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Rotating neutron stars with quark cores
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The rotating neutron-star properties are studied to investigate a phase transition to quark matter. The density-
dependent relativistic mean-field model (DD-RMF) is employed to study the hadron matter, while the vector-
enhanced bag (vBag) model is used to study the quark matter. The star-matter properties such as mass, radius,
the moment of inertia, rotational frequency, Kerr parameter, and other important quantities are studied to see
their effect on quark matter. The maximum mass of a rotating neutron star with the DD-LZ1 and DD-MEX
parameter sets is found to be around 3M� for pure hadronic phase and decreases to around 2.6M� upon phase
transitioning to quark matter, which satisfies the recent GW190814 possible maximum mass constraint, implying
that the secondary component of GW190814 could be a fast-rotating hybrid star. For DDV, DDVT, and DDVTD
parameter sets, the maximum mass decreases to satisfy 2M�. The moment of inertia calculated for various
DD-RMF parameter sets decreases with the increasing mass satisfying constraints from various measurements.
Other important quantities calculated also vary with the bag constant and hence show that the presence of quarks
inside neutron stars can also allow us to constraint these quantities to determine a proper equation of state. Also,
the theoretical study along with the accurate measurement of uniformly rotating neutron-star properties may
offer some valuable information concerning the high-density part of the equation of state.
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I. INTRODUCTION

Compact objects such as neutron stars (NSs) in the known
universe are ideal sources to study the properties and composi-
tion of highly dense matter. The measurement of mass and the
radius for spherically symmetric and static stars impose con-
straints on the properties of matter at high density. The study
of rotating NS (RNS) properties may lead to significant new
constraints. From the past decade, the successful discoveries
of various gravitational waves by LIGO and Virgo collab-
orations (LVC) have allowed us to study the dense-matter
properties with more constraints imposed on the NS equation
of state (EoS). The measurement of tidal deformability for
static NSs ruled out many EoSs with either too large or too
small maximum mass.

The binary NS (BNS) merger event GW170817 [1,2] con-
strained the maximum mass and the tidal deformability of
NSs and hence the EoS. The total mass of the GW170817
event was around 2.7M� with the heavier component mass
1.16M�–1.60M� for low-spin priors. The maximum mass
approached 1.9M� for high-spin priors [3]. The tidal deforma-
bility dependence on the NS radius � ∝ R5 provided a more
strong constraint on the high dense nuclear EoS. A new grav-
itational wave event (GW190814) was observed recently by
LVC with a black hole merger of mass 22.2M�–24.3M� and
a massive secondary component of mass 2.50M�–2.67M�
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[4]. The secondary component of GW190814 gained a lot of
attention about its nature whether it is a black hole, a NS, or
some other exotic object [5–15].

A proper knowledge of a NS maximum mass is assumed
to be the most important parameter determining the pos-
sible outcome of a BNS merger [16–24]. The constraints
on the EoS at high density are imposed with accurate in-
formation of a NS maximum mass and radius [25–29].
The precise measurement of masses of millisecond pul-
sars such as PSR J1614-2230 (1.928 ± 0.017)M� [30], PSR
J0348 + 0432 (2.01 ± 0.04)M� [31], and PSR J0740 + 6620
(2.04+0.10

−0.09)M� [32] show that the theoretical maximum mass
of a NS should be around 2M�. Combining the GW observa-
tions of BNS with quasi-universal relations, a maximum mass
of Mmax � 2.17+0.17

−0.15M� is attained for nonrotating NSs [33].
By combining the total binary mass of GW170817 inferred
from GW signal with electromagnetic (EM) observations,
an upper limit of Mmax � 2.17M� is predicted [34]. Further
analysis employing both energy and momentum conserva-
tions along with the numerical relativity simulations show
that the maximum mass of cold NSs is weakly constrained
as Mmax � 2.3M� [35]. However, with the discovery of the
recent secondary component of GW190814 predicting a max-
imum mass around 2.5M�–2.67M�, the maximum-mass limit
for a NS seems to be weekly constrained.

The effect of the EoS on the properties of a RNS has been
studied since the late 90s by various groups [34,36–38]. To in-
vestigate the NS structure and its properties, the choice of the
EoS becomes the starting point. The proper choice of EoS for
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NS matter invites theoretical discussions. Every single EoS
produces a NS with different properties. Despite predicting
several NS properties, the composition at several times the
normal nuclear density is still not known properly. The core
of a NS is considered to be a nuclear matter in β-equilibrium
and charge-neutral conditions. Neutron, proton, electron, and
muon are the basic components of the core of a NS. The
NS structure with several exotic degrees of freedom like
quarks, kaons, and hyperons is also studied [8,39–42]. The
presence of such exotic phases significantly affects the NS
properties.

NS matter containing only hadrons are studied by
employing different model parameters at high densities.
Density-functional theories (DFTs) have been widely used
to determine the saturation properties of high dense nuclear
matter (NM) [43–48]. At saturation density, the NM EoS
is well constrained and its corresponding properties are de-
termined with less uncertainty. These EoSs at several times
the normal nuclear density describe the NS properties. The
relativistic mean-field (RMF) model has been very successful
in describing both finite and infinite NM [49]. The basic
mechanism involves the interaction of nucleons via mesons.
Different mesons like ρ, σ , ω, and δ have reduced the large
uncertainties present in the NM properties and constrained the
properties to well within the limits [50–56]. The RMF EoS
like NL3 [57] and BigApple [13,58] determine NSs with a
maximum mass around 2.7M�. The density-dependent RMF
(DD-RMF) model contains the density-dependent coupling
constants replacing the self- and cross-coupling of various
mesons in the basic RMF model [59]. DD-RMF parame-
ters like DD-ME1 [60], DD-ME2 [61] generate very massive
NSs with a 2.3M�–2.5M� maximum mass. Several new DD-
RMF parameter sets were proposed recently, such as DD-LZ1
[62], DD-MEX [63], DDV, DDVT, and DDVTD [64]. These
recently proposed parameter sets are divided into two cate-
gories. The DD-LZ1 and DD-MEX parameter sets produce
very stiff EoSs and hence a large NS maximum mass and
belong to the stiff EoS group. Parameter sets such as DDV,
DDVT, and DDVTD produce soft EoSs and hence lie in the
softer EoS group. Both the stiff and soft EoS groups are used
in the current study to determine the NS properties for the
static and rotating case.

Exotic degrees of freedom like quarks have been studied
over the past decades. The presence of quarks in the core of
NSs at very high densities has been proposed [29]. Thus the
phase transition to quark matter (QM) inside NSs is possible
at very high density [65,66]. A NS with hadrons in the core
followed by a phase transition to the QM at several times
the normal nuclear density is termed the “hybrid star” (HS)
[46,67–70].

The MIT bag model [66,71,72] was first proposed to study
strange and hybrid stars. The Nambu-Jona-Lasinio (NJL)
model [73–77] was later introduced and explained the QM
more precisely than the bag model. The modified NJL models
have been very successful in explaining the stable HSs and
also satisfying the recent GW170817 constraints [78,79]. The
modified bag model, termed the “vector-enhanced bag model”
(vBag) [80] was introduced as an effective model to study the
astrophysical processes. The vBag model is favored over the

simple bag model and NJL model because it accounts for the
repulsive vector interactions along with the dynamic chiral
symmetry breaking (DχSB). The repulsive vector interaction
and the deconfinement for the construction of a mixed-phase
allowed it to describe the strange or hybrid stars which attain
the 2M� limit. Recent work by Roupas show the secondary
component of GW190814 to be a strange star in the color-
flavor-locked (CFL) phase [81].

In the present work, we study the properties of a RNS by
considering a phase transition from hadron matter (HM) to
QM. The star-matter properties such as mass, radius, moment
of inertia, and Kerr parameter are studied along with some
other important properties. The dependence of these quantities
on the NS mass is discussed. Several properties of a static
star such as mass, radius, and tidal deformability are also
discussed.

This article is organized as follows: the DD-RMF model
for the HM and vBag model for QM and the phase-transition
properties are discussed in Sec. II. The static and rotating NS
structure and various properties associated with the star matter
are discussed in Sec. III. In Sec. IV, the parameter sets for the
NM and the saturation density properties are defined. The EoS
for the hadronic and hybrid star configurations are explained.
The static and RNS properties like mass, radius, and moment
of inertia are discussed in Sec. IV C. Finally, the summary and
concluding remarks are given in Sec. V.

II. THEORY AND FORMALISM

The RMF Lagrangian involves the interaction between the
nucleons through various mesons defined as Dirac particles.
The most basic and simplest RMF Lagrangian involves the
scalar-isoscalar sigma σ and vector-isoscalar ω mesons with-
out any interaction among themselves [82], which results
in large NM incompressibility K0 [49]. Boguta and Bodmer
included a nonlinear self-coupling of the σ field which low-
ered the value of NM incompressibility to reasonable values
and vector-isovector ρ meson [52]. Apart from σ , ω, and
ρ mesons, the addition of the scalar-isoscalar δ meson is
included to study the isovector effect on the scalar potential of
the nucleon. Both NM and NS matter properties are obtained
which lie well within the limits [54,73]. The effective field
theory motivated RMF (E-RMF) is the extended RMF model
which includes all possible self- and cross-couplings between
the mesons [55,83,84]. The RMF model gained a lot of suc-
cess in investigating both finite and infinite NM properties.
The various nonlinear meson coupling terms can be replaced
by the density-dependent nucleon-meson coupling constants
in the density-dependent relativistic Hartree-Fock (DD-RHF)
[85–87] and DD-RMF [59]. The density-dependent models
take into account the nuclear medium effect caused by the rel-
ativistic Brueckner-Hartree-Fock mode [59]. Unlike the RMF
model, the coupling constants in the DD-RMF are density de-
pendent, i.e., they vary with density. The DD-RMF coupling
constants depend either on the scalar density ρs or the vector
density ρB, but the vector density parametrizations are usually
considered, which does not influence the total energy of the
system.
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The DD-RMF Lagrangian density is

L =
∑

α=n,p

ψ̄α

{
γ μ

(
i∂μ − gω(ρB)ωμ − 1

2
gρ (ρB)γ μρμτ

)
− [M − gσ (ρB)σ − gδ (ρB)δτ ]

}
ψα

+ 1

2

(
∂μσ∂μσ − m2

σ σ 2
) + 1

2

(
∂μδ∂μδ − m2

δ δ
2
) − 1

4
W μνWμν

+ 1

2
m2

ωωμωμ − 1

4
RμνRμν + 1

2
m2

ρρμρμ, (1)

where ψα , (α = n, p) denotes the neutron and proton wave
function. gσ , gω, gρ , and gδ are the meson coupling constants
which are density dependent, and mσ , mω, mρ , and mδ are the
masses for σ , ω, ρ, and δ mesons, respectively. The tensor
fields W μν and Rμν are defined as

W μν = ∂μW ν − ∂νW μ, Rμν = ∂μRν − ∂νRμ. (2)

The coupling constants of σ and ω mesons for the DD-MEX,
DDV, DDVT, and DDVTD parameter sets are expressed as a
fraction of the vector density. The density-dependent coupling
constants for various parametrizations are given as

gi(ρB) = gi(ρ0) fi(x), (3)

where the function fi(x) is given by

fi(x) = ai
1 + bi(x + di )

2

1 + ci(x + di )
2 , i = σ, ω (4)

as a function of x = ρB/ρ0, where ρ0 is the nuclear matter
saturation density.

For the function fi(x), the number of constraint conditions
defined as fi(1) = 1, f ′′

σ (1) = f ′′
ω (1), f ′′

i (0) = 0 reduce the
number of free parameters from eight to three in Eq. (4). Out
of them, the first two constraints are

ai = 1 + ci(1 + di )
2

1 + bi(1 + di )
2 , 3cid

2
i = 1. (5)

For isovector ρ and δ mesons, the coupling constants are given
by an exponential dependence as

gi(ρB) = gi(ρ0) exp [−ai(x − 1)]. (6)

For the DD-LZ1 parameter set, the coefficient gi is fixed at
ρB = 0 for i = σ, ω;

gi(ρB) = gi(0) fi(x). (7)

There are only four constraint conditions for σ and ω in
the DD-LZ1 parameter set. The constraint f ′′

σ (1) = f ′′
ω (1)

is removed, which changes the coupling constant of ρ

meson as

gρ (ρB) = gρ (0) exp (−aix). (8)

Following the Euler-Lagrange equation, we obtain the equa-
tions of motion for nucleons and mesons.

The scalar density ρs, baryon density ρB, isovector densi-
ties ρs3, and ρ3 are defined as

ρs =
∑

α=n,p

ψ̄ψ = ρsp + ρsn =
∑

α

2

(2π )3

∫ kα

0
d3k

M∗
α

E∗
α

, (9)

ρB =
∑

α=n,p

ψ†ψ = ρp + ρn =
∑

α

2

(2π )3

∫ kα

0
d3k, (10)

ρs3 =
∑

α

ψ̄τ3ψ = ρsp − ρsn, (11)

ρ3 =
∑

α

ψ†τ3ψ = ρp − ρn. (12)

The effective masses of nucleons are given as

M∗
p = M − gσ (ρB)σ − gδ (ρB)δ (13)

and

M∗
n = M − gσ (ρB)σ + gδ (ρB)δ. (14)

Also,

E∗
α =

√
k2
α + M∗2

α (15)

is the effective energy of nucleons with nucleon momentum
kα . The energy-momentum tensor determines the total energy
density and the pressure for the NM as

EDD = EH + Ekin, PDD = PH + Pkin, (16)

where EH and PH are the energy density and the pressure of
hadronic matter, which are given as

EH = 1

2
m2

σ σ 2 − 1

2
m2

ωω2 − 1

2
m2

ρρ
2

+ 1

2
m2

δ δ
2 + gω(ρB)ωρB + gρ (ρB)

2
ρρ3,

PH = −1

2
m2

σ σ 2 + 1

2
m2

ωω2 + 1

2
m2

ρρ
2

− 1

2
m2

δ δ
2 − ρB

∑
R

(ρB), (17)

and Ekin and Pkin are the energy density and pressure from the
kinetic part,

Ekin = 1

8π2

[
kαE∗

α

(
2k2

α + M2
α

) + M4
α ln

Mα

kα + E∗
α

]
,

Pkin = 1

24π2

[
kαE∗

α

(
2k2

α − 3M2
α

) + 3M4
α ln

kα + E∗
α

M∗
α

]
. (18)
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For NS matter, the β-equilibrium condition is

μe = μμ = μn − μp, (19)

where

μα=n,p =
√

k2
α + M∗2

α

+
[

gω(ρB)ω + gρ (ρB)

2
ρτ3 +

∑
R

(ρB)

]
,

μl=μ,e =
√

k2
l + m2

l . (20)

The charge neutrality condition implies

qtotal =
∑
i=n,p

qik
3
i /(3π2) +

∑
l

qlk
3
l /(3π2) = 0. (21)

To study the phase transition from HM to QM, the vBag
[80] is employed which is an extension of the simple bag
model [66,71,72]. The vBag model accounts for DχSB and
also the additional repulsive vector interactions, which allow
the strange stars to achieve the 2M� limit on the maximum
mass and hence satisfy the constraints from recently mea-
sured masses of pulsars such as PSR J1614-2230 [30], PSR
0348 + 0432 [31], and MSP J0740 + 6620 [32].

The energy density and pressure in the vBag model follow
as [88]

EQ =
∑

f =u,d,s

EvBag,f − Bdc, (22)

PQ =
∑

f =u,d,s

PvBag,f + Bdc, (23)

where Bdc represents the deconfined bag constant introduced
which lowers the energy per particle, thus favoring stable
strange matter. The energy density and pressure of a single
quark flavor are defined as

EvBag,f (μ f ) = EFG, f (μ∗
f ) + 1

2 Kνn2
FG, f (μ∗

f ) + Bχ, f , (24)

PvBag,f (μ f ) = PFG, f (μ∗
f ) + 1

2 Kνn2
FG, f (μ∗

f ) − Bχ, f , (25)

where FG denotes the zero-temperature Fermi gas. The
coupling constant parameter Kν results from the vector inter-
actions and controls the stiffness of the star matter curve [89].
The bag constant for a single quark flavor is denoted Bχ, f . The
chemical potential μ∗

f of the system is

μ f = μ∗
f + KνnFG, f (μ∗

F ). (26)

An effective bag constant is defined in the vBag model so
that the phase transition to QM occurs at the same chemical
potential,

Beff =
∑

f =u,d,s

Bχ, f − Bdc. (27)

The effective bag constant Beff is an extension to the decon-
fined bag constant to allow the phase transition to occur at the
same chemical potential. This also illustrates how Beff can be
used in two- and three-flavor QM.

The charge neutrality and β-equilibrium conditions for the
QM are

2
3ρu − 1

2 (ρd + ρs) − ρe − ρu = 0, (28)

μs = μd = μu + μe; μu = μe. (29)

The density range over which a phase transition exists
between HM and QM is determined by beta-equilibrium and
charge-neutral conditions [67,90–93]. The phase transition
can be either by a local charge condition (Maxwell con-
struction) [94] or global charge neutrality condition (Gibbs
construction) [67]. The global charge neutrality condition al-
lows the HM and QM to be separately charged, unlike the
local charge-neutrality condition. In this study, we used the
Gibbs method to construct the hadron-quark phase transition.
The global charge neutrality condition follows as

χρQ + (1 − χ )ρH + ρl = 0, (30)

where the quark volume fraction in the mixed-phase is given
by χ = VQ/(VT ), which varies from χ = 0 to χ = 1 in the
pure hadron and pure quark phases, respectively. The charge
densities of quarks, hadrons, and leptons are represented by
ρQ, ρH , and ρl , respectively.

The equations governing the mixed-phase chemical poten-
tial, pressure, energy, and baryon density are defined as

μB,H = μB,Q, μl,H = μl,Q, (31)

and

PH (μB, μl ) = PQ(μB, μl ) = PMP, (32)

εMP = χεQ + (1 − χ )εH + εl , (33)

and

ρMP = χρQ + (1 − χ )ρH . (34)

The above equations determine the properties of the mixed-
phase and combined with the hadron equations generate the
overall properties of the star.

III. NEUTRON-STAR STRUCTURE AND PROPERTIES

A. Static neutron star

For a spherically symmetric, static NS (SNS), the metric
element has the Schwarzschild form (G = c = 1):

ds2 = −e2φ(r)dt2 + e2�(r)dr2 + r2(dθ2 + sin2 θdφ2), (35)

where the metric functions e−2φ(r) and e2�(r) are defined as

e−2φ(r) = [1 − γ (r)]−1, (36)

e2�(r) = [1 − γ (r)], (37)

with

γ (r) = 2M(r)/r. (38)

The energy-momentum tensor reduces the Einstein field
equations to the well-known Tolman-Oppenheimer-Volkoff
coupled differential equations given by [95,96]

dP(r)

dr
= − [E (r) + P(r)][M(r) + 4πr3P(r)]

r2(1 − 2M(r)/r)
(39)
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and
dM(r)

dr
= 4πr2E (r), (40)

where M(r) represents the gravitational mass at radius r with
fixed central density. The boundary conditions P(0) = Pc,
M(0) = 0 allows one to solve the above differential equations
and determine the properties of a NS.

The tidal deformability λ is defined as the ratio of the
induced quadrupole mass Qi j to the external tidal field Ei j as
[97,98]

λ = −Qi j

Ei j
= 2

3
k2R5. (41)

The dimensionless tidal deformability � is defined as

� = λ

M5
= 2k2

3C5
, (42)

where C = M/R is the compactness parameter and k2 is the
second Love number. The expression for the Love number is
written as [97]

k2 = 8

5
(1 − 2C)2[2C(y − 1)]

{
2C[4(y + 1)C4 + (6y − 4)C3

+ (26 − 22y)C2 + 3(5y − 8)C − 3y + 6]

− 3(1 − 2C)2[2C(y − 1) − y + 2] log

(
1

1 − 2C

)}−1

.

(43)

The function y = y(R) can be computed by solving the differ-
ential equation [98,99]

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + r2Q(r) = 0, (44)

where

F (r) = r − 4πr3[E (r) − P(r)]

r − 2M(r)
, (45)

Q(r) =
4πr

(
5E (r) + 9P(r) + E (r)+P(r)

∂P(r)/∂E (r) − 6
4πr2

)
r − 2M(r)

− 4

[
M(r) + 4πr3P(r)

r2(1 − 2M(r)/r)

]2

. (46)

The above equations are solved for spherically symmetric and
static NS to determine the properties like mass, radii, and tidal
deformability.

B. Rotating neutron star

For a rapidly rotating NSs with a nonaxisymmetric con-
figuration, they would emit gravitational waves until they
achieve axisymmetric configuration. The rotation deforms the
NS. Here we study the rapidly rotating NS assuming a station-
ary, axisymmetric space-time. The energy-momentum tensor
for such a perfect fluid describing the matter is given by

T μν = (E + P)uμuν + Pgμν, (47)

where the first term represents the contribution from matter.
uμ denotes the fluid-four-velocity, E is the energy density,

and P is the pressure. For RNS, the metric tensor is given by
[100–102]

ds2 = −e2ν(r,θ )dt2 + e2ψ (r,θ )[dφ − ω(r)dt]2

+ e2μ(r,θ )dθ2 + e2λ(r,θ )dr2, (48)

where the gravitational potentials ν, μ, ψ , and λ are the
functions of r and θ only. The Einstein’s field equations are
solved for the given potential to determine the physical prop-
erties that govern the structure of the RNS. Global properties
like gravitational mass, equatorial radius, moment of inertia,
angular momentum, and quadrupole moment are calculated.

For a RNS, the angular momentum J is easy to calculate.
By defining the angular velocity of the fluid relative to a local
inertial frame, ω̄(r) = � − ω(r), ω̄ satisfies the following
differential equation:

1

r4

d

dr

(
r4 j

dω̄

dr

)
+ 4

r

d j

r
ω̄ = 0, (49)

where j = j(r) = e−(ν+λ)/2.
The angular momentum of the star is then given by the

relation

J = 1

6
R4

(
dω̄

dr

)
r=R

, (50)

which relates the angular velocity as

� = ω̄(R) + 2J

R3
. (51)

The moment of inertia defined by I = J/� is given by
[103,104]

I ≈ 8π

3

∫ R

0
(E + P)e−φ(r)

[
1 − 2m(r)

r

]−1
ω̄

�
r4dr, (52)

The properties of a RNS are calculated by using the RNS code
[46,105–107].

IV. RESULTS AND DISCUSSIONS

A. Parameter sets

To determine the properties of SNSs and RNSs, we used
several recent DD-RMF parametrizations such as DD-MEX
[63], DD-LZ1 [62], and DDV, DDVT, DDVTD [64]. Apart
from the basic DD-MEX and DD-LZ1 parameter sets, the
DDV, DDVT, and DDVTD sets include the necessary tensor
couplings of the vector mesons to nucleons.

Table I shows the necessary nucleon masses, meson
masses, and the coupling constants of the parameter sets used.
The meson coupling constants in the DD-LZ1 parameter set
are the values at zero density while for the other parameter
sets, these coupling constants are obtained at the nuclear mat-
ter saturation density ρ0.

Table II displays the NM properties such as symmetry
energy, incompressibility, and slope parameter at saturation
density for various DD-RMF parameter sets. The E/A for all
the parameter sets lies well around −16 MeV. The value of
J lies in the range ≈31–34 MeV which is compatible with
the measurement from various astrophysical observations,
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TABLE I. Nucleon and meson masses and different coupling
constants for various DD-RMF parameter sets.

DD-LZ1 DD-MEX DDV DDVT DDVTD

mn 938.9000 939.0000 939.5654 939.5654 939.5654
mp 938.9000 939.0000 938.2721 938.2721 938.2721
mσ 538.6192 547.3327 537.6001 502.5986 502.6198
mω 783.0000 783.0000 783.0000 783.0000 783.0000
mρ 769.0000 763.0000 763.0000 763.0000 763.0000
gσ (ρ0) 12.0014 10.7067 10.1369 8.3829 8.3793
gω(ρ0) 14.2925 13.3388 12.7704 10.9871 10.9804
gρ (ρ0) 15.1509 7.2380 7.8483 7.6971 8.0604

aσ 1.0627 1.3970 1.2099 1.2040 1.1964
bσ 1.7636 1.3350 0.2129 0.1921 0.1917
cσ 2.3089 2.0671 0.3080 0.2777 0.2738
dσ 0.3799 0.4016 1.0403 1.0955 1.1034
aω 1.0592 1.3926 1.2375 1.1608 1.1693
bω 0.4183 1.0191 0.0391 0.04460 0.0264
cω 0.5386 1.6060 0.0724 0.0672 0.0423
dω 0.7866 0.4556 2.1457 2.2269 2.8062
aρ 0.7761 0.6202 0.3326 0.5487 0.5579

J = 31.6 ± 2.66 MeV [108]. The L value lies outside the con-
straints L = 59.57 ± 10.06MeV for the DD-LZ1 parameter
set, while others satisfy this constraint properly [109,110].
The proton and neutron effective masses are very large for
the DDVT and DDVTD parameter sets as compared with the
DDV set.

B. Equation of state

Figure 1 displays the various EoSs for various DD-RMF
parameter sets for a NS in beta-equilibrium and charge-
neutrality conditions. The DDVTD parameter set produces the
stiffest EoS at low densities and softest EoS at high density
as compared with other parameter sets. DDV and DDVT sets
produce soft EoS at high densities, which represent a NS with
small maximum mass. The DD-LZ1 and DD-MEX parameter
sets produce stiff EoSs at high densities and hence larger
NS maximum masses. The recently combined constraints
from the gravitational wave data GW170817 and GW190814
in the shaded region are adopted from Ref. [4]. This joint
constraint was introduced by considering the GW190814
event as neutron star-black hole (NSBH) merger, with its

TABLE II. NM properties binding energy E/A, incompressibility
K0, symmetry energy (J), slope parameter (L) at saturation density
for various DD-RMF parameter sets.

Parameter DD-LZ1 DD-MEX DDV DDVT DDVTD

ρ0 (fm−3) 0.158 0.152 0.151 0.154 0.154
E/A (MeV) −16.126 −16.140 −16.097 −16.924 −16.915
K0 (MeV) 231.237 267.059 239.499 239.999 239.914
J (MeV) 32.016 32.269 33.589 31.558 31.817
L (MeV) 42.467 49.692 69.646 42.348 42.583
M∗

n /M 0.558 0.556 0.586 0.667 0.667
M∗

p/M 0.5582 0.556 0.585 0.666 0.666
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FIG. 1. EoS profile for DD-LZ1, DD-MEX, DDV, DDVT, and
DDVTD parameter sets. The recent combined constraints from
GW170817 [2] and GW190814 [4] are also shown [4].

secondary component assumed to be a NS. For this sce-
nario, the maximum mass was assumed to be not less than
secondary component of GW190814, which constraints the
distribution of EoSs compatible with astrophysical data. For a
unified EoS, the Baym-Pethick-Sutherland (BPS) EoS [111]
is used for the outer crust part which lies in the density region
104–1011 g/cm3. Since the outer crust EoS does not effect
the NS maximum and the radius, therefore the it is chosen
for the outer crust part of the NS for all parameter sets. The
inner crust EoS has a high impact on the NS radius R1.4M�
at the canonical mass, while a small change is seen in the
maximum mass and radius [112]. For the parameter sets used
in this work, the inner crust EoS is not available. Thus, we
have employed the DD-ME2 inner crust EoS [61] for all the
parameter sets but with matching symmetry energy and slope
parameter [113,114].

For the mixed-phase HM and QM, the Gibbs construction
method, which corresponds to the global charge neutrality
between two different phases, has been employed. The effec-
tive bag model with an effective bag constant B1/4 is used to
study the QM. The coupling constant parameter Kν is fixed
at 6 GeV−2 for the three-flavor configuration. Three different
values of effective bag constant are used: B1/4

eff = 130, 145,
and 160 MeV.

Figure 2 shows the hadron-quark phase transition with
DD-RMF parameter sets for hadronic matter and vBag model
for QM using the Gibbs method for constructing mixed-phase
which ensures a smooth transition between the two differ-
ent phases. With the increasing effective bag constant B1/4

eff ,
the phase-transition density increases, and the mixed-phase
region also expands. For bag constant B1/4

eff = 130 MeV, the
mixed-phase region starts from ρ = 2.47ρ0 and extends up
to 4.03ρ0. For B1/4

eff = 145 and 160 MeV, the mixed-phase
region lies in the density range (3.03–4.82) ρ0 and (3.69–
5.31)ρ0, respectively. The DD-LZ1 and DD-MEX parameter
sets produce a stiff EoS and thus the mixed-phase region
lies in a higher-pressure region than the DDV, DDVT, and
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FIG. 2. Equation of state for the hadron-quark phase transition
for DDV, DDVT, DDVTD, DD-LZ1, and DD-MEX hadronic param-
eter sets and vBag QM at different effective bag constants. The solid
lines represents the hybrid EoS at B1/4

eff = 130 MeV while dashed
and dot-dashed lines represent the hybrid EoS at B1/4

eff = 145 and
160 MeV, respectively.

DDVTD parameter sets. The mixed-phase region in the DD-
LZ1 parameter sets lies in the density range (2.56–4.23)ρ0

for 130 MeV, (2.73–4.95)ρ0 for 145 MeV, and (3.04–5.43)ρ0

for 160 bag constants. Thus, the DD-LZ1 and DD-MEX sets
predict a large mixed-phase region as compared with the other
parameter sets.

C. Neutron-star properties

Figure 3 displays the hadronic mass vs radius curves for
DD-LZ1, DD-MEX, DDV, DDVT, and DDVTD parameter
sets. The DD-LZ1 set produces a NS with a maximum mass
of 2.55M� and with a radius of 12.30 km. DD-MEX set
produces a 2.57M� NS with a 12.46 km radius. Both these
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FIG. 3. Mass vs radius profiles for pure DD-LZ1, DD-MEX,
DDV, DDVT, and DDVTD parameters for a static NS. The recent
constraints on mass from various gravitational wave data and the
pulsars (shaded regions) [30–32] and radii [28,115] are also shown.
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FIG. 4. Mass-radius profile for pure hadronic and hybrid rotat-
ing NSs for (a) DD-LZ1 and (b) DD-MEX parameter sets at bag
values B1/4

eff = 130, 145, and 160 MeV. The shaded regions represent
recent constraints on the mass from various measured astronomical
observables.

parameter sets satisfy the constraints from recent gravitational
wave data GW190814 and recently measured mass and radius
of PSR J0030 + 0451, M = 1.34+0.15

−0.16M� and R = 12.71+1.14
−1.19

km by NICER [28,115]. The DDV, DDVT, and DDVTD
predict a maximum mass of 1.95M�, 1.93M�, and 1.85M�
for a static NS with 12.11, 11.40, and 11.33 km radius at
canonical mass, R1.4, respectively. DDV and DDVT satisfy
the mass constraint from PSR J1614-2230 and radius con-
straint from PSR J0030 + 0451. The DDVTD parameter set
produces a NS with a slightly lower maximum mass than PSR
J1614-2230. The shaded regions display the constraints on
the maximum mass of a NS from PSR J1614-2230 [(1.928 ±
0.017)M�] [30], PSR J0348 + 0432 [(2.01 ± 0.04)M�] [31],
MSP J0740 + 6620 [(2.14+0.10

−0.09)M�] [32], and GW190814
(2.50M�–2.67M�) [4].

The RNS mass-radius profile for DD-LZ1 and DD-MEX
parameter sets are shown in Fig. 4. The solid lines represent
the pure hadronic star while the dashed lines represent the HS
at different bag constants. The effective bag constant B1/4

eff is
written as B1/4 for convenience. The DD-LZ1 EoS produces a
pure hadronic RNS with a maximum mass of 3.11M� with
a radius of 18.23 km. With the phase transition from HM
to QM, the maximum mass and the corresponding radius
decrease with the increase in bag constant. For the DD-LZ1
set, the maximum mass decreases from 3.11M� to 2.98M� for
B1/4 = 130 MeV, and to 2.75M� and 2.64M� for B1/4 = 145
and 160 MeV, respectively. The radius R1.4 decreases from
18.32 km for pure HM to 16.64 km for hybrid star matter at
160 MeV bag value. Similarly, for the DD-MEX parameter
set, the maximum mass for pure hadronic matter is 3.15M� at
radius 16.53 km which reduces to 2.69M� at 16.63 km for a
bag constant of 160 MeV. Thus, while the pure hadronic RNS
predict a large maximum mass, the phase transition to QM
lowers the maximum mass and the radius, thereby satisfying
the maximum mass constraint from GW190814. These results
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(c) DDVTD EoSs.

imply that the secondary component of GW190814 could be
a possible fast-rotating hybrid star.

Figure 5 displays the mass-radius relation for hadronic and
hybrid rotating NS with DDV, DDVT, and DDVTD EoSs.
The maximum mass for a RNS with DDV EoS is 2.37M�
with a 17.41 km radius at the canonical mass. Both the
maximum mass and the radius decrease to 2.23M�, 2.13M�,
and 2.01M� and 16.91, 16.68, 16.13 km for bag constants
B1/4 = 130, 145, and 160 MeV, respectively, thereby satis-
fying the 2M� constraint. For DDVT, the maximum mass
reduces from 2.28M� to 1.99M�. R1.4 also decreases from
17.82 to 16.01 km. Similarly, for the DDVTD EoS, the RNS
maximum mass reduces to 1.93M� from 2.21M� at B1/4 =
160 MeV. For all the parameter sets, the phase transition to
QM lowers the maximum mass, which satisfies the 2M� limit.

The measurement of the NS moment of inertia is important
because it follows a universal relation with the tidal deforma-
bility and the compactness of a NS. The moment of inertia as
a function of gravitational mass for the RNS is displayed in
Fig. 6. The constraint on the moment of inertia obtained from
the joint PSR J0030 + 0451, GW170817, and the nuclear data
analysis predicting I1.4 = 1.43+0.30

−0.13 × 1038 kg m2 is given in
Ref. [116]. The predicted moment of inertia of pulsar PSR
J0737-3093A, I1.338 = 1.36+0.15

−0.32 × 1045 g cm2 is also given
[117]. For pure hadronic matter, DD-LZ1 and DD-MEX EoSs
predicts a NS with a moment of inertia 2.22 and 2.35 × 1045 g
cm2, respectively. The phase transition to the QM reduces the
moment of inertia to 1.65 and 1.93 × 1045 g cm2 for the DD-
LZ1 and DD-MEX parameter sets at bag constant B1/4 = 160
MeV, which satisfies the constraint from Refs. [116–118].

Figure 7 displays the moment of inertia variation with the
gravitational mass for DDV, DDVT, and DDVTD parameter
sets. The solid lines represent the pure hadronic matter, while
the dashed lines represent the hadron-quark mixed phase at
bag constants B1/4 = 130, 145, and 160 MeV. The constraints
on the moment of inertia obtained from millisecond pulsars
(MSPs) with GW170817 universal relations are shown in
Ref. [119]. For the DDV EoS, the moment of inertia of a
pure hadronic star is found to be 2.01 × 1045 g cm2 while
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FIG. 6. Moment-of-inertia variation with the gravitational mass
for (a) DD-LZ1 and (b) DD-MEX EoSs. The constraints on canonical
moment of inertia are also shown [118]. The constraint from joint
PSR J0030 + 0451, GW170817, and the nuclear data analysis are
shown by the green bar [116]. The predicted moment of inertia of
pulsar J0737-3039A using Bayesian analysis of the nuclear EoS is
shown by the brown bar [117].

for the DDVT and DDVTD EoSs, the value is found to be
1.95 and 1.88 × 1045 g cm2, respectively. For the hybrid EoS,
the moment of inertia is lowered to a value of 1.71 × 1045 g
cm2 for the DDV set at bag constant 160 MeV. For DDVT
and DDVTD sets, this value reduces to 1.68 and 1.64 × 1045

g cm2, respectively, for a 160 MeV bag constant. The phase
transition to QM produces a NS with the moment of inertia
that satisfies the constraints from various measurements.

For a static NS, the maximum mass is usually determined
as the first maximum of a M-εc curve, i.e., ∂M/∂εc = 0,
where εc is the central energy density. For RNSs, the situation
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FIG. 7. Same as Fig. 6 but for (a) DDV, (b) DDVT, and
(c) DDVTD parameter sets. The constraints on the moment of in-
ertia of MSPs obtained from universal relations with GW170817 are
shown [119].
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and (b) DD-MEX EoSs. The solid lines represent pure hadronic
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bag constants.

becomes complicated. To determine the axisymmetric insta-
bility points, several methods have been used in the literature.
Friedman et al. [120] described a method to determine
the points at which instability is reached in rotating NSs
[121,122]: ∣∣∣∣∣∂M(εc, J )

∂εc

∣∣∣∣∣
J=constant

= 0, (53)

where J is the angular momentum of the star, which is
obtained self-consistently in the solution of the Einstein’s
equation for a rotating NS. Once the secular instability is
initiated, the star evolves until it reaches a point of dynamical
instability where the gravitational collapse starts [105]. The
maximum mass of the rotating star lies at the termination point
of uniformly rotating star.

The above equation defining an upper limit on the mass at
a given angular momentum is a sufficient but not a necessary
condition for the instability. The limit on the dynamic insta-
bility is shown in Ref. [123].

Figure 8 shows the variation in the gravitational mass
of a rotating NS with the central density for DD-LZ1 and
DD-MEX parameter sets. Figure 9 represents the same for
DDV, DDVT, and DDVTD parameter sets. The maximum
mass of 3.11M� for DD-LZ1 EoS is produced at a density
of 1.40 × 1015 g/cm3. The phase transition to QM at bag
constant B1/4 = 160 MeV reduces the maximum mass to
2.64M� at 1.17 × 1015 g/cm3 energy density. For the DD-
MEX parameter set, the maximum mass of 3.15M� occurs at
1.47 × 1015 g/cm3 reduces to 2.69M� at 1.25 × 1015 g/cm3.

A star rotating at a Keplerian rate becomes unstable due
to the loss of mass from its surface. The mass-shedding limit
angular velocity, which is the maximum angular velocity of a
rotating star, is the Keplerian angular velocity evaluated at the
equatorial radius Re, i.e., �

J �=0
K = �orb(r = Re).

Figures 10(a) and 10(b) display the NS gravitational mass
as a function of the Kepler frequency νk for the DD-LZ1

0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

M
 (

M
O

)

Pure Hadron

B
1/4

=130 MeV
145 MeV
160 MeV

0.5 1 1.5 2 2.5

�
c
 (10

15
 g/cm

3
)

0.5 1 1.5 2 2.5 3

. (a) DDV (b) DDVT (c) DDVTD

FIG. 9. Same as Fig. 8 but for (a) DDV, (b) DDVT, and
(c) DDVTD EoSs.

and DD-MEX EoSs, respectively. The limits imposed on the
rotational frequency by various pulsars such as PSR B1937 +
21 (νk = 633 Hz) [124], PSR J1748-2446ad (νk = 716 Hz)
[125], and XTE J1739-285 (νk = 1122 Hz) [126] are also
shown. For the DD-LZ1 EoS, the pure hadronic star rotates
with a maximum frequency of 1525 Hz. For a HS at bag value
B1/4 = 130 MeV, the star rotates with a frequency of 1405 Hz.
For bag values of 145 and 160, the frequency obtained is
1431 and 1497 Hz, respectively. Similarly for DD-MEX EoS,
the maximum rotational frequency for a pure hadronic star
is found to be 1503 Hz, which changes to 1361 Hz at a bag
constant of 130 MeV, 1408 and 1438 Hz for the HS at 145
and 160 MeV bag values. Both pure hadronic and HSs rotate
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FIG. 10. Variation of rotational frequency with the NS gravita-
tional mass at Keplerian velocity for (a) DD-LZ1 and (b) DD-MEX
EoSs. Solid lines represent a pure hadronic star while the dashed
lines represent a hybrid star at bag constants B1/4 = 130, 145, and
160 MeV. The vertical lines represent the observational limits im-
posed on the frequency from rapidly rotating pulsars such as PSR
B1937 + 21 (νk = 633 Hz) [124], PSR J1748-2446ad (νk = 716 Hz)
[125], and XTE J1739-285(νk = 1122 Hz) [126].
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FIG. 11. Same as Fig. 10 but for (a) DDV, (b) DDVT, and
(c) DDVTD EoSs.

at a frequency greater than νk = 1122 Hz. Also, the hybrid
star M-νk curves coincide with the pure hadronic curves up
to νk ≈ 400 Hz, which then show a transition toward higher
frequency depending on the bag constant.

Figure 11 displays the same gravitational mass variation
with the Kepler frequency for DDV, DDVT, and DDVTD
parameter sets. For the DDV set, the pure hadronic star rotates
with a rotational frequency of 1498 Hz. The HSs produced
with bag constants B1/4 = 130, 145, and 160 MeV have a
rotational frequency of 1454, 1446, and 1520 Hz, respectively.
Similarly for DDVT and DDVTD EoSs, the pure hadronic star
has a rotational frequency of 1473 and 1418 Hz, respectively,
which then changes to 1503 and 1456 Hz, respectively, for
HS at 160 MeV bag constant. Thus it is seen that HSs with
a hadron-quark phase transition initially produce a low mass
NS with a low rotating frequency than the pure hadronic star
at low bag constant (B1/4 = 130 MeV). Thus the HSs can
withstand higher rotation as the star is denser and has low
maximum mass as compared with the pure hadronic star.

A useful parameter to characterize the rotation of a star is
the ratio of rotational kinetic energy T to the gravitational po-
tential energy W , β = T/W . For a RNS, if β > βd , where βd

is the critical value, the star will be dynamically unstable. The
critical value βd for a rigidly rotating star is found to be 0.27
[127,128]. However, for different angular-momentum distri-
butions, the value lies in the range 0.14 to 0.27 [129–131].

The variation in the T/W ratio of the pure hadron and HS
with the gravitational mass is shown in Fig. 12. The T/W ratio
for pure hadronic stars is 0.147 and 0.145 for DD-LZ1 and
DD-MEX parameter sets, respectively. The HSs have large
T/W ratio and increase with bag constant. For DD-LZ1 set,
the ratio increases from 0.150 at B1/4 = 130 MeV to 0.153 at
B1/4 = 160 MeV. For the DD-MEX set, the ratio increases to
0.149 and 0.151 for bag values 130 and 160 MeV, respectively.
The large value of the T/W ratio in HSs is due to the quark
stars being bound by the strong interaction, unlike hadron
stars which are bound by gravity.

Figure 13 depicts the T/W variation with the gravitational
mass for DDV, DDVT, and DDVTD parameter sets. For the
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FIG. 12. Variation in the ratio of rotational kinetic energy to
the gravitational potential energy T/W , with gravitational mass for
(a) DD-LZ1 and (b) DD-MEX EoSs. Solid lines represent pure
hadronic stars while dashed lines represent hybrid stars at bag con-
stants B1/4 = 130, 145, and 160 MeV.

DDV EoS, the pure hadronic star predicts a T/W ratio of
0.127, which lies below the critical value βd . For hybrid stars,
this ratio increases 0.142 for a bag constant of 160 MeV,
thereby satisfying the critical βd limit, and hence becomes dy-
namically unstable and emits gravitational waves. Similarly,
for DDVT and DDVTD EoS, the pure hadron star produces
a ratio of 0.115 and 0.108 while the HS at B1/4 = 160 MeV
gives a value of 0.127 and 0.125, respectively.

The Einstein’s field equations provide Kerr space-time for
so-called Kerr black holes which can be fully described by the
angular momentum J and gravitational mass M of rotating
black holes [132,133]. The condition J � GM2/c must be
satisfied to define a stable Kerr black hole. The gravitational
collapse of a massive RNS constrained to angular-momentum
conservation creates a black hole with mass and angular mo-
mentum resembling that of a NS. Thus, it is an important
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FIG. 13. Same as Fig. 12 but for (a) DDV, (b) DDVT, and
(c) DDVTD EoSs.
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bag constants.

quantity used in the study of black holes as well as RNSs. The
Kerr parameter leads to the possible limits on the compactness
of a NS and also can be an important criterion for determin-
ing the final fate of the collapse of a rotating compact star
[132,134]. The Kerr parameter is described by the relation

κ = cJ

GM2
, (54)

where J is the angular momentum and M is the gravitational
mass of the rotating NS. The Kerr parameter for black holes is
an important and fundamental quantity with a maximum value
of 1, but it is important for other compact stars as well.

To constrain the Kerr parameter for NSs, we studied the
dependence of the Kerr parameter on the NS gravitational
mass, as displayed in Figs. 14 and 15 for the given parameter
sets. From Fig. 14, the Kerr parameter for pure hadronic
DD-LZ1 and DD-MEX parameter sets is found to be 0.64
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FIG. 15. Same as Fig. 14 but for (a) DDV, (b) DDVT, and
(c) DDVTD EoSs.
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FIG. 16. Polar redshift vs gravitational mass for pure hadron
stars and hybrid star configurations for (a) DD-LZ1 and (b) DD-MEX
EoSs. The observational limits imposed on the polar redshift from
1E 1207.4-5209 (gray band) [136], RX J0720.4-3125 (brown band)
[46], and EXO 07482-676 (orange horizontal line) [137] are shown.

and 0.67, respectively. This parameter increases for the hybrid
stars with a maximum value of 0.73 at B1/4 = 160 MeV for
the DD-LZ1 set. For the DD-MEX set, the maximum value of
the Kerr parameter is 0.75 at 160 MeV bag constant. For the
DD-LZ1 parameter sets, the Kerr parameter remains almost
unchanged once the star reaches a mass of around 1.4M� for
pure hadronic matter and around 1.2M� for hybrid configura-
tions. For DDV, DDVT, and DDVTD parameter sets as shown
in Fig. 15, the Kerr parameter value for pure hadronic stars
at the maximum mass is 0.64, 0.62, and 0.61, respectively.
For hybrid star configurations, the value increases to 0.75 for
all parameter sets at bag constant B1/4 = 160 MeV. The Kerr
parameter for HS configurations remains almost identical to
the hadron star up to almost 0.4M�. Therefore, by definition,
the gravitational collapse of a RNS cannot form a Kerr black
hole.

Another important quantity related to the NSs is the red-
shift which has been investigated deeply [36,101,135]. The
measurement of redshift can impose constraints on the com-
pactness, and, in turn, on the NS EoS. For a RNS, if the
detector is placed in the direction of the polar plane of the
star, the polar redshift, also called gravitational redshift, can
be measured. For a detector directed tangentially, the forward
and backward redshifts can be measured. The expression for
the polar redshift is

ZP(�) = e−2ν(�) − 1, (55)

where ν is the metric function. The variation of the polar
redshift with the gravitational mass is depicted in Fig. 16 for
DD-LZ1 and DD-MEX EoSs. For pure hadronic stars, the
polar redshift is found to be around 1.1 for both EoSs. With
the QM present in the NSs, the polar redshift for DD-LZ1
decreases to a value 0.89, 0.84, and 0.64 for bag constants
B1/4 = 130, 145, and 160 MeV, respectively. Similarly for
the DD-MEX set, the redshift decreases up to 0.68 for the
160 MeV bag constant. The observational limits imposed on
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FIG. 17. Same as Fig. 16 but for (a) DDV, (b) DDVT, and
(c) DDVTD EoSs.

the redshift from 1E 1207.4-5209 (ZP = 0.12–0.23) [136],
RX J0720.4-3125 (ZP = 0.205+0.006

−0.003) [46], and EXO 07482-
676 (ZP = 0.35) [137] are also shown. The redshift prediction
of ZP = 0.35 for EXO 07482-676 was based of the narrow
absorption lines in the x-ray bursts. However, it was later seen
that the spectral lines from EXO 07482-676 may be narrower
than predicted [138]. Therefore the estimates of the redshift
from EXO 07482-676 are uncertain. For the softer EoS
group, the polar redshift variation with the gravitational mass
is shown in Fig. 17 for both pure HM and HS configurations.
For the DDV set, the polar redshift is found to be 0.75 for the
maximum mass of a pure hadronic star and decreases to 0.50
for the hybrid star at a bag constant of 160 MeV. For DDVT
and DDVTD EoSs, the redshift decreases from 0.72 and 0.70
for pure HM to 0.55 and 0.53 respectively for a hybrid star at
B1/4 = 160 MeV. The NS redshift provided by measuring the
γ -ray burst annihilation lines has been interpreted as gravita-
tionally redshifted 511 keV electron-positron pair annihilation
from the NS surface [139]. If this interpretation is correct, then
it will support a NS with redshift in the range 0.2 � ZP � 0.5
and thus will rule out almost every EoS studied in this work.

For the static NS, the phase transition to the QM for DD-
LZ1 and DD-MEX parameter sets is studied in Ref. [62]. For
DDV, DDVT, and DDVTD sets, the maximum mass obtained
is around 2M� and hence the phase transition to QM will de-
crease the maximum mass to a value not satisfying any recent
constraints on the mass and other NS properties. However, to
study the properties of a pure hadronic EoS, the mass-radius
profile for static stars is explained in Fig. 3. In addition to
this, we study the tidal deformability of the given parameter
sets. The equations describing the tidal deformation and its
dependence on the star matter properties are described above.

The dimensionless tidal deformability � as a function of
NS mass for the hadronic EoSs is shown in Fig. 18. The
constraint on dimensionless tidal deformability obtained us-
ing Bayesian analysis is shown, �1.4 = 500+186

−367 [140]. The
orange dotted curve represents an upper limit set on the tidal
deformability from the measurement of GW170817 [1]. The
tidal deformability depends upon the NS mass and the ra-
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FIG. 18. Dimensionless tidal deformability as a function of NS
mass for DD-LZ1, DD-MEX, DDV, DDVT, and DDVTD EoSs.
The recent constraint using Bayesian analysis [140] and an upper
limit on dimensionless tidal deformability set by measurement from
GW170817 [1] are shown.

dius. The value decreases with increasing mass and becomes
very small at the NS maximum mass. The dimensionless
tidal deformability for DD-LZ1, DD-MEX, DDV, DDVT, and
DDVTD EoSs at the canonical mass is found to be 727.17,
791.60, 391.23, 337.51, and 281.05, respectively. All these
values lie well below the upper limit set by the GW170817
event. Using Bayesian analysis, Lim et al. [141] showed a
90% and 65% credibility interval on the dimensionless tidal
deformability at 1.4M�, 136 < � < 519, and 256 < � <

442, respectively. The DD-MEX set produces a little higher
value of the tidal deformability. The value of �1.4 for softer
group EoS (DDV, DDVT, and DDVTD) is significantly lower
than the stiffer group (DD-LZ1 and DD-MEX) because of the
small maximum mass and the corresponding radius. However,
the stiffer group EoSs cannot be neglected in comparison to
the softer group. The tidal deformability of softer group satis-
fies all the constraints imposed. The precise measurement of
the tidal deformability for the BNS mergers with a maximum
mass around 2M� by future gravitational wave detectors will
lower the uncertainties in these values, thereby constraining
the EoSs.

V. SUMMARY AND CONCLUSION

The properties of static and rotating NSs are studied with a
hadron-quark phase transition. The hadronic matter is studied
by employing the DD-RMF model. Recent parameter sets like
DDV, DDVT, and DDVTD along with the DD-LZ1 and DD-
MEX are used to study the hadronic EoS. The QM is studied
using a modified version of the bag model, the vBag model.
The vBag model includes the necessary repulsive vector in-
teractions and DχSB. The vBag model coupling parameter
Kν controlling the stiffness of the EoS curve is held constant
at 6 GeV−2. The effective bag constant B1/4

eff is varied by
taking the values 130, 145, and 160 MeV. The Gibbs tech-
nique is used to construct the mixed-phase between hadrons
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and quarks which accounts for the global charge neutrality
of the system. The properties like mass, radius, and the tidal
deformability of static NS are studied. For RNS, the variation
in the NS properties such as maximum mass, radius, the mo-
ment of inertia, rotational frequency, Kerr parameter, etc. are
studied in the presence of QM.

For static NSs, the maximum mass for DD-LZ1 and
DD-MEX is found to be 2.55M� and 2.57M�, respectively,
forming a stiffer EoS group. For DDV, DDVT, and DDVTD
EoSs, the maximum is found to be around 1.9M�, thus lying
in the softer EoS group. The phase-transition properties for
SNS are not studied for the softer EoS group because it would
result in a very low maximum mass not satisfying any mass
constraints.

For RNSs, the maximum mass is found to be 3.11M�
for the DD-LZ1 set, which in presence of QM reduces to
2.64M�, satisfying the recent GW190814 possible maximum
mass constraint. The DD-MEX set also predicts a maximum
mass of 3.15M� decreasing to 2.69M� for B1/4

eff = 160 MeV
bag constant. For the softer EoS group, the RNS mass lies in
the range 2.2M�–2.3M� which then reduces with increasing
bag constant to satisfy the 2M� limit. The radius also de-
creases with increasing bag constant. The moment of inertia
for the stiffer group lies in the range (2.2–2.3)×1045g cm2 for
pure hadron EoSs. The phase transition to QM reduces the
value to 1.7 × 1045g cm2, satisfying the recent constraints. For
the softer group of EoSs, the moment of inertia is lowered in
the presence of QM to satisfy the constraints from GW170817
with universal relations.

The variation in the rotational frequency of a NS with the
gravitational mass is also studied. The pure hadronic EoSs
produce NSs with high rotational frequencies. For DD-LZ1
and DD-MEX, the rotational frequency at the maximum mass
is 1525 and 1503 Hz, respectively. For DDV, DDVT, and
DDVTD EoSs, the frequency obtained is in the range 1400–
1500 Hz. The quarks produce the hybrid star configurations
with larger rotational frequencies as the quark star are more
compact than hadron stars. Initially, for HS configuration at
B1/4 = 130 MeV, the rotating with frequency smaller than
a pure hadronic star is formed. As the bag constant in-
creases, the maximum mass decreases, and the corresponding
frequency increases. All the pure hadronic and hybrid star
configurations produce NSs with a frequency higher than the
highest measured frequency of ν = 1122 Hz.

The ratio of rotational kinetic energy to the gravita-
tional potential energy β = T/W is studied to determine the

dynamical stability of the RNS. For β > βd (=0.14–0.27),
the star is considered to be dynamically unstable and hence
emits gravitational radiation. The T/W ratio for rotating pure
hadronic stars is found to be 0.147 and 0.145 for DD-LZ1 and
DD-MEX EoSs. The QM phase transition tends to increase
the T/W ratio with decreasing mass. For a bag constant of
160 MeV, the ratio is found to be 0.153 and 0.151 for DD-LZ1
and DD-MEX EoSs, respectively. For a softer EoS group, this
ratio lies below the critical limit for pure hadronic stars but
increases to a value well within the critical limit.

The Kerr parameter is calculated for the RNSs whose mea-
surement allows us to constrain the compactness of a star and
hence the EoS. The precise value of the Kerr parameter for a
NS is not known yet, but a maximum value of 0.75 is seen in
most of the theoretical works. For the given parametrization
sets, the Kerr parameter value lies around 0.65 for the stiffer
group and 0.6 for the softer group. Following the inverse
relationship with the gravitational mass, the Kerr parameter
increases in the presence of quarks. For both stiffer and softer
EoS groups, the value attains a maximum value of 0.75,
which remains almost unchanged as the mass increases be-
yond 1M�. The dependence of polar redshift on the NS mass
is also calculated. It is seen that the polar redshift decreases in
presence of quarks. The redshift parameter measured for all
hybrid star configurations lies well above the predicted value
from EXO 07482-676, ZP = 0.35.

For static, spherically symmetric stars, we have also cal-
culated the dimensionless tidal deformability. It is seen that
all the parameter sets predict a value of tidal deformability
satisfying the constraints from various measurements.

Thus, it is clear that the presence of quarks inside the
NS affects both static and rotating NS properties. Eliminating
the uncertainties present in the values of these quantities will
allow us to rule out very stiff and very soft EoSs. The measure-
ment of tidal deformability for RNS will help us to constraint
its properties and hence determine a proper EoS in the near
future. Additional gravitational-wave observations of binary
NS mergers and more accurate measurements of other NS
properties like mass, radius, tidal deformability will allow the
universal relation-based bounds on canonical deformability
to be further refined. The theoretical study of a uniformly
RNS, along with the accurate measurements, may offer new
information about the equation of state in high-density regime.
Besides, NSs through their evolution may provide us with
a criterion to determine the final fate of a rotating compact
star.
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