation from various NN
forces in chiral EFT. The plateaus in �δ indicate the extracted value
of the coefficient.
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FIG. 3. Density dependence of the A2 Maclaurin series coefficient in the isospin-asymmetry expansion of the nuclear EOS at the Hartree-
Fock level from 3N forces. Exact V3N (blue lines) and approximate V med

NN (orange dots) contributions to A2 from individual 3NF topologies
(contact, 1π exchange, and 2π exchange) are shown. In the bottom-right panel, we show the sum of the three contributions and also the effect
(green triangles) of including the multiplicative regulating function in Eq. (28).

high-momentum regulator. In both cases the coefficient A2

is extracted by the normal finite difference method with ac-
curacy A = 3. From the good agreement between these two
calculations, we find that neglecting the explicit center-of-
mass dependence when constructing V med

NN does not lead to any
noticeable modification of the leading A2 isospin-asymmetry
coefficients. In Fig. 3 we show with the green triangles in the
lower-right panel the effect of the momentum-space regulat-
ing function

f (p′, p) = e−(p′/�)2n−(p/�)2n
, (28)

where �p = ( �p1 − �p2)/2 and �p ′ = ( �p3 − �p4)/2 are the rela-
tive momenta for the general two-body scattering process
N ( �p1) + N ( �p2) → N ( �p3) + N ( �p4) and � = 450 MeV. We
use the value n = 3 so that the regulator implicitly affects
only high powers in the chiral expansion [26]. Although there
are several different options for the choice of regulator [26],
Eq. (28) is consistent with the regulator typically imposed on
the free-space NN interaction and has relatively small artifacts
[26] compared to common local regulators. Naturally, the
cutoff artifacts increase with density and reach about 10%
at n = 0.2 fm−3 as shown in Fig. 3. This cutoff dependence
comes almost entirely from the two-pion-exchange contribu-
tion V 2π

3N , which consists of a series of strongly canceling
attractive and repulsive terms [47].

In Fig. 4 we demonstrate the stability of the A2 extraction
with respect to different grid spacings �δ and different den-
sities, using the same N2LO chiral potential with the cutoff
� = 450 MeV analogous to the green triangles in Fig. 3.
The different colors {blue, orange, green, red} correspond to
the densities {0.05, 0.10, 0.15, 0.20} fm−3. We note that the
normal finite difference method works extremely well for all
densities considered. We also observe that the influence from

higher-order terms almost vanishes at accuracy A = 3 and
therefore we can take the numerical value produced by the
finite difference method as the true value of A2 in Eq. (14).
The 3NF contribution to the symmetry energy is rather small,
on the order of 1–2 MeV at saturation density compared to the
total empirical value of A2 � 30 MeV, but it remains negative
and increases approximately quadratically in magnitude with
the density. We therefore see that at the Hartree-Fock ap-
proximation, the symmetry energy is dominated by two-body,
rather than three-body, interactions.

0.05 0.10 0.15 0.20

Δδ

−2.0

−1.5

−1.0

−0.5

0.0

A
2

(M
eV

)

V med;Λ
NN : Ē(1)

n = 0.05 (fm)−3

n = 0.10 (fm)−3

n = 0.15 (fm)−3

n = 0.20 (fm)−3

FIG. 4. Numerical values of the A2 Maclaurin series coeffi-
cient from the N2LO chiral 3NF with low-energy constants cE =
−0.106, cD = −0.24, c1 = −0.81 GeV−1, c3 = −3.4 GeV−1, and
c4 = 3.4 GeV−1 at different densities and in the Hartree-Fock ap-
proximation. The finite difference method step sizes �δ are varied,
and the accuracy is chosen to be A = 3.
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FIG. 5. Density dependence of the Maclaurin series coefficients
A2, A4, and A6 of the isospin asymmetry expansion of the nuclear
EOS at Hartree-Fock level from the N2LO three-body interac-
tion with low-energy constants cE = −0.106, cD = −0.24, c1 =
−0.81 GeV−1, c3 = −3.4 GeV−1, and c4 = 3.4 GeV−1.

In Fig. 5 we show the density dependence of the Maclaurin
series coefficients A2, A4, and A6 in the isospin asymme-
try expansion of the nuclear EOS at the Hartree-Fock level
from the � = 450 MeV chiral three-body force. We see that
the higher-order symmetry energy coefficients systematically
decrease in magnitude from one order to the next across
all densities. We also observe that all Maclaurin series
terms have roughly the same quadratic dependence on the
density.

B. Coefficients at second-order in perturbation theory

In recent works [21,22] it has been shown that the Maclau-
rin series form of the isospin asymmetry expansion of the
nuclear EOS at second-order in perturbation theory is broken
by divergent logarithmic terms that arise beyond the quadratic
δ2 term in Eq. (2). We will demonstrate that the modified
finite difference method outlined in Sec. III can be used
to successfully extract the coefficients of both the regular
and nonanalytic logarithm terms in the expansion. In the
following we calculate the second-order perturbation theory
contribution Ē (2)(ρ, δ) and extract coefficients up to O(δ6).
We employ several different nuclear two- and three-body
potentials from chiral EFT by varying the order in the chi-
ral expansion (N2LO and N3LO) and the momentum-space
cutoff � = 414, 450, 500 MeV. In all cases where three-body
forces are included, we use the associated in-medium NN
force V med

NN , which was shown in the preceding subsection to
accurately capture the isospin-asymmetry dependence of the
EOS at the Hartree-Fock level.

In Fig. 6 we show the results of the modified finite
difference method for the extraction of the coefficients
{A4, A4;l , A6, A6;l} at a single value of the density n = 0.15
fm−3 for five different chiral potentials. The dashed lines de-
note results for these coefficients when only two-body forces
are included, while the solid lines also include the effects of
three-body forces. Due to the influence from the high-order
terms in δ, the coefficients are not as stable with variations in
�δ as the Maclaurin series coefficients derived at the Hartree-
Fock level in the previous subsection, but overall we find that
the high-order coefficients can be extracted very well from the
modified finite difference method. At low values of �δ, the
coefficients are difficult to extract due to the very small con-
tribution to Ē (2) from the high-order expansion terms. At large
uniform grid spacing �δ, especially for the coefficients of the
sixth-order terms in δ, numerical uncertainties arise from two
sources. The first is due to the nature of the derivative, namely,
the higher the order of the derivative, the larger the prefactor
dropped from the index of the power. The second source of
error comes from the modified finite difference method, which
needs more points when it is used to extract coefficients of
a higher-order term of δ. This means that the value of m in
Eq. (16) will be larger. The constants in Eqs. (22) and (25) that
absorb log(

√
m) also become larger and enhance the influence

from higher-order terms of δ. Thus the numerical results from
the modified finite difference method become more sensitive
to higher orders.

The stability of these coefficients over some suitable region
of �δ can be found for all of the different chiral potentials,
though some exhibit more stable plateaus than others. This
indicates that the existence of log terms is not the property
of a specific potential, but rather the property of second-
order perturbation theory. Since the modified finite difference
method is strongly dependent on the form of the expansion,
the stability also suggests that there are no other types of
nonanalytic terms. The relative uncertainty in the fourth- and
sixth-order coefficients with regard to the choice of potential
is smaller for the logarithmic contributions. Specifically, we
find the ranges

−1.07 MeV < A4 < −0.43 MeV,

1.13 MeV < A4;l < 1.45 MeV,

−0.28 MeV < A6 < −0.10 MeV,

0.29 MeV < A6;l < 0.46 MeV.

From Fig. 6 we see that at a given order of δ, the magnitude of
the logarithmic contribution (A2i;l ) is generically larger than
that of the regular term (A2i), a trend that persists across a
wide range of densities as we will see below.

The effect of three-body forces on the fourth-order terms
in the isospin-asymmetry expansion of the EOS are shown in
Fig. 7 for all five chiral potentials considered in the present
work. Results for only a single value of the density (n =
0.15 fm−3) are shown. We see that three-body forces tend to
strongly enhance the fourth-order regular term proportional
to δ4 and reduce the strength of the fourth-order logarithmic
contribution proportional to δ4 log |δ|. These effects are driven
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FIG. 6. Coefficients of the fourth- and sixth-order terms in δ for the isospin asymmetry expansion of the nuclear EOS from the second-order
perturbation theory contribution Ē (2). The nuclear density is fixed at n = 0.15 fm−3, and we show results from five different chiral nuclear
potentials with three-body forces (solid lines) and without (dashed lines).

primarily by the two-pion exchange contribution V 2π
3N to the

N2LO chiral three-body force.
To better understand the convergence of the logarithmic

terms in the modified expansion of the isospin asymmetry
energy, we show in Fig. 8 the A8;l coefficient from the mod-
ified finite difference method as a function of the spacing
�δ. As a representative example, we consider the N3LO500
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FIG. 7. The effect of the in-medium NN interaction V med
NN derived

from the N2LO chiral three-body force on the values of A4 and A4;l

for the second-order perturbative contribution Ē (2).

chiral nuclear potential at density n = 0.15 fm−3. Comparing
the values of A4;l � 1.14 MeV, A6;l � 0.29 MeV, and A8;l �
0.18 MeV, we see that the present trend suggests a converging
series for values of δ in the physical range 0 < δ < 1. As
the order of the coefficient increases, we naturally find that
it is more difficult to numerically extract the value from the
modified finite difference method. Especially at low values of
�δ, from Figs. 7 and 8 we see that numerical instabilities
arise at �δ4 < 0.02, �δ6 < 0.06, and �δ8 < 0.1, respec-
tively. Even though the numerical value of the coefficient
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FIG. 8. Coefficient A8;l of the eighth-order logarithmic term in
the modified isospin-asymmetry expansion of the nuclear EOS at
second-order in perturbation theory. The density is chosen to be
0.15 fm−3 and the potential is chosen to be the N3LO500 nuclear
potential, including three-body forces.
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FIG. 9. Density dependence of the coefficients for the regular and nonanalytic terms in the isospin-asymmetry expansion of the EOS for
the second-order perturbation theory contribution Ē (2). Five different chiral NN + 3N forces are considered. Due to small uncertainties in the
extraction of the sixth-order terms in δ, the plotted values of A6 and A6;l are computed as the mean values among stable points within suitable
regions of �δ (compare Fig. 6).

A8;l at such a high order in δ is quite sensitive to the nu-
merical precision and higher-order terms of δ, which lead to
the divergence when �δ is small and numerical noise when
�δ is large, respectively, one can still speculate a mean-
ingful plateau in Fig. 8. For other chiral interactions, the
plateaus are in general more challenging to isolate for this A8;l

term.
In Fig. 9 we show the density dependence of the coeffi-

cients {A4, A4;l , A6, A6;l} in the modified isospin-asymmetry
expansion of the nuclear EOS from only the second-order per-
turbation theory contribution Ē (2). We consider as an estimate
of the theoretical uncertainty five different chiral potentials
and include three-body forces throughout. At low values of
the density, we see that all chiral potentials give quite similar
results for all of the high-order isospin asymmetry coeffi-
cients. As the density increases past saturation density n0,
however, we find that the uncertainties in the normal terms A4

and A6 increase more significantly than the logarithmic terms.
Especially the uncertainty in the A4 term, which gives the
sub-dominant contribution to the isospin-asymmetry energy
after A2, is large just beyond saturation density. Although the
coefficients generically satisfy |A4| < |A4;l | and |A6| < |A6;l |,
for values of δ > 1/e � 0.368 the multiplicative factor δ2i

becomes larger than δ2i log |δ| and therefore the impact of
the nonanalytic logarithm terms on the isospin asymmetry
expansion is weakened.

After extracting the coefficients {A2, A4, A4;l , A6, A6;l }, we
are able to expand the EOS up to different orders of δ and
include nonanalytic terms in Eq. (2). The difference �Ē be-
tween the exact value of Ē (2)(n, δ) and the approximate value
given by the sum of the isospin asymmetry expansion terms
can be reduced substantially when high-order regular and
nonanalytic log terms are included. We compare the precision

of the widely-used approximation Ē2 ≡ A0 + A2δ
2 and the

following approximations for the second-order perturbation
theory contribution Ē (2) to the EOS:

Ē (2)
2i (n, δ) = Ē (2)

2 +
2(i−1)∑
m�2

(
A(2)

2m + A(2)
2m;l log |δ|)δ2m

+ A2iδ
2i, (29)

Ē (2)
2i;l (n, δ) = Ē (2)

2 +
2i∑

m�2

(
A(2)

2m + A(2)
2m;l log |δ|)δ2m. (30)

In particular, the Ē (2)
2i terms do not include the associ-

ated log terms that arise at the same order. The comparison
between Ē (2)

2i and Ē (2)
2i;l can give insight into the importance

of the nonanalytic term in the isospin-asymmetry expansion
of the EOS. In Fig. 10, we compare the exact value of Ē (2)(δ)
at the fixed density n = 0.15 fm−3 with the approximate val-
ues given by Eqs. (29) and (30). We see that the inclusion of
the high-order regular terms in even powers of δ significantly
improves the precision, but the inclusion of the log terms is
necessary for high precision, especially in the neutron-rich
region where the functions δ2i log |δ| peak.

V. PROTON FRACTION IN β-EQUILIBRIUM
NUCLEAR MATTER

One motivation for the inclusion of higher-order terms
in the isospin-asymmetry expansion of the nuclear EOS
in Eq. (2) is to better understand the proton fraction in
β-equilibrium nuclear matter found in neutron stars. In partic-
ular, the direct URCA process in nuclear matter is composed
of the neutron decay and electron capture reactions shown
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FIG. 10. Comparison between the approximate values of Ē (2)

given by Eqs. (29) and (30) with the exact value for fixed density
n = 0.15 fm−3 and varying isospin asymmetry δ from the N3LO500
chiral NN + 3N potential. The inset shows the numerical difference
between the approximate values and the exact value, e.g., �Ē (2)

4 =
Ē (2)

4 − Ē (2).

in Eq. (3). These two competing processes balance when the
system satisfies the chemical equilibrium condition:

μe = μn − μp, (31)

where μe, μn, and μp are the chemical potentials of electrons,
neutrons, and protons respectively. The right-hand side of
Eq. (31) can be evaluated from the fundamental thermody-

namic relation

μn − μp = −∂Ē

∂x
= 2

∂Ē

∂δ
, (32)

where x = np/n is the proton fraction. Since neutron stars
rapidly cool to nearly degenerate conditions, we assume the
temperature to be zero, in which case the chemical potentials
of all species are just their respective Fermi energies. Since
electrons are ultrarelativistic, μe = kF

e . The final condition to
be imposed is charge neutrality: np = ne. The combination
of chemical equilibrium and charge neutrality determines the
proton fraction x = np/n in β-equilibrium nuclear matter.

We use different approximations for the EOS of nuclear
matter to study the proton fraction in β-equilibrated neutron
stars and the role of high-order terms beyond A2. In Fig. 11
we show the resulting proton fraction np/n calculated from
the equation of state of nuclear matter at second order in
perturbation theory as a function of the total density n/n0

normalized to saturation density for five different chiral nu-
clear potentials. In all cases, the effects of three-body forces
are included. In the top-left panel, we show the density de-
pendence of the proton fraction at the Ē4;tot approximation,
which is the highest order that we can extract precisely up to
high densities using all of the chiral interactions. We find that
there is a quite large uncertainty 0.06 < np/n < 0.12 in the
proton fraction at n = 2n0. Beyond twice saturation density
(where chiral effective field theory may become unreliable)
we plot speculative values of the proton fraction for all five
chiral interactions. We find that the uncertainties continue to
grow and already at 3n0 the proton fraction falls in the large
range 0.05 < np/n < 0.15.
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FIG. 11. The proton fraction in β-equilibrium nuclear matter as a function of density n for five different chiral NN + 3N potentials
including different orders in the isospin-asymmetry expansion of the EOS. Beyond n > 2n0 we denote the predictions with dotted lines to
indicate their speculative nature beyond the regime of validity for chiral EFT.
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In the remaining subpanels of Fig. 11 we show the in-
dividual effects of the high-order terms beyond A2 on the
proton fraction of β-equilibrium matter for each of the five
chiral interactions. The changes due to fourth-order and sixth-
order regular terms A4 and A6 are denoted with brown and
green filled circles, respectively, while the changes due to
fourth-order and sixth-order logarithmic terms Ē4;l and Ē6;l

are denoted with brown and green lines. It is important to
keep in mind that the coefficients of the regular terms Ē2i

come from three contributions: the noninteracting Fermi gas
term, the Hartree-Fock term, and the second-order perturba-
tion theory term, while Ē2i;l only arises from the second-order
perturbation theory term. We see that in general the logarithm
terms do not have a large impact on the proton fraction. The
differences between the proton fraction computed in the Ē2

approximation and in the Ē4;tot approximation are relatively
small around saturation density but grow to a relative strength
around 10–20% at n = 2n0. The sixth-order terms give a rel-
atively small change to the proton fraction, but in the case of
the N2LO chiral interactions the effects are non-negligible at
high densities.

VI. SUMMARY

We have examined the isospin-asymmetry expansion of
the nuclear matter EOS from many-body perturbation theory
using several high-precision NN and 3N chiral nuclear poten-
tials. From a series of precise calculations of the ground-state
energy of isospin-asymmetric nuclear matter at zero tempera-
ture, we have extracted normal and logarithmic contributions
to the isospin-asymmetry expansion up to sixth order in the
asymmetry parameter δ. The equation of state calculated in the
Hartree-Fock approximation contains no logarithmic terms,
and the standard finite difference method can be used to ex-
tract the coefficients of the isospin-asymmetry expansion. By
comparing the analytical results for the A2 coefficient from
the N2LO chiral 3NF in Ref. [35] at the Hartree-Fock approx-
imation with the numerical extraction from the in-medium
NN interaction V med

NN , we have shown that V med
NN accurately

reflects the isospin asymmetry dependence of the EOS in-
duced by three-body forces. For the second-order perturbation
theory contribution including NN and 3N forces, the stable
extraction of both the normal and logarithmic terms can be
efficiently achieved with a modified finite difference method
developed in the present work.

For all chiral nuclear potentials and densities considered
in the present work, we have found that the modified isospin-
asymmetry expansion converges relatively quickly. Although
in some cases the fourth and sixth-order terms in the ex-
pansion of the isospin-asymmetry dependence of the EOS
are of similar magnitude, all eighth-order terms appear to
be an order of magnitude smaller. The modified form of the
isospin-asymmetry expansion in Eq. (2) therefore provides an

efficient representation of the isospin-asymmetry dependence
of the nuclear equation of state. Alternative representations
may be envisioned (e.g., expanding about δ = 1 as in Ref. [23]
or a more general expansion in terms of orthogonal functions).
One advantage of the expansion employed in the present work
is that a few data points at different δ can be used to deter-
mine the coefficients of the expansion, which then determine
the EOS at arbitrary δ, where all of the coefficients can be
extracted exactly through the finite difference method. We
have also found that at a given order of δ, the coefficients
A2i;l of the logarithmic terms are generically larger than the
coefficients A2i of the regular terms in the E (2) contribution
to the EOS. This feature is enhanced as the nuclear density
increases. From the accurate numerical extraction of the high-
order isospin asymmetry coefficients, we conjecture that no
other nonanalytic terms beyond log |δ| appear at second order
in perturbation theory.

As an application of the above analysis, we have studied
the proton fraction in β-equilibrium nuclear matter based on
the approximate EOS obtained from the isospin asymmetry
expansion. We find that the choice of chiral Hamiltonian is
the dominant source of uncertainty in the proton fraction,
especially at large densities, while effects from higher-order
terms in the isospin-asymmetry expansion are subleading.
For example, fourth-order terms in the isospin-asymmetry
expansion can in some cases change the proton fraction by
2% at twice saturation density 2n0, while variations in the
chiral potential lead to uncertainties in the proton fraction of
6%. Even though the magnitude of the coefficients of the log
terms are greater than those of the regular terms at a given
order of δ, the regular terms still dominate the proton fraction.
We also find that the effects from sixth-order contributions to
the isospin-asymmetry dependence of the EOS are small, but
in some cases they can change the proton fraction by 0.5%.
Both the low-density and high-density regimes are challeng-
ing to model within our framework. At low densities, nucleons
cluster due to the spinodal instability, which is manifested in
neutron stars through the formation of an inhomogeneous in-
ner crust consisting of a lattice of neutron-rich nuclei together
with unbound neutrons. In this two-phase coexistence region,
the isospin-asymmetry expansion considered in the present
work must be modified. On the other hand, at very high den-
sities (n � 2n0) the convergence of the chiral effective theory
expansion breaks down. Our results for the proton fraction in
the regime n � 2n0 are therefore only speculative.
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