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Thermal effects in hot and dilute homogeneous asymmetric nuclear matter
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We present an analysis of hot and dilute isospin-asymmetric nuclear matter employing the temperature-
dependent effective-relativistic mean-field theory (E-RMF). We consider nuclear matter to be homogeneous and
study the equation of state (EoS) for densities, temperature, and asymmetry which are relevant for astrophysical
simulations such as supernovae explosion and neutron-star crust. The two recently developed E-RMF parameter
sets IOPB-I and G3 are used here to study various physical observables at finite temperatures. These sets are
known to reproduce the nuclear matter properties, in agreement with various experimental and observational
constraints. The effect of temperature is investigated in reference to the density-dependent free symmetry energy
and its higher-order derivatives using the well-known parabolic approximation. The larger value of λω cross
coupling in G3 in addition to the δ meson coupling in G3 smoothen the free symmetry energy. Thermal effects
on various state variables are examined at fixed temperature and isospin asymmetry by separating their T = 0 and
the finite-T expressions. The thermal effects are governed by effective mass where larger effective mass corre-
sponds to larger thermal contribution. The effect of temperature on isothermal and isentropic incompressibility is
discussed, which is in harmony with various microscopic calculations. The liquid-gas phase-transition properties
are examined in asymmetric matter in the context of different slope parameter and comparable symmetry energy
in the IOPB-I and G3 set. The spinodal instability, binodal curve, and critical properties are found to be influenced
by the slope parameter Lsym. Finally, we consider a more realistic system (with the inclusion of electrons) and
analyze the effect on instability and adiabatic index of isospin asymmetric nuclear matter.
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I. INTRODUCTION

Core-collapse supernovae represent the end product of
the stellar evolution of massive stars (M > 8M�), lead-
ing to a very luminous explosion and the formation of a
neutron star [1,2]. The exact mechanism of the collapse
explosion is still not well understood even after several
decades of thorough investigations. In recent years, such
explosions have been studied using several ab initio core-
collapse simulations where the hydrodynamics equations are
solved numerically [3,4]. These simulations estimate that the
explosion energy of ≈1051 erg is attained within the timescale
of �1 s [5]. The temperature of the matter rises to 20 MeV and
the density of the bounce can vary up to two times the nuclear
saturation density. The short timescale of collapse does not
allow the matter to reach β equilibrium and calculations are
usually done at a fixed asymmetry α = ρn−ρp

ρn+ρp
≈ 0.4 [6,7].

The determination of EoS for isospin-asymmetric nu-
clear matter (ANM) is relevant in various areas of nuclear
physics ranging from finite nuclei to infinite matter. Not
only the understanding of its ground state is important, but
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its behavior at finite temperature is equally significant. The
finite-temperature behavior of ANM is relevant in context
to astrophysical events such as neutron-star mergers, γ -ray
bursts, proto-neutron stars, early universe, etc. [8]. Further-
more, the composition of matter inside the neutron star
impacts its transportation and cooling process which are gov-
erned by the so-called direct URCA process [9]. With the
recent detection of gravitational waves (GW170817) which
were accompanied by a γ -ray-burst and electromagnetic after-
glow from the merger of a neutron-star binary opened a new
era of astrophysics [10,11]. In view of the above, a systematic
understanding of asymmetric nuclear matter at finite temper-
ature is highly desirable.

The nuclear matter which is predominantly governed by
a residual short-range strong force and a long-range electro-
magnetic interaction shows various structures which in turn
depend upon the parameters such as density, asymmetry, and
temperature. At low temperature or entropy, the matter is
in the nonhomogeneous form below the subnuclear density
(ρ < 0.1 fm−3). The nuclear matter is a mixture of heavy
nuclei and light clusters in a background of nucleon gas [12].
As the density increases, the nuclei become deformed,
constituting a frustrated system usually known as pasta
structures because of the competition between nuclear and

2469-9985/2021/103(5)/055817(12) 055817-1 ©2021 American Physical Society

https://orcid.org/0000-0001-6334-4589
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.103.055817&domain=pdf&date_stamp=2021-05-26
https://doi.org/10.1103/PhysRevC.103.055817


PARMAR, SHARMA, AND PATRA PHYSICAL REVIEW C 103, 055817 (2021)

electromagnetic forces [13]. Above saturation density, the
matter converts to a homogeneous mixture of nucleons which
may contain exotic species such as kaon and pion condensate,
hyperons, and quark phases. Leptons (electrons in low density
and electrons with muons at high density) are present in all
these structures for charge neutrality. At large-enough tem-
peratures, the nonhomogeneous nuclear matter at low density
again transforms to the homogeneous phase. In this work,
however, we assume the nuclear matter to be an ideal ho-
mogeneous mixture of nucleons. Such an investigation of an
ideal ANM system is significant to understand the underlying
qualitative behavior. We employ the finite-temperature exten-
sion of the effective-relativistic mean-field theory (E-RMF) to
study the asymmetric nuclear matter at finite temperature. The
recently developed E-RMF parameters, namely, IOPB-I [14]
and G3 [15], are used here to understand various aspects of
nuclear matter at finite temperature. These sets have compara-
ble saturation properties at zero temperature but differ in the
number of adjustable parameters, i.e., various self and cross
couplings of σ , ω, ρ, and δ mesons. This provides us with
an opportunity to study the effect of these couplings on the
finite-temperature properties of asymmetric nuclear matter.

The central motivation of this study is to perform a de-
tailed analysis of the EoS for dilute and hot homogeneous
asymmetric nuclear matter within the E-RMF formalism. We
aim to understand the nuclear matter properties like symmetry
energy Fsym, slope parameter Lsym, skewness parameter Qsym,
and curvature parameter Ksym as a function of temperature.
These are significant properties of asymmetric nuclear matter
and are often used to constraint the EoS around saturation den-
sity. Several finite-temperature effects such as thermal effects
on various state variables and on isothermal and isentropic
incompressibility are addressed. The results presented in this
study (below subnuclear density) serve only to differentiate
between the realistic nonhomogeneous phase in a supernova
and ideal homogeneous phase. This is analogous to the van
der Waals equation of state and ideal-gas equation in atomic
physics. The phase-transition property in asymmetric matter
in comparison with symmetric matter is discussed in the con-
text of incompressibility K and slope parameter Lsym. With
this study, we aim to verify the trends available in various
studies [6,16–18], where the effect is discussed of symmetry
energy and its derivative on the instability of ANM. Establish-
ing these trends is of primary importance because they serve
as the bridge between various nuclear matter properties which
are not measured directly in experiments. In symmetric nu-
clear matter (SNM), the trends are seen among the properties

at critical temperature [19]. The properties at ground state do
not necessarily dictate the critical properties of phase transi-
tion. However, for asymmetric matter, the symmetry energy
and its slope parameter decides the energetics and therefore
impacts the instabilities occurring in the system. In a realistic
case like a supernovae it will affect the transportation and
cooling process whereas, in neutron-star crust, the core-crust
boundary becomes the variable of the slope parameter Lsym.

The paper is organized as follows: In Sec. II, we give a
brief formalism of the E-RMF model at finite temperature.
The thermal effects on various thermodynamic functions and
stability conditions are mentioned in this section. In Sec. III,
we summarize our results where we discuss the model prop-
erties in Sec. III A and properties at finite temperature in
Sec. III B. We discuss the liquid-gas phase transition in ANM
in Sec. III C. In Sec. III D, we discuss the influence of elec-
trons on the EoS. Finally, we summarize our results in Sec. IV.

II. FORMALISM

The Lagrangian and the corresponding energy-density
functional of the effective field theory (EFT) motivated E-
RMF is documented in the literature [14,15,19,20]. The
advantage of the E-RMF formalism is that one can ignore
the basic difficulties of the formalism, like renormalization
and divergence of the system. It takes care of several natural
phenomena in ab initio manner which otherwise are absent
or are included in an ad hoc manner in nonrelativistic for-
malisms. In the effective nuclear field theory, the Lagrangian
contains an infinite number of terms. The Lagrangian is ex-
panded in the power of meson fields as a truncation scheme
because the fields have a lower mass compared with nu-
cleon masses. The contribution of each term in the E-RMF
Lagrangian can be calculated by counting the power of ex-
pansion. Couplings present at a particular order cannot be
dropped arbitrarily without a proper symmetry argument. The
ambiguity in the expansion is checked by the inclusion of nat-
uralness constraints and naive dimensional analysis (NDA).
For calibration, the coupling constants and mass of isoscalar-
scalar σ meson are fit to reproduce the experimental values of
the saturation density and the ground-state properties of some
known nuclei. This method mocks the result of two-loop con-
tribution in mean-field theory [21]. The basic nucleon-meson
E-RMF which involve couplings of σ , ω, ρ, and δ mesons and
the photon with Dirac nucleon up to the fourth order is given
as [19]

E (r) = ψ†(r)

{
iα · ∇ + β[M − �(r) − τ3D(r)] + W (r) + 1

2
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Here �(r), W (r), R(r), D(r), and A(r) are the fields corresponding to σ , ω, ρ, and δ mesons and photons, respectively. The gs,
gω, gρ , gδ , and e2

4π
are the corresponding coupling constants and ms, mω, mρ , and mδ are the corresponding masses. The zeroth

component T00 = H and the third component Tii of the energy-momentum tensor

Tμν = ∂νφ(x)
∂E

∂∂μφ(x)
− ηνμE, (2)

yields the energy and pressure density, respectively, as
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∑
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In the above equations, nk (T ) and n̄k (T ) are the baryon
and antibaryon occupation numbers, respectively, which are
defined by the Fermi distribution function at finite temperature
T as

nk (T ) = 1

1 + exp
(E∗(k)−ν

T

) , (5a)

n̄k (T ) = 1

1 + exp
(E∗(k)+ν

T

) , (5b)

with E∗ as (k2 + M∗2)1/2. Here the effective mass is written
as [22]

M∗
p = M − �(r) − D(r), (6a)

M∗
n = M − �(r) + D(r). (6b)

The effective chemical potential ν for protons and neutrons
is defined as

νp = μ − W (r) + 1
2 R(r), (7a)

νn = μ − W (r) − 1
2 R(r). (7b)

The entropy density (S = s/ρb) is given as

si = − 2
∑

i

∫
d3k

(2π )3 [nk ln nk + (1 − nk ) ln (1 − nk )

+ (nk ↔ n̄k )], (8)

and the free energy is defined as

F = E − T S. (9)

The free-energy density can be written in the parabolic form
of the asymmetry parameter (α = ρn−ρp

ρn+ρp
) as [23,24]

F (ρ, α, T ) = F (ρ, α = 0, T ) + Fsym(ρ, T )α2, (10)

where Fsym(ρ, T )α2 is the free symmetry energy content per
nucleon of the system and F (ρ, α = 0, T ) is the free energy
per nucleon of symmetric (α = 0) nuclear matter. The free

symmetric energy using the empirical parabolic approxima-
tion then can be written as

Fsym(ρ, T ) = F (ρ, T, α = 1)

ρ
− F (ρ, T, α = 0)

ρ
. (11)

The free symmetric energy then can be expanded as a Taylor
series around the saturation density ρ0 as

Fsym(ρ, T ) = Fsym(ρ0, T ) + Lsym§ + Ksym

2!
§2

+ Qsym

3!
§3 + O(§4), (12)

where § = ρ−ρ0

3ρ0
and Lsym, Ksym, and Qsym are the slope param-

eter, curvature parameter, and skewness parameter, which are
written as

Lsym = 3ρ
∂Fsym(ρ, T )

∂ρ
,

Ksym = 9ρ2 ∂2Fsym(ρ, T )

∂ρ2
,

Qsym = 27ρ3 ∂3Fsym(ρ, T )

∂ρ3
. (13)

To infer the effects of finite temperature we focus on the ther-
mal part of the various state variables; that is, the difference
between the T = 0 and the finite-T expressions for a given
thermodynamic function X [25,26],

X = X (ρ, α, T ) − X (ρ, α, 0). (14)

The thermal energy, thermal pressure, thermal free-energy
density, and thermal index are then written as

Eth = E (α, T ) − E (α, 0),

Pth = P(α, T ) − P(α, 0),

Fth = F (α, T ) − E (α, 0),

λth = 1 + Eth

Pth
. (15)
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Thermal contributions to the free symmetry energy are given
by

Fsym,th = Fsym(α, T ) − Esym(α, 0). (16)

In asymmetric nuclear matter system, there are two conserved
charges, baryon number B(ρb = ρp + ρn) and isospin number
(I3 = Ip + In). Therefore, one needs to treat it as a binary
system. The system will be stable against separation into two
phases if the free energy of a single phase is lower than the free
energy in all multiphase configurations. This is formulated as

F (T, ρi ) < (1 − λ)F (T, ρi
′) + λF (T, ρi

′′), (17)

with

ρi = (1 − λ)ρi
′ + λρi

′′, (18)

where the two phases are denoted by prime and double prime
and λ is the volume fraction. In formal terms, stability implies
that the free-energy density is a convex function of the density.
Convexity implies that the stability against separation into
two phases also guarantees stability against separation into an
arbitrary number of phases. In other terms, it is necessarily
true that the symmetric matrix [27]

Fi j =
(

∂2F
∂ρi∂ρ j

)
T

(19)

is positive. This results in mechanical and diffusive stability
conditions as

∂P

∂ρb

∣∣∣∣
T,α

> 0 and
∂μp

∂α

∣∣∣∣
T,P

< 0. (20)

If one of the stability conditions is violated, a system with
two phases is energetically favorable. The phase coexistence
is governed by the Gibbs conditions

μ′
q(T, ρ ′

b) = μ′′
q (T, ρ ′′

b ) (q = n, p),

P′(T, ρ ′
b) = P′′(T, ρ ′′

b ). (21)

At the critical points, the pressure, density and temperature
are written as Pc, ρc, and Tc. For asymmetric nuclear matter,
they are calculated by finding an inflation point at chemical-
potential isobars as

∂μq

∂α

∣∣∣∣
T =Tc

= ∂2μq

∂α2

∣∣∣∣
T =Tc

= 0. (22)

Furthermore, one can define isothermal incompressibility of
nuclear matter at finite temperature T and asymmetry α as

KT (α, T ) = 9

(
ρ2

b

∂2F

∂ρ2
b

)∣∣∣∣
ρT

b (α,T )

. (23)

Here, ρT
b is the density where free energy has its minimum.

The isentropic incompressibility at entropy S and asymmetry
α which is an important quantity in supernova collapse is
written as [28]

KS (α, S) = 9

(
ρ2

b

∂2E

∂ρ2
b

)∣∣∣∣
ρT

b (α,S)

. (24)

TABLE I. Bulk-matter properties of nuclear matter for the IOPB-
I and G3 parameter and their corresponding empirical values.

IOPB-I G3 Empirical value

ρ0 (fm−3) 0.149 0.148 0.148–0.185 [30]
E0 (MeV) −16.10 −16.02 −15.0– − 17.0 [30]
M∗/M 0.593 0.699 0.55–0.6 [31]
J (MeV) 33.30 31.84 30.0–33.7 [32]
L (MeV) 63.58 49.31 35.0–70.0 [32]
Ksym (MeV) −37.09 −106.07 −174.0– − 31.0 [33]
Qsym (MeV) 862.70 915.47 −494.0– − 10.0 [34]
K (MeV) 222.65 243.96 220.0–260.0 [35]

III. RESULTS AND DISCUSSIONS

A. Model properties

In this work, we consider two recent E-RMF parameters,
namely, IOPB-I [14] and G3 [15]. The IOPB-I set contains the
quartic-order cross-coupling R(r)2W (r)2 (λω �= 0) and self-
coupling of isoscalar-vector W (r)2 (ζ0). This set produces
the infinite nuclear matter properties at saturation and su-
persaturation density, which is consistent with the empirical
data. The maximum mass is found to be 2.15M� which satis-
fies the current GW170817 observational constraint. The G3
set, on the other hand, is the most comprehensive parame-
ter that contains all the nucleons and tensor coupling terms
in addition to several self- and cross-coupling components.
It is known to estimate neutron-skin thickness over a wide
range, in harmony with the experimental data. It estimates the
maximum neutron-star mass 2.03M� with a canonical mass
radius of 12.69 km, which is a desirable feature in the context
of observational analysis and finite-nuclei experiments. The
main feature of the set G3 is that it includes the couplings of
nucleons to the δ and ρ mesons and cross-couplings of σω

and σρ mesons. The G3 set has positive scalar self couplings
k3 and k4 and ζ0 nearly equal to 1. The G3 set and IOPB-I set
also differ in the value of λω. IOPB-I has relatively small λω

as compared with G3. In Table I, we present the bulk matter
properties of nuclear matter for the G3 and IOPB-I sets and
the corresponding empirical values. It is clear that these sets
satisfy the well-accepted set of laboratorial, theoretical, and
observational constraints.

In Fig. 1 we compare the neutron matter binding en-
ergy and pressure with the microscopic calculations based
on chiral effective-field theory (EFT) with realistic two- and
three-nucleon interactions [29]. The inner graph represents
the difference between the neutron matter energy and pres-
sure and the average energy and pressure normalized to the
uncertainty of the microscopic calculations (σ = δP). The
uncertainties are represented by the orange band, and they
indicate that the points that lie inside this band are within the
1σ error limits. The G3 set satisfies nicely the microscopic
constraints whereas IOPB-I also falls within the 1σ error
limit below saturation density. Both of these parameters also
satisfy the constraint from collective flow data in heavy-ion
collisions and kaon experiments along with the GW170817
gravitational wave constraints [14]. These features along with
the agreement of bulk-matter properties with empirical data
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FIG. 1. EoS of nuclear matter below saturation density for pure
nuclear matter at T = 0 MeV. The shaded magenta region corre-
sponds to the microscopic chiral EFT (NN + 3N) [29] calculations.
The inner graph represents the difference between the neutron matter
energy and pressure and the average energy and pressure with 1σ

calculation uncertainty area.

motivate us to use them to study the E-RMF sets with and
without the δ meson. δ meson couplings are a necessary
feature in the dense asymmetric nuclear matter. In this work
we intend to investigate the effects of δ meson in the dilute
asymmetric matter in the finite-temperature limit. We also try
to explore role of different self and cross couplings at the
finite-temperature properties of asymmetric nuclear matter.

B. Finite-temperature properties

The nuclear symmetry energy (NSE) is one of the crucial
properties of asymmetric nuclear matter governing several
areas of nuclear matter calculations, like reaction dynamics,
phase stability, or cooling in the neutron star. Temperature
dependence of NSE, on the other hand, provides the much
needed knowledge on the dynamical evolution of neutron
star and isoscaling analyses of heavy-ion-induced reactions.
NSE is not a directly measurable quantity in experiments
and is extracted from the observables related to it. Despite
numerous theoretical and experimental efforts, it is still not
a very precise parameter even for cold nuclear matter. In
Fig. 2, we show the variation of free nuclear symmetry energy
(FNSE) [more relevant quantity in finite-temperature case,
see Eq. (11)] the slope parameter Lsym, the isovector incom-
pressibility Ksym, and the isovector skewness Qsym with the
density up to two times the saturation density. The free NSE
is scaled towards higher magnitude due to decrease in entropy,
preserving its characteristic shape at a higher temperature for
both IOPB-I and G3 sets. At higher density, the temperature
range considered here does not affect FSNE much. The slope
parameter, which has a direct correlation with neutron skin
thickness, electric-dipole polarizabilities, etc., also follows a
similar trend for both the sets. The NSE estimated from these
sets are also consistent with the Heavy-ion collision (HIC)
Sn + Sn and IAS data [24]. The low values of Fsym and Lsym

are the result of cross couplings of ρ mesons with ω mesons in
the IOPB-I set and coupling of σ mesons with ω mesons in the
G3 set, which predicts even lower Fsym due to the presence of
isovector scalar δ mesons. The δ meson has a positive effect
on the binding energy and helps to estimate Fsym, Lsym, and
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Ksym within the permissible limit [22]. The sinusoidal varia-
tion of Ksym with density is also shown. Ksym is constrained
recently by combining the data from PSR J0030 + 0451
and GW170817 estimating Ksym = 102+71

−72 MeV within 1σ

error [33]. The IOPB-I and G3 both fall within this constraint.
The variation of Qsym with density is almost independent
of temperature for the IOPB-I set and a small variation is
observed for G3 set. The Qsym is the least constrained property
in any experiment and several models predict it with a large
variation [21].

To study the finite temperature effect, we isolate the ther-
mal part of a given function according to equations (15).
The subtraction scheme applies only to those variable which
depend on the kinetic-energy density [26]. Figure 3 shows the
thermal effect on various state variables at a fixed temperature
and α for IOPB-I and the G3 parameter set. The common
observation is that (i) at the fixed temperature, the thermal
energy decreases with density. The difference due to asym-
metry disappears at high densities, thermal effects become
weak, and the thermal energy becomes density independent
and tends asymptotically to zero. (ii) At very low density, the
thermal energy and pressure have a linear T dependence as for
a free Boltzmann gas (nondegenerate limit). This linearity is
changed when matter becomes increasingly degenerate. (iii)
Temperature effects are more prominent in thermal pressure
as compared with thermal energy. (iv) The thermal chem-
ical potential becomes saturated after saturation density. In
Ref. [25,26], the thermal effects are found to be dominated
by the behavior of effective mass. These calculations were
done for the Skyrme and APR forces where the effective
mass has a different origin when compared with the Dirac
mass of relativistic forces [36]. The Dirac mass in the rela-
tivistic formalism finds its origin from the spin-orbit potential
whereas the effective mass in the nonrelativistic formalism
arises from the momentum dependence of the single-particle
potential [37]. However, both of these masses impact the ther-
mal contribution to the state variables in a somewhat similar
way.

In Fig. 4, the density dependence of the Dirac effective
mass for pure neutron matter (PNM) is shown in the left
panel. The effective mass for G3 decreases at a relatively
slower pace as compared with the IOPB-I set. Due to the
presence of the δ meson, the neutron and proton mass gets
split, which is not the case for the IOPB-I set due to the
absence of the δ meson. In right panel of Fig. 4, the effective
mass at the saturation density is plotted for different values
of α for the G3 parameter set. This δ-meson mechanism on
effective mass is an important phenomenon in studying drip
line nuclei of astrophysical interest [38] and is analyzed in
experiments such as PREX [39]. The effective mass is the
input for the computation of energy, pressure, and chemical
potential, which is determined self-consistently. The behav-
ior of effective mass therefore clearly dictates the thermal
pressure and thermal energy. The G3 set with larger effective
mass estimates a greater thermal contribution on state vari-
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FIG. 4. The effective mass for IOPB-I and G3 set. The left panel
shows the mass splitting for PNM in the G3 set (solid lines) as
compared with the IOPB-I set (dashed line). The right panel shows
the effective mass at saturation density for the G3 set.
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ables as compared with the IOPB-I set with smaller effective
mass. This is consistent with the Fermi-liquid theory and non-
relativistic calculations [25]. For the IOPB-I set, the thermal
pressure increases and then decreases beyond the saturation
density but for G3 it saturates at higher density. Furthermore,
the quantitative difference in thermal energy and pressure
between IOPB-I and G3 set is due to the difference in the
self-coupling of isoscalar-scalar σ meson which is responsi-
ble for the 3N interaction, which plays an important role in
determining the thermal pressure and energy. This behavior is
analogous to chiral 2N and 3N interactions, although with a
larger thermal contribution as compared with the many-body
self-consistent Green’s function method [40]. The decrease in
thermal pressure after reaching its maximum is the combined
effect of incompressibility of the EoS at zero temperature and
the rapidity of the finite-temperature pressure. Knowledge of
the thermal effect on the relevant state variable is important
in large-scale simulations such as supernovae, neutron-star
crust, and neutron-star binary simulations, where the EoS at
any given temperature can be estimated by adding the ther-
mal contribution. This will reduce the computation cost for
these simulations as one do not have to carry out the full
self-consistent calculations at every temperature [41,42].

The chemical potential at fixed T = 10 MeV has interest-
ing behavior. μn at α = 1 is crossed over by μn at α < 1
with increasing density while that is not the case for μp.
Moreover, the crossings of μn occur at a higher density at
larger temperature. Chemical potential becomes saturated at
higher density because of the increasing degeneracy at higher
density. The different nature of chemical potential is again
the consequence of effective mass along with the self and
cross-coupling of the σ meson. The thermal free energy tends
to zero with increasing density, like the chemical potential.
Comparing the IOPB-I and G3 sets for thermal properties
shows that the parameter set G3 has additional δ-meson
coupling whose contribution increases with density. This con-
tribution directly impacts the effective mass [see Eq. (6a)],
which in turn decides the behavior of various variables
studied above. The δ meson along with the σ meson there-
fore makes direct contributions to the thermal properties of
the EoS.

Figure 5 shows the variation of the thermal index � with
density for the IOPB-I and G3 sets at fixed temperature and
asymmetry. By comparing the case of fixed temperature and α

with those of thermal energy and pressure (Fig. 3), it is certain
that � depends mainly on (i) the stiffness of pressure, (ii) the
behavior of effective mass with respect to density, and (iii) α.
For ρ → 0, � approaches the nonrelativistic ideal-gas index
5
3 . � is very sensitive to the asymmetry at a fixed temperature,
which is opposite to the nonrelativistic calculations where the
peak of � is insensitive to asymmetry [26]. Furthermore, it
is immune to temperature change for fixed α. For the IOPB-I
set the maximum � is 2.1 for PNM and 1.97 for symmetric
nuclear matter (SNM). The G3 set reports these values to
be 1.96 and 1.87, respectively. The G3 set with larger effec-
tive mass estimates the lower pressure and therefore a larger
thermal index as compared with the IOPB-I set with lower
effective mass. These results of � from the newly developed
E-RMF sets are consistent with the dynamics of the neutron-
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FIG. 5. Thermal index for IOPB-I (solid lines) and G3 sets (dash
line) for fixed temperature in the left panel and fixed α = 0.5 in the
right panel.

star merger where � is taken as 1.5 and 2, indicating that these
two sets can be used for the calculations of such events [43].
However, in the astrophysical simulation like a binary star and
a proto-neutron star, � is taken as a constant, whereas here it
varies with density. The behavior of � is in agreement as with
EFT theory [40].

Nuclear matter incompressibility along the isothermal
(KT ) and isentropic (KS) paths is shown in Fig. 6 for IOPB-I
and G3 sets for two values of α (i.e., 0.3 and 0.5). These
values are taken due to their relevance in a core-collapse
supernova. The incompressibility at saturation in cold nu-
clear matter is governed by self-coupling of the σ meson.
The incompressibility of both the IOPB-I and G3 sets falls
within the accepted empirical value, as prescribed by the
giant monopole resonance, i.e., 240 ± 20 MeV. At finite tem-
perature, we define incompressibility within two channels:
one being the isothermal incompressibility and the other the
isentropic incompressibility defined according to Eqs. (23)
and (24), respectively. The isentropic incompressibility is the
more relevant quantity in the context of a supernova explosion
because the timescale of collapse is less than one second
and the process is adiabatic instead of isothermal. It prompts
us to use energy instead of free energy [see Eq. (24)]. The
incompressibility (both isothermal and isentropic) decreases
quadratically with temperature with G3 having a higher mag-
nitude at each temperature and entropy. It also decreases with
increasing asymmetry. We show the temperature dependence
of KT,S/K0 and (ρT,S/ρ0)2 in the context of their relation with
respective incompressibility [see Eqs. (23) and (24)]. Their
behavior remains almost similar, irrespective of any change
in asymmetry. These results satisfy the calculations carried
out using microscopic approaches [44,45], thereby suggesting
that these newly developed parameters not only can describe
finite nuclei and cold nuclear matter but also can be used to
study the phenomenon at finite temperature such as proto-
neutron star and supernova explosions.
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C. Liquid-gas phase transition

The asymmetric nuclear matter is a two-component system
with two conserved charges Q (B, I3). In a two-component
system, although the total charge remains conserved, the ratio
can be different in different phases. The constraint on T , Q,
and ρ, which determine the energetic of the system, forces
vapor pressure and chemical potential to change during the
phase transition. Apart from mechanical instability, the dif-
fusive instability (fluctuations on the charge concentration)
appears and is more relevant to describe the asymmetric mat-
ter. The phase transition in the asymmetric matter is therefore
described by the following three regions:

(1) Isothermal spinodal (ITS): describe the mechanical in-
stability given by ∂P

∂ρb
. It defines the critical temperature

in symmetric matter.
(2) Diffusive spinodal (DS): describe the chemical insta-

bility. It essentially means that energy is required to
add extra protons to the system at a fixed temperature
and pressure. The critical isobar Pc is estimated by
finding a inflation point ∂μp

∂α
|Pc = 0. The corresponding

T = Tc and ρ = ρc are called the critical temperature
and density, respectively.

(3) Coexistence curve (CE): Set of points where Eq. (20)
along with the Gibbs conditions are satisfied. This
curve may contain the critical points. Unlike the
symmetric-matter case, here the CE is binodal or two
dimensional.

The complexity of the phase transition in the asymmet-
ric nuclear matter is shown in Fig. 7. As one moves from
symmetric to asymmetric matter, a new behavior distinct to
the two-component system is allowed. Asymmetry is held
constant during the phase transition, which forces the system
to change its chemical potential and consequently the pressure
(shown by the dashed line in the left panel of Fig. 7). Due
to charge fluctuation during this phase transition, the diffu-
sive instability appears and plays more important role than
mechanical instability in describing the phase transformation.

The right panel of Fig. 7 shows all three curves, i.e., ITS, DS,
and CE, and it is visible that diffusive instability has a larger
area as compared with mechanical instability.

Binodal as per the Gibbs condition given in Eq. (21) at
T = 10 MeV is plotted in Fig. 8 by geometrical construc-
tion where a rectangle is drawn on the chemical-potential
isobars of neutrons and protons [46]. It is characterized by
the point of equal construction (EC). The point of maximal
asymmetry (MA) and the critical point which determine the
edge of the instability area. In the phase coexistence region,
the proton fraction of two-phase changes (a unique feature
of two-component systems) and the phase with higher asym-
metry exhibits a lower density or vice versa. At the critical
temperature of symmetric matter, all the three points (EC,
MA, CP) coincide and the surface becomes a point. The
vertical dashed magenta line indicates that, during the phase
transition, α remains constant and both phases follow different
paths, i.e., liquid follows the path A1-A2 while the gas phase
evolves from B1 to B2 during the isothermal compression.
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Finally, the system leaves the instability at A2. This condition
is called stable condensation. On the other hand, when the
system is prepared with α > αc (α at CP), it operates in the
gaseous phase only, and this unique phenomenon is called
retrograde condensation. The spinodal according to Eq. (20)
is plotted on the right side of Fig. 8 on both the ρn-ρp and α-ρb

planes. Figures 7 and 8 provide a complete description of the
phase transition in asymmetric nuclear matter.

In symmetric nuclear matter, the compressibility is the
deciding factor for critical parameters of phase transition
whereas, the phase transition in the asymmetric matter is
characterized by symmetry energy. This can be verified from
Eq. (12) where the contribution of iso-spin asymmetry is
reflected from the free symmetry energy Fsym and its slope
Lsym. Ksym and Qsym are the higher-order derivative of FNSE
in the Taylor series which are still not well constrained. We
have used two E-RMF sets IOPB-I and G3 to account for the
various EoS properties on the phase transition in the asym-
metric matter. The detailed analysis of the phase transition in
symmetric matter using the IOPB-I and G3 sets is discussed in
Ref. [19]. For ANM, the asymmetry in density is introduced
by the ρ meson and is dictated by cross coupling λω(R2W 2).
The G3 and IOPB-I set has λω = 0.038 and 0.024, respec-
tively. The corresponding values of J and L at T = 0 MeV
are given in Table I, whereas their finite temperature depen-
dence is shown in Fig. 2. The G3 set has an additional mass
asymmetry introduced by the δ meson. The δ meson allows
one to vary Lsym without altering the symmetry energy Fsym.
At a given temperature, the G3 set has a larger coexistence
area and large values of CP and MA as compared with the
IOPB-I set due to the δ meson. A large coexistence area favors
highly asymmetric gas in coexistence with less asymmetric
dense fluid. This has a direct consequence for the core-crust
transition and the crust structure of neutron stars. Opposite to
SNM, where ζ0 plays the determining role, the value of λω

decides the ANM which in turn affects Lsym. A greater λω

usually gives smaller Lsym and vice versa.
The spinodal for the G3 set also has a larger area at any

given temperature as compared with the IOPB-I set. One can
observe the major variation among two sets in the coexistence

densities in the α-ρb plane. This means that the densities
where different structure in the nonhomogeneous phase occur
will be different. This property is again determined by Lsym.
The G3 set with smaller Lsym estimates a larger α and ρc at
any given temperature. This is shown in Fig. 9, where the
dependence of α and ρc is shown on temperature. The α-T
plots signify the temperature at which the diffusive insta-
bility disappears (also called the critical temperature). This
critical temperature is not similar to symmetric matter where
mechanical instability decides the phase transition but is de-

termined according to ∂μp

∂α
|P,T = 0 and ∂2μp

∂α2 |P,T = 0. In the
E-RMF sets with constant couplings, the inflation point for the
proton and neutron coincides, having synchronous behavior.
This might not be the case with density-dependent coupling
sets [47,48]. α decreases smoothly at low temperatures but,
after T > 0.5T |α=0, there is a steep fall in α. The G3 set
estimates larger α at a particular T due to its smaller value
of Lsym and greater value of λω. This same trend is observed
in ρc. These trends are similar to Refs. [6,16], where any
one coupling in a parameter set were varied keeping other
fixed to obtain different Lsym. The agreement of those trends
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FIG. 10. The EoS with and without electrons. The solid line
represents the nuclear matter without electrons and the dashed line
represents the same with electrons.

while comparing two different parameter sets with almost the
same symmetry energy indicates that the correlation between
different properties of the phase transition still holds, as in the
case of SNM [49], and these can be exploited to constraint
the EoS, which does not take critical temperature into the
account [19,50].

D. Effect of electrons

In a physical system, the electrons are present so that the
Coulomb energy does not diverge. They are included in the
EoS as a free noninteracting relativistic Fermi gas described
by [17]

Le = ψ̄e[iγμ∂μ − me]ψe, (25)

where Le is the Lagrangian, and me is the mass of the elec-
tron. Since the electrons only compensate the proton charge,
we have ρp = ρe = 1

π2

∫
k2dk(nke − n̄ke). Where nke and n̄ke

are the Fermi integral for electrons and positrons. Figure 10
shows the effect of electrons on the EoS for the IOPB-I and
G3 parameter sets at T = 0 MeV. The effect of electrons is
dominant for matter with less asymmetry because the electron
density becomes high to compensate for the larger proton
density. Electrons are taken as noninteracting particles and
therefore the underlying nature of a parameter set in unaltered.
Electrons have high Fermi energy and, therefore, make the
system devoid of the instability. Both the IOPB-I and G3
sets have no spinodal when electrons are included for T = 5
MeV. No spinodal means that stellar matter at β equilibrium
will be uniform at temperature above 5 MeV [12]. This is
consistent with the various calculations of neutron star core
crust transition.

To further understand the implication of electrons in the
EoS, we study the adiabatic index. In processes such as su-
pernovae explosions and neutron stars, the compression and
rarefaction modes of vibration are adiabatic or isentropic
instead of isothermal [26]. The adiabatic index is related to

the stiffness of EoS and is given by

�s = ρb

P

∂P

∂ρb

∣∣∣
s
. (26)

�s=0 for the two models employed here is shown in Fig. 11.
The solid black curve represents the nucleon only while the
red dashed curve includes the contribution from electrons.
�s=0 corresponding to nucleons goes negative in some density
regions showing the mechanical instability. For low and high
densities it varies asymptotically. The inclusion of electrons
restore the mechanical instability and the value of �s=0 in-
creases gradually around subsaturation density and becomes
asymptotically constant at low and high densities. These ob-
servations can be understood quantitatively by examining the
baryon and electron pressure as shown in Fig. 10. For ρ → 0,
�s=0 tends to 4

3 which is due to the relativistic electrons and
is an important requirement for the stability of supernova
simulation. As asymmetry rises, this value goes to 5

3 for pure
neutron matter. Although the underlying properties for �s are
the same for both models, except for the position of instability
and the highest value of �s in the case of matter with electrons,
they are essentially determined by the pressure due to baryons.
The parameter sets IOPB-I and G3 do not break the causality
condition on speed of sound [51]. The presence of electrons in
the system also impacts the speed of sound C2

s = ∂ p
∂E . Addition

of electrons do not yield the nonphysical region in low density
as is seen in the nuclear matter system without leptons. At
higher density, the electrons impart significant impacts on the
more symmetric matter, making it smoother as compared with
the asymmetric matter.

IV. SUMMARY AND OUTLOOK

The primary aim of this work was to study the thermal
properties of hot and dilute isospin asymmetric nuclear matter
within the effective relativistic mean-field (E-RMF) formal-
ism. Although the thermodynamics of symmetric nuclear
matter is explored, the isospin effects are still not understood
at finite temperature. In this study, we consider the dilute ho-
mogeneous nuclear matter at different values of temperature
and isospin asymmetry because of their relevance in astro-
physical simulations. We study the temperature dependence
of free nuclear symmetry energy Fsym and its higher-order
derivatives. Fsym increases with temperature at a given density
due to a decrease in entropy density. The higher-order deriva-
tive of Fsym preserves the zero temperature behavior with a
slight change in magnitude, which shows that one can use
the zero-temperature value of these parameters to compare the
relevant quantities at any given temperature.

To study the finite-temperature effect, we separate the
thermal component from the zero-temperature EoS. It is
observed that the thermal effects in the E-RMF formalism
depend mainly on the density dependence of Dirac effective
mass. The Dirac effective mass is calculated self-consistently,
which depends on the σ and δ mesons. A larger Dirac effec-
tive mass corresponds to larger thermal effects on the state
variables. A similar effect of effective mass on the thermal
contribution is seen in nonrelativistic formalisms, although
both the Dirac mass and effective mass in nonrelativistic
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conditions defer in their origin. The thermal effects are also
sensitive to isospin asymmetry. The isospin asymmetry also
impacts the peak of the isothermal thermal index � at a fixed
temperature. The isothermal (KT ) and isentropic (KS) incom-
pressibility varies parabolically with temperature, implying a
nonlinear effect of temperature on the EoS. The trends of in-
compressibilities are in agreement with available microscopic
calculations.

The model dependence of these calculations is discussed
by using two E-RMF sets, i.e., IOPB-I and G3, because they
estimate the nuclear matter observables within the various
constraints imposed by various theoretical and experimental
analyses. They provide us with the opportunity to study the
effect of various meson couplings because these models have
comparable symmetry energy at saturation but differ in the
value of slope parameter Lsym, which is an important param-
eter in deciding the instability of a system. It is observed that
the underlying nature of the thermal contribution to a state
variable at a given isospin asymmetry remains the same with
increasing temperature across the forces used in this study.
The change in magnitude of the thermal contribution is prin-
cipally attributed to their zero-temperature variation, which is
the result of their different nuclear matter observables such
as incompressibility, symmetry energy, and its higher-order
derivatives.

The presence of the δ meson in the G3 set and its ab-
sence in the IOPB-I set prompts us to study the behavioral
change in the liquid-gas phase transition. The phase transi-
tion is studied for the asymmetric nuclear matter considering
a two-component system with two conserved charges, i.e.,

Baryon number and isospin. The G3 set, due to its low Lsym,
estimates the higher value of the maximal asymmetry and
critical pressure. The presence of the δ meson has a pos-
itive effect on binding energy and therefore influences the
boundary of the spinodal. The critical density and asymmetry
are also larger for the G3 set, which can be attributed to its
lower Lsym. The value of Lsym is determined mainly by cross
coupling of ρ and ω mesons with the δ meson. One can say
that a larger value of λω estimates the larger instability in
asymmetric nuclear matter. Critical asymmetry is a quadratic
function of temperature and exhibits different behavior in
the low- and high-temperature range. These trends are also
consistent with other relativistic studies available in the
literature.

Finally, we study the effect of electrons in the EoS of
nuclear matter and its instability. Electrons due to their high
Fermi energy make the system devoid of instabilities. We
study the adiabatic index (�S=0) of matter with and without
the inclusion of electrons. The �S with electrons becomes
asymptotically constant at low and high densities, with a small
variation near the saturation density. The density of this hump
predominantly depends on the baryon pressure. The electron
being a noninteracting particle does not alter the underlying
nature of the force parameter.

The present calculations can be extended to study the var-
ious astrophysical processes such as the supernova explosion
and neutron-star crust, where the nuclear matter is dilute and
at some finite temperature. The low-density matter results in
the formation of clusters, which subsequently impacts various
cooling and transportation processes. Furthermore, the idea of

055817-11



PARMAR, SHARMA, AND PATRA PHYSICAL REVIEW C 103, 055817 (2021)

a thermal effect on state variables will help to reduce the com-
putational cost and time of the numerical calculations in large
simulations such as impersonating supernovae explosions and

neutron-star binary collisions. Such an analysis is important to
estimate an equation of state for a wide range of density and
will be carried out in future work.
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