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Efimov resonances above four-boson threshold

A. Deltuva
Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania
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Four-boson Efimov physics is well known in the negative energy regime but far less above the four-body
breakup threshold. The part of this region with negative two-boson scattering length is studied solving rigorous
four-particle scattering equations for transition operators in the momentum space. Moving away from the unitary
limit, the Efimov tetramers evolve from unstable bound states into resonances. Their energies and widths are
studied as functions of the two-boson scattering length; a universal behavior is established and given in a
dimensionless representation. The Efimov tetramers have finite width in the whole regime; they broaden rapidly
in the resonance regime but remain narrower than the associated trimer. The resonant behavior is most clearly
seen in the four-particle recombination rate.
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I. INTRODUCTION

Efimov physics in few-body systems manifests itself by a
rich spectrum of bound and/or resonant states independent
of the short-range interaction details. First, considering the
three-body system with large two-body scattering length a,
Efimov [1] predicted an infinite number of bound three-body
states, called Efimov trimers, with geometric energy spectrum
in the unitary limit a → ∞. After this pioneering study a
large number of theoretical and experimental works emerged
as summarized in several review papers [2–6], covering
applications from nuclear to molecular and cold atom physics.

Besides the most extensively investigated three-body sys-
tems, also four-body systems attracted considerable interest.
In particular, in the system of four identical bosons with res-
onant s-wave interactions it was found that for each Efimov
trimer there exist two four-boson states [7], often called Efi-
mov tetramers. Except for the lowest two, all the other are
unstable bound states since they are above the ground state
trimer. In the negative energy regime below the four-body
breakup threshold the properties of the Efimov tetramers, i.e.,
the evolution of their energies and widths with the scattering
length, have been accurately calculated. At particular positive
values of the scattering length a the tetramers are crossing the
particle-trimer or dimer-dimer threshold and becoming inelas-
tic virtual states [8]. On the negative a side the tetramers decay
through the four-particle threshold of vanishing energy E = 0.
Each intersection of the tetramer and E = 0 threshold taking
place at a specific value of a leads to a resonant enhancement
of the four-particle recombination [9,10].

Once the tetramers enter the positive energy regime, they
become true resonances; however, their energies and widths
quantitatively are not known. Their study was precluded
by the complications in rigorously describing the four-
particle continuum with open many-cluster channels. Typi-
cally, in the coordinate-space differential equation approach

complicated boundary conditions must be imposed [11], while
in the momentum-space integral equation framework one
faces complicated singularities [12]. On top of that, the
Efimovian character means that the problem involves states
of very different sizes and energies, that require a very careful
and accurate treatment.

Recent developments in the description of four-nucleon
reactions above the breakup threshold [12], especially the
search of the four-neutron resonance [13], paved the way also
for the study of four-boson Efimov resonances. Momentum-
space integral equations for transition operators, solved via the
complex-energy method with special integration weights for
the singularity treatment, are expected to provide an accurate
description of the four-boson system at positive energies, and
will be used in the present work, aiming to determine the
properties of four-boson Efimov resonances and their impact
on collision processes. The present study can also be viewed
as an extension of the previous work [14] that considered the
Efimov resonances in the three-boson system.

Section II shortly recalls the four-particle scattering equa-
tions and essential aspects of calculations whereas results are
given in Sec. III. The summary is presented in Sec. IV.

II. THEORY

Resonance corresponds to the pole of the S matrix or
the related transition operator in the unphysical sheet of the
complex-energy plane. Its location ER − i�/2 is determined
by the real part of the energy ER and the width �. The Laurent
series expansion for the dependence of the transition operator
on the energy E is led by the pole term proportional to 1/(E −
ER + i�/2), but higher-order background terms contribute as
well. As long as � is not too large, the pole is not too far from
the real energy axis and therefore affects physical processes
in the system at energies around ER. Under these conditions
the resonance parameters can be determined from the energy
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dependence of the transition operator in the physical region,
i.e., from the physical observables. This procedure was used
for the search of the four-neutron resonance [13] and Efimov
three-boson resonances [14]; it is described in more detail in
Refs. [13,14] and is used also in the present work.

The study of the four-neutron resonance [13] consid-
ered the 4 → 4 transition operator. It could be used also
here; however, a more practical choice is a subset of two-
cluster transition operators, that are more directly related to
amplitudes for boson-trimer elastic and inelastic scatter-
ing or four-boson recombination. These transition operators
Uαβ (Z ) are obtained solving the symmetrized form of equa-
tions originally proposed by Alt, Grassberger, and Sandhas
(AGS) [15], i.e.,

U11(Z ) = P34(G0tG0)−1 + P34U1G0tG0U11(Z )

+U2G0tG0U21(Z ), (1a)

U21(Z ) = (1 + P34)(G0tG0)−1 + (1 + P34)U1G0tG0U11(Z ),

(1b)

where the subscripts α, β = 1 (2) denote the 3+1 (2+2) clus-
tering, G0 = (Z − H0)−1 is the free four-boson resolvent of
the four-particle system with kinetic energy operator H0 and
Z = E + i0, t = v + vG0t is the two-boson transition matrix
derived from the pair (12) potential v, and

Uα = PαG−1
0 + PαtG0Uα (2)

are the 3+1 and 2+2 subsystem transition operators. G0, t ,
and Uα depend on the complex energy parameter Z , but for
brevity this dependence is suppressed in the notation. The
bosonic symmetry in the four-body system is imposed by
permutation operators P34, P1 = P12 P23 + P13 P23, and P2 =
P13 P24, where Pab interchanges particles a and b.

Symmetrized AGS equations (1) are solved in the
momentum-space partial-wave representation |kxkykz

[(lxly)Jlz]JM〉α , where kx, ky, kz are the magnitudes of
the Jacobi momenta [10] and lx, ly, lz are the associated
orbital angular momenta, that are coupled via the intermediate
subsystem angular momentum J to the total four-body angular
momentum J with the projection M. In the context of Efimov
tetramers J = 0. Furthermore, given the universality, for the
numerical efficiency it is convenient to restrict the two-body
interaction to the s wave, i.e., lx = 0, and to take it to be of a
separable form:

〈k′
xlx|v|kxlx〉 = δlx0e−(k′

x/�)2 2

πm

{
1

a
− �√

2π

}−1

e−(kx/�)2
,

(3)

where m is the boson mass and � the momentum cutoff
parameter. With these constrains ly = lz = J and formally is
unlimited from above; however, practical calculations reveal
that ly, lz, J � 1 is sufficient for an accuracy better than 1%.
Although Ref. [10] included higher waves ly, lz, J � 2 and
thereby achieved accuracy better than 0.1%, the correspond-
ing extension in the present work would not significantly
improve the extraction of resonance parameters, since they
have larger error bars due to other reasons, as shown and
discussed in the next section.

In the region of negative two-boson scattering length a
there are no bound dimers, and the singularities in the kernel
of the AGS equations (1) arise due to the Efimov trimer
bound state poles in U1 and due to free resolvent G0. Their
treatment using the complex-energy method with special in-
tegration weights is taken over from Ref. [12]. After the
discretization of momentum variables the system of integral
equations (1) becomes a system of linear algebraic equations.
Since the spectrum of the four-boson system near unitarity is
more rich compared to the four-nucleon system, it is advis-
able to solve the linear system by a direct matrix inversion
as in other four-boson studies [8,10] based on the integral
equations for transition operators. This is possible taking ad-
vantage of a simple potential form (3) that allows to reduce
the number of continuous variables in the AGS equations (1).
References [8,10] provide more details and also relations
of transition operators Uαβ (Z ) to scattering amplitudes and
observables.

III. RESULTS

The present work studies the evolution of four-boson
Efimov resonances in the a < 0 two-boson scattering length
region above the four-body breakup threshold. For this pur-
pose the scattering length a is varied in Eq. (3); |a| decreases
when decreasing the two-boson attraction and the system
moves away from the unitary limit. The special value of a
where the nth Efimov trimer crosses the E = 0 threshold
is denoted by a−

n , with n = 0 labeling the ground state and
n � 1 the excited states. In the bound state regime there are
two Efimov tetramers associated with each trimer; they are
labeled with two integer numbers n, k, where k = 1 (2) cor-
responds to a more (less) tightly bound tetramer, called also
deep (shallow) tetramer in the literature. Their intersections
with the E = 0 threshold are labeled by a−

n,k . Although in
the resonance regime the wording deep or shallow is not
really meaningful, it will be employed nevertheless in order
to relate the resonances to the states from which they evolved.
In the unitary limit a−

n+1/a−
n ≈ 22.694, the universal Efimov

ratio [2]. Furthermore, a−
n,1/a−

n = 0.4254(2) and a−
n,2/a−

n =
0.9125(2) as determined in accurate numerical calculations
in Ref. [10]. In fact, already for n = 2 with the force model
of Eq. (3) the deviations from the above ratios are well below
0.4% as shown in Ref. [10]. For a fixed n the error in a−

n,k
due to the limitation ly, lz, J � 1 is even smaller, well below
0.1%. Together with the convergence study in Refs. [8,14]
this suggests that n = 2 and ly, lz, J � 1 are sufficient for
the extraction of the universal results with a good accuracy,
better than 1%. A further justification is provided by the
fact that in this regime the two-boson effective range rs is
already much smaller than a, the ratio |rs/a| that quantifies
the finite-range corrections being of the order of 0.001 for
n = 2. For comparison, in the regime relevant for the n = 1
states |rs/a| is of the order of 0.02. Alternatively, large values
of |a�| also show that a largely exceeds the interaction range;
1020 < |a�| < 3776 in the present calculations for n = 2.

The universal character of the results becomes more
evident when represented in dimensionless quantities. The
reference point in a for each Efimov tetramer is chosen as
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FIG. 1. Dimensionless real energy part of the deep (k = 1)
Efimov tetramer as a function of the inverse two-boson scattering
length. The results for the states associated with the first and second
excited Efimov trimers are displayed by dashed-dotted and solid
curves, respectively.

a = a−
n,k that connects the unstable bound state and resonance

regimes. Preserving the consistency with the standard repre-
sentation of the Efimov physics in terms of 1/a, the results
will be given as functions of the dimensionless ratio |a−

n,k|/a,
with |a−

n,k|/a > −1 corresponding to the unstable bound
state while |a−

n,k|/a < −1 in the resonance regime. Further-
more, the energy ER

n,k and width �n,k of the (n, k)th Efimov
tetramer will be presented in the dimensionless forms εn,k =
ER

n,k m(a−
n,k )2/h̄2 and γn,k = �n,k m(a−

n,k )2/h̄2. Note that, up to
the finite-range corrections, −h̄2/m(a−

n,k )2 is the energy of the
virtual two-boson state at the crossing point a = a−

n,k . Thus,
εn,k (γn,k) is the energy (width) of the (n, k)th Efimov tetramer
in units of the dimer virtual state energy taken at the reference
point a = a−

n,k .
The dimensionless energies εn,k of the tetramers associ-

ated with the first two excited Efimov trimers n = 1 and 2
are shown in Figs. 1 and 2 for the deep and shallow levels,
respectively. For n = 2 also the unstable bound state regime is
partially given. In this representation both types of tetramers
exhibit a qualitatively similar dependence on the scattering
length: when moving away from the unitary limit, i.e., weak-
ening the attraction between bosons, the unstable bound state
turns into a resonance whose energy increases but with some
saturation. The finite-range effects appear to be small also
for the n = 1 level, providing confidence in the convergence
towards universal limit with increasing n. The evolution of
the corresponding dimensionless widths γn,k is presented in
Figs. 3 and 4 for the deep and shallow tetramer, respectively.
Note that also in the unstable bound state regime the tetramer
width is finite, though small in the absolute size; see Ref. [8]
for a detailed study. As a consequence, at the transition point
a = a−

n,k the four-boson resonances have finite width, in con-
trast to the zero width in typical cases where the true bound

0.0
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FIG. 2. Dimensionless real energy part of the shallow (k = 2)
Efimov tetramer as a function of the inverse two-boson scattering
length. Curves are as in Fig. 1.

state evolves into the resonance as, for example, the Efimov
trimer does [14]. Moving deeper into the resonance region
towards smaller |a−

n,k|/a values, the widths of the four-boson
Efimov resonances increase. Again, the evolution is quali-
tatively similar for deep and shallow tetramer. For both of
them the differences between n = 1 and 2 results are slightly
larger than in the εn,k case; this is consistent with the unstable
bound state regime where the width shows somehow slower
convergence with n [8]. Larger finite-range effects for the
width as compared to the energy are not surprising since the
width gets contributions from transitions to states of a particle
plus lower-lying trimer, that obviously are more affected by
range corrections.

0.0
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0.4
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FIG. 3. Dimensionless width of the deep (k = 1) Efimov
tetramer as a function of the inverse two-boson scattering length.
Curves are as in Fig. 1.
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FIG. 4. Dimensionless width of the shallow (k = 2) Efimov
tetramer as a function of the inverse two-boson scattering length.
Curves are as in Fig. 1.

The symbols in Figs. 1–4 show n = 2 results with theoret-
ical error bars (for n = 1 the error bars are of the same size),
estimated in the same way as in previous works [13,14]. For
narrow and well pronounced resonances close to |a−

n,k|/a =
−1 the errors are very small. However, as the width of the
resonance increases, the nonresonant background terms in the
transition operators become dominant—the resonant behavior
can hardly be seen—which results in large uncertainties in
the determination of resonance parameters. For this reason
the present results are limited to |a−

n,k|/a > −1.6; however,
beyond this limit the resonant behavior in the four-boson con-
tinuum is disappearing and becomes physically unobservable.

Given the proximity of a−
n and a−

n,2, the three-boson
Efimov resonances appear in a nearby regime. It is inter-
esting to compare three- and four-boson Efimov resonances
using the same scale. For this purpose εk

n = ER
n,k m(a−

n )2/h̄2

and γ k
n = �n,k m(a−

n )2/h̄2 are introduced, where k = 3 for-
mally corresponds to the trimer; in this case the results are
taken from Ref. [14]. In other words, εk

n and γ k
n are ener-

gies and widths of the respective few-boson Efimov states in
units of the dimer virtual state energy taken at the common
reference point a = a−

n where the trimer becomes unbound.
The results for the trimer and tetramer energies are displayed
in Fig. 5 by solid, dashed-dotted, and dashed curves for k = 1,
2, and 3, respectively. To reflect the width of each state,
the shaded areas around each curve cover the values be-
tween εk

n − γ k
n /2 and εk

n + γ k
n /2. The three-boson resonance

broadens most rapidly and evolves into a physically unobserv-
able subthreshold resonance with ε3

n < 0 residing in the third
quadrant of the complex energy plane. The trajectory of the
shallow tetramer is roughly parallel to the trimer, just shifted
to more negative |a−

n |/a values and with lower energy and
width. The complexity of four-body calculations precludes
a reliable parameter extraction of very broad and practically
unobservable resonances, but the similarity to the trimer case
suggests the conjecture that the k = 2 tetramer evolves into
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-3.5 -3.0 -2.5 -2.0 -1.5 -1.0

�k n 
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�k n/
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FIG. 5. Energies of three- and four-boson Efimov resonances as
functions of the inverse two-boson scattering length. The curves
represent the εk

n values while the shaded areas around each curve
extend from εk

n − γ k
n /2 to εk

n + γ k
n /2 and thereby reflect the width of

the respective resonances. The two points at the threshold correspond
to a = a−

n,k with k = 1 (left) and 2 (right), respectively.

the subthreshold resonance as well when moving away from
the unitary limit. Note that this is a typical behavior of res-
onances observed in a number of other few-body systems
[16–20]. The deep tetramer evolves into a resonance with the
highest energy, exceeding also the trimer. However, one has
to keep in mind that there is no real crossing of these states
since, given very different widths, in the complex energy plane
they are far from each other; the trimer is very broad and
does not affect the physical four-boson processes near the
a ≈ a−

n,1 regime.
The present method for determining the resonance pa-

rameters from the energy dependence of physical transition
operators (scattering amplitudes) is not applicable to physi-
cally unobservable very broad or subthreshold resonances, in
contrast to some methods based on the complex scaling or
analytic continuation in the coupling constant [17,19]. How-
ever, it has an advantage of predicting simultaneously also the
scattering observables, including both resonant contributions
and nonresonant background, whose relative importance de-
termines to what extent the resonant behavior is pronounced
and can be observed. Figure 6 presents an example for
(n, k) = (1, 1) at a = 0.4 a−

1 = 0.9062 a−
1,1. Several collision

channels are possible: (i) four free bosons can recombine
into the ground-state Efimov trimer plus boson; (ii) a boson
may scatter from the ground-state Efimov trimer elastically or
(iii) inelastically, i.e., leading to the trimer breakup into three
free bosons. Note that (i) is the time reverse of (iii). The
characteristic observables, i.e., the four-particle recombina-
tion rate K4 [10] and the elastic σe, breakup σb, and total
σt = σe + σb boson-trimer scattering cross sections are shown
as functions of the energy. Notably, although the resonance
energy and width extracted from different amplitudes agree
very well, the relative importance of resonant and background
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FIG. 6. Four-boson recombination rate K4 and cross section com-
ponents for the boson-trimer scattering as functions of the system
energy. The resonance corresponds to (n, k) = (1, 1) with |a−

1,1|/
a = −1.1035, ε1,1 = 0.433, and γ1,1/ε1,1 = 0.286.

terms is very different for different reactions as Fig. 6 demon-
strates; the resonance is most clearly pronounced in the
four-boson recombination rate K4.

IV. SUMMARY

The four-boson continuum was studied at negative values
of the two-boson scattering length. Reducing its magnitude
and thereby moving away from the unitary limit, the Efimov
tetramers evolve from unstable bound states into resonances.
Exact scattering equations for the four-particle transition op-
erators were solved using momentum-space techniques. The

energy dependence of various scattering amplitudes was ex-
plored to determine resonance positions and widths.

Using a simple rank-1 separable potential, the tetramers
associated with the first two excited Efimov trimers were
considered. It was demonstrated that in a proper dimension-
less representation the results for the two levels are close.
Taking into account the convergence rate for a number of
other four-boson quantities it was argued that n = 2 level
results approximate well the universal limit, the remaining
finite-range corrections being well below 1%.

In contrast to the Efimov trimers, even at the transition
points a = a−

n,k the tetramers (except for n = 0) have finite
width. However, the width reaches much higher values when
going deeper into the resonance regime. Nevertheless, the
tetramers broaden less rapidly than the trimer. The observed
resonance evolution, when reducing the two-boson attraction
and therefore |a|, is typical also in many other systems: the
real energy part rises with decreasing rate while the width
rises with increasing rate, until the resonance becomes very
broad, physically unobservable, and cannot be followed any-
more by the present method. The seen similarity between
the trimer and shallow tetramer evolution suggests that also
the latter evolves into a physically unobservable subthreshold
resonance. In the physically observable regime the shallow
tetramer is lower in energy than the trimer while the deep
tetramer can rise to higher energy values.

The advantage of the transition operator method is the
ability to predict the physical observables. Presented exam-
ples demonstrate that the relative importance of resonant and
background contributions depends strongly on the considered
observable, and suggest that the four-particle recombination
rate exhibits the most pronounced resonant behavior.
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