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Nuclear pasta structures and symmetry energy
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In the framework of the relativistic mean-field model with Thomas-Fermi approximation, we study the struc-
tures of low-density nuclear matter in a three-dimensional geometry with reflection symmetry. The numerical
accuracy and efficiency are improved by expanding the mean fields according to fast cosine transformation and
considering only one octant of the unit cell. The effect of finite cell size is treated carefully by searching for the
optimum cell size. Typical pasta structures (droplet, rod, slab, tube, and bubble) arranged in various crystalline
configurations are obtained for both fixed proton fractions and β equilibration. It is found that the properties of
droplets and bubbles are similar in body-centered cubic (bcc) and face-centered cubic (fcc) lattices, where the
fcc lattice generally becomes more stable than bcc lattice as density increases. For the rod and tube phases, the
honeycomb lattice is always more stable than the simple one. By introducing an ω-ρ cross coupling term, we
further examine the pasta structures with a smaller slope of symmetry energy L = 41.34 MeV, which predicts
larger onset densities for core-crust transition and nonspherical nuclei. Such a variation due to the reduction of L
is expected to have impacts on various properties in neutron stars, supernova dynamics, and binary neutron star
mergers.

DOI: 10.1103/PhysRevC.103.055812

I. INTRODUCTION

Because of the first-order liquid-gas phase transition of
nuclear matter, a mixed phase is expected at subsaturation
densities (nb � 0.08 fm−3) and small temperatures (T�10
MeV). Such a liquid-gas mixed phase will exhibit various
nonuniform structures that are usually referred to as nuclear
pasta [1–5], which exist typically in the inner crust region
of neutron stars and the core region of supernovae at the
stage of gravitational collapse. A detailed investigation of the
possible structures and properties of nuclear pasta is essential
to understand the rotation and thermal evolution of neutron
stars [6–18], supernova dynamics [19–23], and binary neutron
star mergers [24–28].

In the past few decades, significant efforts were devoted
to determine the structures of the nuclear pasta. For ex-
ample, employing spherical and cylindrical approximations
of the Wigner-Seitz (WS) cell [29–33], it was found that
there exist five types of geometrical structures, i.e., droplets
or bubbles, rods or tubes, and slabs for three, two, and
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one dimensions. Owing to the geometrical symmetry, the
numerical calculation is essentially one dimensional. How-
ever, such approximations neglect the interactions among
other cells and thus have no dependence on the lattice type
[34]. Meanwhile, further investigations have revealed much
more complicated structures [35–37], such as the gyroid
and double-diamond morphologies [38,39], P-surface con-
figurations [40,41], nuclear waffles [42,43], parking-garage
structures [44], deformations in droplets [45], as well as
the intermediate structures of droplet and rod, slab, and
tube [46,47], which cannot be described in the spherical or
cylindrical approximations of the WS cell. Under such cir-
cumstances, in this work we investigate the nuclear pasta
in a three-dimensional geometry with reflection symmetry,
where the Thomas-Fermi approximation is adopted [47,48].
The lattice structure, interaction among different unit cells,
and charge screening effect can then be considered self-
consistently. As was done in Refs. [31,49–51], the local
properties of nuclear matter are obtained in the framework of
the relativistic mean field (RMF) model [52].

The nuclear matter properties are well constrained around
the saturation density (n0 ≈ 0.16 fm−3) according to various
terrestrial experiments and nuclear theories [53], which gives
the binding energy B ≈ −16 MeV, the incompressibility K =
240 ± 20 MeV [54], the symmetry energy S = 31.7 ± 3.2
MeV, and its slope L = 58.7 ± 28.1 MeV [55,56]. Note that
the uncertainty of L is larger than other quantities, which is
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expected to be reduced with the measurements of neutron skin
thickness �Rnp in the pioneering Lead Radius Experiment
(PREX) II [57] and the upcoming Mainz Radius Experiment
(MREX). At this moment, the neutron skin thickness of 208Pb
measured in PREX-I is �Rnp = 0.33+0.16

−0.18 fm [58], while a
recent measurement with PREX-II suggests �Rnp = 0.283 ±
0.071 fm [57]. The uncertainty can be reduced if other con-
straints are included [59–63]. It is worth mentioning that the
symmetry energy at baryon number density nb = 0.1 fm−3

is well constrained (25.5 ± 1.0 MeV) by reproducing finite
nuclei properties [64,65], while its slope was shown to be
deeply connected with �Rnp [66].

Meanwhile, as we are entering the multimessenger era,
significant progress has been made on measuring neutron
star properties [26,67–69]. The precise mass measurements
of the two-solar-mass pulsars [70–73] and the possible ex-
istence of more massive pulsars [74–78] have put strong
constraints on the properties of dense stellar matter. With
pulse-profile modeling [79], recently the mass and radius of
PSR J0030 + 0451 have been accurately measured [80,81].
Nevertheless, the most stringent constraints on radius are
obtained from the binary neutron star merger event GRB
170817A-GW170817-AT 2017gfo (11.9+1.4

−1.4 km) [82], cor-
responding to the measured dimensionless combined tidal
deformability 302 � �̃ � 720 [83–88]. The uncertainties of
nuclear matter properties can be further reduced by adopting
those constraints [89]. In fact, it was shown that the radius
and tidal deformability of neutron stars are closely related to L
[89–94]. By combining all these constraints and the heavy ion
collision data, a recent estimation using the effective Skyrme
energy density functional suggests K = 250.23 ± 20.16 MeV,
S = 31.35 ± 2.08 MeV, and L = 59.57 ± 10.06 MeV [93].

In light of the updated constraints on nuclear matter prop-
erties and particularly the slope of symmetry energy, we
reanalyze the results obtained in previous study [47,48] and
introduce an ω-ρ cross coupling term. The slope of sym-
metry energy is then reduced from L = 89.39 MeV [31] to
L = 41.34 MeV, which better reproduces the neutron star
tidal deformability. Previous studies adopting the spherical
and cylindrical approximations of the WS cell suggest that
the charge number of nuclei, the core-crust transition density,
and the onset density of nonspherical nuclei decrease with
L [95–98]. For the core-crust transition density nt , similar
nt-L relation was found using both the dynamical and ther-
modynamical methods [99], while recently it was suggested
that higher order terms of symmetry energy could also play
important roles [94,100].

In this work, we thus examine the impact of varying L on
nuclear pasta, where various crystal structures are considered.
In order to determine the true ground state with higher ac-
curacy, we expand the mean fields according to fast cosine
transformation. The computation time is further reduced by
considering only one octant of the unit cell [36]. The effect
of finite cell size [36,101] is then accounted for by searching
for the optimum cell size. The paper is organized as follows.
In Sec. II, we present our theoretical framework of the RMF
model. In Sec. III, the ω-ρ and N-ρ coupling constants are
adjusted according to various constraints, while the numerical
details on obtaining the nuclear pasta are discussed. The ob-

tained results on the structure and properties of nuclear pasta
are presented in Sec. IV. Our conclusion is given in Sec. V.

II. THEORETICAL FRAMEWORK

The Lagrangian density of the RMF model [52] reads

L =
∑

i

ψ̄i
[
iγ μ∂μ − mi − giσ σ

− γ μ(giωωμ + giρτ i · ρμ + qiAμ)
]
ψi

+ 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − U (σ ) − 1

4
ωμνω

μν

+ 1

2
m2

ωωμωμ − 1

4
ρμν · ρμν + 1

2
m2

ρρμ · ρμ

− 1

4
AμνAμν + �vg2

ωg2
ρ (ωμωμ)(ρμ · ρμ). (1)

Here the Dirac spinor ψi represents a fermion (n, p, e) with
mass mi, isospin τ i, and charge qi. Three types of mesons
(σ , ωμ, and ρμ) are included to account for the strong inter-
actions among nucleons, where the nucleon-meson coupling
constants are taken as gnσ = gpσ = gσ , gnω = gpω = gω, and
gnρ = gpρ = gρ . We take geσ = geω = geρ = 0 since elec-
trons have nothing to do with strong interaction. To account
for the density dependence of effective interaction strengths,
we adopt the nonlinear self-couplings of σ , i.e.,

U (σ ) = bmN (gσ σ )3/3 + c(gσ σ )4/4. (2)

Meanwhile, an ω-ρ cross coupling term �vg2
ωg2

ρ (ωμωμ)(ρμ ·
ρμ) is included here to give better constraints on the density
dependence of symmetry energy [98]. If we fix the symmetry
energy at baryon number density nb = 0.11 fm−3 by readjust-
ing gρ , it was shown that the slope of symmetry energy L
decreases with �v [97]. In principle, one could also introduce
other cross-coupling terms such as σ -ρ and σ -ω terms in
the Lagrangian density [53]. Alternatively, by adopting the
Typel-Wolter ansatz [102], an explicit density-dependent N-ρ
coupling constant gρ can be adopted, which can be fixed by
the Dirac-Brueckner calculations of nuclear matter.

The field tensors for ω meson, ρ meson, and photons (Aμ)
are given by

ωμν = ∂μων − ∂νωμ, (3)

ρμν = ∂μρν − ∂νρμ, (4)

Aμν = ∂μAν − ∂νAμ. (5)

Then the equations of motion for fermions and bosons are
obtained based on the Euler-Lagrange equation. For a system
with time-reversal symmetry, the spacelike components of the
vector fields ωμ and ρμ vanish, while charge conservation
guarantees that only the third component in the isospin space
of ρ meson survives. In the mean field approximation (MFA),
the meson fields become their mean values (σ , ω0, and ρ0,3).
The Klein-Gordon equations for bosons under MFA become( − ∇2 + m2

σ

)
σ = −gσ ns − U ′(σ ), (6)( − ∇2 + m2

ω

)
ω0 = gωnb − 2�vg2

ωg2
ρω0ρ

2
0,3, (7)
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( − ∇2 + m2
ρ

)
ρ0,3 =

∑
i=n,p

gρτi,3ni − 2�vg2
ωg2

ρω
2
0ρ0,3, (8)

−∇2A0 = enp − ene. (9)

Here the nucleon scalar and vector densities are obtained with
ns = ∑

i=n,p〈ψ̄iψi〉 and nb = ∑
i=n,p ni = ∑

i=n,p〈ψ̄iγ
0ψi〉.

Since we are working with systems composed of large
numbers of particles, it is convenient to adopt the Thomas-
Fermi approximation for fermions, where ψi is considered as
plane waves and the eigenvalues of the Dirac equations are

ε±
i (p) = giωω0 + giρτi,3ρ0,3 + qiA0 ±

√
p2 + m∗

i
2, (10)

with the effective nucleon mass being m∗
n = m∗

p = m∗
N ≡

mN + gσ σ and m∗
e = me = 0.511 MeV.

The total energy of the system is obtained with

E =
∫

〈T00〉d3r, (11)

where the energy momentum tensor at zero temperature can
be estimated with

〈T00〉 = E0 + 1
2 (∇σ )2 + 1

2 m2
σ σ 2 + U (σ ) + 1

2 (∇ω0)2

+ 1
2 m2

ωω2
0 + 1

2 (∇ρ0,3)2 + 1
2 m2

ρρ
2
0,3

+ 3�vg2
ωg2

ρω
2
0ρ

2
0,3 + 1

2 (∇A0)2. (12)

Adopting no-sea approximation, the local kinetic energy den-
sity is determined by

E0 =
∑
i=n,p

∫ νi

0

p2

π2

√
p2 + m∗

N
2d p +

∫ νe

0

p2

π2

√
p2 + me

2d p,

=
∑
i=n,p

m∗
N

4

8π2
f

(
νi

m∗
N

)
+ m4

e

8π2
f

(
νe

me

)
, (13)

where f (x) = [x(2x2 + 1)
√

x2 + 1 − arcsh(x)], and νi is the
Fermi momentum and corresponds to the top of Fermi
sea, i.e., ε+

i (νi ) = μi = constant with μi being the chemical
potential. The source currents at zero temperature can be
obtained with

ns =
∑
i=n,p

〈ψ̄iψi〉 =
∑
i=n,p

m∗
N

3

2π2
g

(
νi

m∗
N

)
, (14)

ni = 〈ψ̄iγ
0ψi〉 = ν3

i

3π2
, (15)

where g(x) = x
√

x2 + 1 − arcsh(x). Note that ns, ni, and E0

represent the local properties of nuclear matter and vary with
the space coordinates, which can be determined by the con-
stancy of the chemical potentials, i.e.,

μi(�r) = gωω0(�r) + gρτi,3ρ0,3(�r) + qiA0(�r)

+
√

νi(�r)2 + m∗
i (�r)2 = constant. (16)

III. NUMERICAL DETAILS

A. Nuclear pasta

In order to obtain the nonuniform structures of nuclear
pasta, we need to solve the Klein-Gordon equations (6)–(9)
and density distributions of fermions with Eq. (16) based on
mean field and Thomas-Fermi approximations. In previous
investigations [47,48], Eqs. (6)–(9) and (16) were solved it-
eratively inside a three-dimensional (3D) periodic cell with
discretized space coordinates. The body-centered cubic (bcc)
and face-centered cubic (fcc) lattices for droplets or bubbles,
simple and honeycomb configurations for rods or tubes, and
only one type of slab are found to be more stable than other ex-
otic structures, which are symmetric under reflection. In such
cases, to improve the computational efficiency, we expand the
mean fields (φ = σ , ω0, ρ0,3, A0) as

φ(�r) =
∑
i, j,k

φ̃i, j,k cos(xpxi ) cos(ypy j ) cos(zpzk ), (17)

which is equivalent to consider one octant of the unit cell
[36]. In principle, we can further reduce the computational
cost by considering one octant of the WS cell. We did not do
so in order to include the possible emergency of intermediate
structures [46,47]. The indices i, j, k run from 0 to Nx,y,z − 1,
where Nx,y,z is the total grid number on the x, y, and z axes,
respectively. The quantities pxi, py j , and pzk take discrete
values and are determined by

pxi = π i

�xNx
, py j = π j

�yNy
, pzk = πk

�zNz
, (18)

where �x, �y, and �z are the grid distances on the x, y,
and z axes. The space coordinates in Eq. (17) thus lie within
−�xNx � x � �xNx, −�yNy � y � �yNy, and −�zNz �
z � �zNz. The coefficients φ̃i, j,k are fixed by solving the
Klein-Gordon equations (6)–(9), which are now reduced to

φ̃i, j,k = Si, j,k

p2
xi + p2

y j + p2
zk + m2

φ

, (19)

with the source currents Si, j,k obtained via fast cosine trans-
formations on the right-hand sides of Eqs. (6)–(9). Based on
Eq. (17), the energy contributions of the terms 1

2

∫
(∇φ)2d3r

in Eq. (11) are determined with these coefficients, i.e.,∫
(∇φ)2d3r =

∑
i, j,k

V

hih jhk
φ̃2

i, j,k

(
p2

xi + p2
y j + p2

zk

)
, (20)

where the volume V = �x�y�zNxNyNz takes one octant of
the unit cell and the coefficients h0 = 1 and hi = 2 at i > 0.
Once we obtain the mean fields with Eq. (17), the local
chemical potentials are determined by Eq. (16). To reach
the ground state, the density distributions of nucleons and
electrons should meet the requirement of the constancy of
chemical potentials. In practice, in order to fulfill Eq. (16),
we adopt the imaginary time step method [103] and solve
Eqs. (6)–(9) and (16) iteratively. In summary, Eqs. (6)–(9) and
(16) are solved iteratively inside a 3D periodic unit cell with
discretized space coordinate and reflection symmetry:

(1) Assume initial density distributions of fermions at
given total particle numbers.
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FIG. 1. Energy per baryon (a) of nuclear pasta in bcc lattice
and total deviation (b) of local chemical potentials as functions of
iteration steps.

(2) Solve the Klein-Gordon equations (6)–(9) with
Eq. (19) via fast cosine transformations.

(3) Obtain the local chemical potentials with Eq. (16) ac-
cording to the mean fields determined by Eq. (17).

(4) Readjust the density distributions of fermions with the
imaginary time step method [103].

(5) Go to step 2 until convergence is reached.
(6) Obtain the energy of the system with Eq. (11).

By properly choosing the initial density profiles, the pasta
structure will eventually evolve into certain configurations via
imaginary time step method. If a random initial density profile
was applied [47,48], we have little control over the converged
pasta structure. It is thus more efficient to assume some initial
configurations, which will normally evolve into the chosen
nuclear pasta structure. The ground-state structure can then
be obtained by searching for the configuration that gives the
minimum energy per baryon.

To check if Eq. (16) is satisfied, we examine the deviation
of local chemical potentials, i.e.,

∑
i=p,n,e

〈
�μ2

i

〉 =
∑

i=p,n,e

∫
[μi(�r) − μ̄i]

2ni(�r)d3r∫
ni(�r)d3r

, (21)

where μ̄i = ∫
μi(�r)ni(�r)d3r/

∫
ni(�r)d3r is the average chemi-

cal potential. As an example, in Fig. 1 we present the obtained
energy per baryon of nuclear pasta in a bcc lattice with the
lattice constant a = 30.72 fm, where the parameter set (set
0 in Table I) introduced in Ref. [31] is adopted. The corre-
sponding grid distances are obtained with �x = �y = �z =
a/(2Nx,y,z ). If we set

∑
i=p,n,e〈�μ2

i 〉 < 0.1 keV2 as the con-
vergency condition, the deviation of energy per baryon from
the fully converged result is found to be �E/A � 0.001 keV.

TABLE I. The symmetry energy and its slope of nuclear matter,
neutron skin thickness of 208Pb, maximum masses Mmax, radii R1.4,
and tidal deformation of 1.4 solar-mass neutron stars predicted by
two sets of parameters (0 and 1) in the isovector channel. Here set
0 takes the same parameters as in Ref. [31], while the updated set 1
gives a smaller slope of symmetry energy to coincide with the recent
astrophysical and chiral EFT constraints [63]. For both sets 0 and
1, the parameters proposed in Ref. [31] are adopted in the isoscalar
channel.

S L �Rnp Mmax R1.4

gρ �v MeV MeV fm M� km �1.4

Set 0 4.2696 0 32.46 89.39 0.195 2.02 13.1 624
Set 1 5.55048 0.34 31.85 41.34 0.157 1.98 11.9 331

Meanwhile, as indicated in Fig. 1, varying the grid distance
will cause larger deviations compared with the energy per
baryon E/A obtained at Nx,y,z = 128, which are �E/A ≈ 1.5,
0.03, and 0.0006 keV for �x = �y = �z = 0.96, 0.48, and
0.24 fm, respectively. If less grid points and larger grid dis-
tances are adopted, we expect larger deviations on energy per
baryon.

Besides the issue of convergency, another factor that af-
fects our prediction is the effect of finite cell size [36,101].
Since we are working with only one octant of the unit cell,
the obtained energy per baryon and pasta structure are sen-
sitive to the lattice constants a, b, and c. We thus vary
the lattice constants and search for the minimum E/A at
fixed nuclear shape, lattice structure, baryon number den-
sity nb ≡ ∫

[np(�r) + nn(�r)]d3r/V , and proton fraction Yp ≡∫
np(�r)d3r/(V nb). As an example, in Fig. 2 we present the

obtained energies per baryon of nuclear pasta in bcc lattice

FIG. 2. Relative energies (a) and energy (b) per baryon of nuclear
pasta in bcc lattice as functions of the lattice constant a, correspond-
ing to Fig. 1. The open circle indicates the optimal lattice constant at
a = 30.71 fm.
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as functions of the lattice constant a (= b = c). The kinetic
energy E0, kinetic energy of electrons Ee, energy contributions
from σ , ω, and ρ mesons Eσ,ω,ρ , and Coulomb energy EC are
obtained with

E0 =
∫

E0d3r, (22)

Ee = m4
e

8π2

∫
f

(
νe

me

)
d3r, (23)

Eσ =
∫ [

1

2
(∇σ )2 + 1

2
m2

σ σ 2 + U (σ )

]
d3r, (24)

Eω = 1

2

∫ [
(∇ω0)2 + m2

ωω2
]
d3r, (25)

Eρ = 1

2

∫ [
(∇ρ0,3)2 + m2

ρρ
2
0,3

]
d3r, (26)

EC = 1

2

∫
(∇A0)2d3r, (27)

where their relative values with respect to those at the optimal
lattice constant (a = 30.71 fm) are shown in Fig. 2(b). As we
increase the lattice constant (box size), the sizes of droplets
increase as well, which reduces the surface energy per baryon
as (E0 + Eσ + Eω + Eρ − Ee)/A decreases. Meanwhile, the
Coulomb energy per baryon EC/A increases almost linearly
with a. A balance between the energy contributions from the
nuclear part and Coulomb part is then attained at the optimal
lattice constant a = 30.71 fm. Note that electrons have little
impact on the optimal size of unit cell, while the contribution
of ρ mesons Eρ is insignificant since we are considering only
the symmetric nuclear matter. At fixed nuclear shape, lattice
structure, baryon number density nb, and proton fraction Yp,
we then carry out similar procedures to determine the optimal
lattice constants and minimum energy.

Finally, we have examined multiple unit cells by expanding
the obtained one octant of the unit cell, the deviation of energy
per baryon lies within the uncertainty range corresponding
to the convergency condition

∑
i=p,n,e〈�μ2

i 〉 < 0.1 keV2. We
thus search for the ground-state configurations considering
only one octant of the unit cell, where the simple cubic (sc),
bcc, and fcc lattices for droplets or bubbles, simple and honey-
comb configurations for rods or tubes, and slabs are examined
at various combinations of nb and Yp.

B. Symmetry energy and ω-ρ coupling

For the isoscalar channel of the effective N-N interactions
in the RMF model, we adopt the parameter set proposed in
Ref. [31]. According to Ref. [31], the masses of nucleons
mN = 938 MeV, σ mesons mσ = 400 MeV, ω mesons mω =
783 MeV, and ρ mesons mσ = 769 MeV. The nucleon-meson
coupling constants gσ = 6.3935 and gω = 8.7207, while the
coefficients of the nonlinear self-couplings of σ are b =
−0.008659 and c = −0.002421. These parameters are fixed
to reproduce the properties of nuclear matter at the satura-
tion density n0 = 0.153 fm−3, i.e., the binding energy per
baryon B(n0) = E/A − mN = −16.3 MeV, the incompress-
ibility K (n0) = 240 MeV, and the effective nucleon mass
m∗

N (n0) = 0.78mN .

0.0 0.1 0.2 0.3 0.4
-20

0

20

40

60

PNM

SNM

B
(M

eV
)

nb (fm-3)

Set 0
Set 1
Constraints

FIG. 3. Binding energy per nucleon for symmetric nuclear matter
(SNM) and pure neutron matter (PNM) predicted by two sets of
parameters in Table I. The constrains BPNM(non ) = 11.4 ± 1.0 MeV,
BSNM(non ) = −14.1 ± 0.1 MeV [65], BSNM(n0) = −16 MeV, and
BPNM(n0) = BSNM(n0) + S(n0) = 15.7 ± 3.2 MeV [55,56] are indi-
cated with solid triangles.

For the isovector channel, we consider two scenarios as
indicated in Table I. Set 0 corresponds to the original cases
in Ref. [31], which predicts the symmetry energy S(n0) =
32.46 MeV and its slope L(n0) = 89.39 MeV. According
to the recent constraints on the tidal deformability 70 �
�1.4 � 580 from the GW170817 binary neutron star merger
event [82], a smaller slope of symmetry energy is preferred
[89–94]. In such cases, we adopt an ω-ρ cross-coupling
term �vg2

ωg2
ρ (ωμωμ)(ρμ · ρμ) and reduce L by readjusting

gρ and �v [98]. In practice, by keeping S(n0) within the
range of 31.7 ± 3.2 MeV [55,56], we fix gρ and �v accord-
ing to the binding energy of pure neutron matter (PNM) at
non = 0.1 fm−3, where a robust constraint was found with
BPNM(non) = 11.4 ± 1.0 MeV [65]. The new parameter set is
then listed as set 1 in Table I, which predicts a smaller slope
of symmetry energy (L = 41.34 MeV) compared with that of
set 0 (L = 89.39 MeV) initially proposed in Ref. [31]. As
will be addressed later, the slope of symmetry energy of set
0 coincides with the recent measurement of PREX-II [57],
while that of set 1 is consistent with various astrophysical
and chiral effective field theory (EFT) constraints [63]. The
obtained energy per baryon for both PNM and symmetric
nuclear matter (SNM) are then presented in Fig. 3. Note that
for SNM, the corresponding binding energy at non = 0.1 fm−3

is BSNM(non) = −14.1 ± 0.1 MeV [65], which is consistent
with our predictions (set 1) as well.

In previous studies, it was shown that the slope of sym-
metry energy is sensitive to the neutron skin thickness and
follows a linear correlation, e.g., �Rnp = 0.101 + 0.00147L
for 208Pb [104,105]. In Fig. 4, we present the obtained density
profiles of 208Pb in the Thomas-Fermi approximation, where
the parameter sets listed in Table I are adopted. We note
that the proton density profiles are close to each other, while
neutrons are more concentrated at the center for set 1. This is
mainly because set 1 predicts larger symmetry energy at sub-
saturation densities, which provides stronger proton-neutron
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FIG. 4. Density profiles of 208Pb obtained with Thomas-Fermi
approximation using two sets of parameters in Table I.

attractive interactions. Based on the density profiles in Fig. 4,
the neutron skin thickness of 208Pb can be estimated with

�Rnp =
√〈

r2
n

〉 − √〈
r2

p

〉
, (28)

where 〈r2
i 〉 = ∫ ∞

0 r4ni(r)dr/
∫ ∞

0 r2ni(r)dr. The obtained
�Rnp corresponding to the two parameter sets are indicated in
Table I, which lie within the experimental constraints �Rnp =
0.33+0.16

−0.18 fm measured in PREX-I [58]. A recent measure-
ment with PREX-II suggests �Rnp = 0.283 ± 0.071 fm [57],
which predicts a rather large slope of symmetry energy L =
106 ± 37 MeV. We find set 0 with L = 89.39 MeV lies within
the range while set 1 with L = 41.34 MeV becomes too small.
Note that the Thomas-Fermi approximation tends to underes-
timate the neutron skin thickness [98], we thus expect slightly
larger �Rnp than those in Table I.

Based on the binary neutron star merger event GRB
170817A-GW170817-AT 2017gfo, more stringent constraint
on L can be obtained according to the measured tidal deforma-
bility of neutron stars [89–94]. For 1.4M� neutron stars, its
tidal deformability was constrained within 70 � �1.4 � 580
[82]. In Fig. 5, we present the mass, radius, and tidal deforma-
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FIG. 5. Mass, radius, and tidal deformability of neutron stars
obtained with the two sets of parameters in Table I.

bility of neutron stars predicted by the two sets of parameters
in Table I, where the corresponding equation of states (EOSs)
are plotted in Fig. 11 with their numerical data indicated in
Ref. [31, Table II] for set 0 (L = 89.39 MeV) and Table II
for set 1 (L = 41.34 MeV). At nb � 0.001 fm−3, we adopt
the EOSs presented in Refs. [1,2,106]. Evidently, the tidal
deformability �1.4 obtained with set 0 exceeds the upper limit
due to a larger L, while that of set 1 is consistent with obser-
vation. The neutron stars’ radii obtained with both parameter
sets lie within the radius range (11.52–14.26 km) of PSR
J0030 + 0451 measured in the NICER mission [80,81]. Note
that the maximum masses of neutron stars are slightly smaller
than the lower limit of the observational mass (2.14+0.10

−0.09M�)
of PSR J0740 + 6620 [73]. This is not a problem if we take the
firmest limit of the 95.4% confidence band, which reduces the
lower limit to 1.96M� [73] and permits both parameter sets. If
exotic phases appear inside neutron stars, we expect the max-
imum masses to be further reduced. In such cases, our EOSs
are not applicable at the center regions of massive neutron
stars (M � 1.4M�), where the density usually exceeds ≈3n0.
At lower densities, however, our results should be valid, where
smaller slopes of symmetry energy are favorable according to
the constraints of �1.4.

IV. RESULTS AND DISCUSSION

Adopting the two parameter sets introduced in Sec. III B,
nuclear pasta structures with the droplets or bubbles forming
sc, bcc, and fcc lattices, the rods or tubes forming simple and
honeycomb configurations, and slabs are investigated based
on Thomas-Fermi approximation, where the numerical details
are introduced in Sec. III A. In principle, we should examine
all possible pasta structures and search for the optimum one,
while only a limited number of nuclear shapes are considered
here. Nevertheless, according to previous investigations with
random initial density profiles [47,48], the pasta structures
considered here are likely more stable than other exotic struc-
tures.

In Fig. 6, we present the typical lattice structures of
droplets, rods, and slabs obtained in our calculation, while
the density profiles of electrons are reversed for bubbles and
tubes. For spherical droplets or bubbles forming sc, bcc, and
fcc lattices, the corresponding unit cell is a cubic box. As indi-
cated in Fig. 6, the lattice constants on each axis take a same
value, i.e., a = b = c. If we adopt a cuboid unit cell instead
of the cubic one, the bcc lattice can evolve into a fcc lattice
by elongation, i.e., c = √

2a and a = b so that the structure
(a) takes up half the volume (b) in Fig. 6. For the rod or tube
phases in honeycomb configuration, the lattice constants on
x and y axes take different values. By minimizing the energy
per baryon with respect to a and b, we have found b = √

3a,
which is consistent with typical honeycomb configurations.
Note that for rod or tube phases, the lattice constant c on z
axis has nothing to do with nuclear pasta structures, and the
same for the lattice constants b and c in the slab phase.

For sc lattices, the obtained energy per baryon is typi-
cally a few keV larger than that of bcc and fcc lattices; we
thus disregard the sc lattices here. Note that in the density
regions with stable slab and tube phases, we have found
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TABLE II. The pressure P, energy density E/V , and proton
number ratio Yp of neutron star matter in β equilibrium, where the
parameter set 1 listed in Table I is adopted for the isovector channel
of effective N-N interactions. For the EOS table obtained with set 0,
please refer to Ref. [31, Table II].

nb E/V P
fm−3 Yp MeV/fm3 MeV/fm3

Droplet 0.002 0.06612 1.87757 0.00188
0.004 0.04412 3.75788 0.00421
0.006 0.03554 5.63948 0.00690
0.008 0.03092 7.52206 0.00992
0.010 0.02798 9.40543 0.01329
0.012 0.02599 11.28953 0.01705
0.014 0.02460 13.17428 0.02126
0.016 0.02363 15.05968 0.02598
0.018 0.02294 16.94569 0.03126
0.020 0.02250 18.83233 0.03716
0.022 0.02222 20.71959 0.04373
0.024 0.02209 22.60748 0.05099
0.026 0.02207 24.49601 0.05898
0.028 0.02216 26.38518 0.06771
0.030 0.02232 28.27499 0.07721
0.032 0.02253 30.16547 0.08750
0.034 0.02281 32.05662 0.09856
0.036 0.02316 33.94843 0.11038
0.038 0.02354 35.84093 0.12298
0.040 0.02396 37.73411 0.13634
0.042 0.02441 39.62797 0.15046
0.044 0.02490 41.52253 0.16531
0.046 0.02542 43.41777 0.18088
0.048 0.02581 45.31371 0.19729
0.050 0.02647 47.21035 0.21417
0.052 0.02692 49.10767 0.23194
0.054 0.02764 51.00569 0.25010
0.056 0.02823 52.90440 0.26905

0.058 0.02883 54.80379 0.28861
0.060 0.02944 56.70387 0.30877
0.062 0.03006 58.60463 0.32951
0.064 0.03068 60.50607 0.35081
0.066 0.03130 62.40819 0.37265
0.068 0.03193 64.31097 0.39502

Rod 0.070 0.03266 66.21441 0.41706
0.072 0.03329 68.11849 0.44050
0.074 0.03393 70.02324 0.46440
0.076 0.03456 71.92863 0.48873
0.078 0.03519 73.83468 0.51353
0.080 0.03582 75.74136 0.53877

Slab 0.082 0.03653 77.64866 0.56238
0.084 0.03716 79.55656 0.58888
0.086 0.03777 81.46510 0.61545

Tube 0.088 0.03836 83.37425 0.64035

Uniform 0.090 0.03898 85.28397 0.66675
0.092 0.03971 87.19433 0.69753
0.094 0.04042 89.10536 0.72917
0.096 0.04111 91.01708 0.76170
0.098 0.04179 92.92948 0.79512
0.100 0.04245 94.84257 0.82949

the network-like double-P surface [41] by assuming the bcc
lattice as the initial configuration. The corresponding en-
ergy per baryon is found to be around 0.1 MeV larger than
that of ground states. A through investigation on all possi-
ble isomeric structures should be carried out in our future
works.

A. Nuclear pasta with fixed proton fraction

We first investigate the properties of nuclear pasta at fixed
proton number fractions, i.e., symmetric nuclear matter with
Yp = 0.5, and asymmetric nuclear matter with Yp = 0.3 and
0.1. Note that for neutron star matter with β equilibrium, as
will be illustrated in Sec. IV B, the proton fraction becomes
much smaller than 0.1.

In Figs. 7 and 8, we present the obtained energy per baryon,
droplet size Rd, and lattice constants (Rlatt and a) for nuclear
matter in various configurations, where the parameter sets
listed in Table I are adopted for the isovector channel of ef-
fective N-N interactions. The energy per baryon and pressure
corresponding to the most favorable configurations are indi-
cated in Fig. 9, where the energies per baryon of symmetric
nuclear matter (Yp = 0.5) are indistinguishable between the
values obtained with the two parameter sets. Meanwhile, the
parameter set 1 with L = 41.34 MeV predicts larger energy
per baryon for asymmetric nuclear matter, which is mainly
due to a larger symmetry energy at subsaturation densities.
Consequently, only the pressures of asymmetric nuclear mat-
ter (Yp = 0.1) are altered, where set 1 predicts softer EOSs,
i.e., larger P at nb � 0.1 fm−3 and smaller P at higher densi-
ties due to a smoother behavior of symmetry energy. A similar
situation is also expected in β-stable matter, which reduces the
radii, tidal deformability, and maximum mass of neutron stars
as indicated in Fig. 5.

Comparing with the uniform phase, the energy per baryon
decreases by up to 10 MeV with the emergence of nonuniform
structures. As density increases, the most favorable config-
uration changes from the droplets in bcc lattice to rods in
honeycomb lattice, slabs and tubes in honeycomb lattice,
bubbles in fcc lattice, and to the uniform phase. The energy
excess per baryon with respect to different configurations are
indicated in the center panels of Figs. 7 and 8. In contrast to
the sc lattice, it is found that throughout the density region,
the obtained energies per baryon are rather close to each other
for droplets and bubbles in both bcc and fcc lattices, where
the differences lie within ≈0.1 keV. Such a small difference is
consistent with the analytical estimations in Ref. [34]. How-
ever, this makes it difficult for us to distinguish between the
two lattice configurations, especially in the cases with large
unit cells. For the droplet phases, we find that the bcc lattice
is more stable than the fcc lattice. For the bubble phases, in
contrast, the fcc lattice is more stable. The energy difference
between the bubble phases in two lattice configurations de-
creases with density and bcc lattice may become more stable;
e.g., the bcc lattice appeared in between the FCC lattice and
the uniform phase for the asymmetric nuclear matter (Yp =
0.3) as indicated in Fig. 7. Meanwhile, we notice that the rod
phases in simple lattice are always a few keV larger than that
of the honeycomb lattice, while the energy differences among
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FIG. 6. The isosurfaces (at np = 0.05 fm−3) and electron density profiles (ne) of nuclear pasta (Yp = 0.5) in unit cells of typical lattice
structures: (a) droplets in bcc lattice at nb = 0.01 fm−3; (b) droplets in fcc lattice at nb = 0.01 fm−3; (c) rods in honeycomb configuration at
nb = 0.03 fm−3, where the lattice constants b = √

3a; (d) rods in simple configuration at nb = 0.03 fm−3; and (e) slabs at nb = 0.06 fm−3.
The parameter set 1 listed in Table I is adopted for the isovector channel of effective N-N interactions, where the corresponding properties are
indicated in Fig. 8.
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FIG. 7. Minimum energy per baryon, energy excess per baryon, droplet size Rd, and lattice constants (Rlatt and a) for nuclear matter with
proton fractions Yp = 0.5, 0.3, and 0.1. The parameter set 0 listed in Table I is adopted for the isovector channel of effective N-N interactions.
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FIG. 8. Same as Fig. 7 but adopting the parameter set 1 in Table I.

droplets, rods, slabs, tubes, bubbles, and uniform matter are
more evident.

A detailed comparison of the phase diagrams obtained with
both parameter sets are presented in Fig. 10, which are iden-
tical for the cases with symmetric nuclear matter (Yp = 0.5).
The distinction between different slopes of symmetry energy
starts to take place for asymmetric nuclear matter (Yp = 0.1
and 0.3), where the core-crust transition density and the onset
density of nonspherical nuclei become larger for set 1 with
smaller L. This is consistent with previous studies [95–98].
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FIG. 9. Comparison between the energies per baryon and pres-
sures of nuclear matter predicted by the two parameter sets in
Table I, corresponding to the most favorable configurations indicated
in Figs. 7 and 8.

Note that the phase diagrams of set 0 are slightly different
from our previous investigations [47,48], where we have now
considered the effect of finite cell size and work with optimum
cell sizes as illustrated in Fig. 2.

The droplet size Rd and lattice constant Rlatt are related to
the corresponding sizes in spherical and cylindrical approxi-
mations of the WS cell, which are obtained with

(Rd )D =

⎧⎪⎨
⎪⎩

(Rlatt )D 〈np〉2〈
n2

p

〉 , droplet-like

(Rlatt )D
(

1 − 〈np〉2

〈n2
p〉

)
, bubble-like

, (29)
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FIG. 10. Phase diagrams of nuclear pasta obtained with parame-
ter set 0 (left) and set 1 (right) in Table I.
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FIG. 11. Energy per baryon, proton fraction, droplet size Rd, and lattice constants (Rlatt and a) for nuclear matter in β equilibrium. The
parameter sets 0 (a) and 1 (b) listed in Table I are adopted for the isovector channel of effective N-N interactions.

and

(Rlatt )
D =

⎧⎪⎨
⎪⎩

3
4πNd

�xNx�yNy�zNz, D = 3
1

πNd
�xNx�yNy, D = 2

1
2Nd

�xNx, D = 1

. (30)

Here Nd represents the number of droplets in one octant of the
unit cell, and D is the dimension with D = 3 for droplets and
bubbles, D = 2 for rods and tubes, and D = 1 for slabs. As
indicted in the bottom panels of Figs. 7 and 8, the obtained
lattice constant Rlatt in spherical and cylindrical approxima-
tions of the WS cell fulfills the relation a ≈ 2Rlatt for bcc
and honeycomb configurations, while for the slab phase the
relation is exactly fulfilled. For the fcc lattice, a is much
larger than that of bcc lattice. Nevertheless, we find that the
droplet sizes Rd and lattice constants Rlatt are indistinguishable
between bcc and fcc configurations. In fact, the optimum vol-
ume of the fcc lattice is twice the bcc lattice (afcc = 21/3abcc),
then at fixed volume the bcc lattice can evolve into the fcc
lattice by elongation. Since the number of droplets in a fcc
unit cell is exactly twice the number in a bcc unit cell, each
droplet takes up the same volume, so that Rlatt is indistinguish-
able between bcc and fcc configurations. In such cases, the
lattice structure has little impact on droplet properties. The
differences between the energies per baryon of bcc and fcc
configurations are thus mainly caused by the differences in
the Coulomb energies, which are small in the first place [34].
In general, Rd, Rlatt , and a decrease in the order of droplet
or bubble phase, rod or tube phase, and slab phase, which is
similar to previous findings, e.g., those in Ref. [31]. For each
configuration, its size becomes larger for asymmetric nuclear

matter with smaller proton fraction Yp. Comparing these with
the results predicted by the two parameter sets in Table I, we
find Rd, Rlatt , and a become slightly larger if parameter set 0
with larger L is adopted.

B. Nuclear pasta in β equilibrium

Now we consider the neutron star matter at zero temper-
ature and investigate the nonuniform structures of nuclear
matter in β equilibrium. In Fig. 11, we present the energy
per baryon, proton fraction, droplet size, and lattice constants
for the most favorable configurations of nuclear matter in β

equilibrium. Comparing with the uniform phase, the energy
per baryon is reduced by up to 1 MeV with the emergence
of nonuniform structures, where the proton fractions increase
significantly for nuclear pasta. Meanwhile, we notice that
the energy reduction becomes larger if set 1 is adopted for
the isovector channel of effective N-N interactions, which
corresponds to larger symmetry energies (smaller L) at sub-
saturation densities.

For the phase diagrams of nuclear pasta in β equilibrium,
only the droplet phases in bcc and fcc lattices emerge if set 0
is adopted, which is consistent with previous results obtained
by adopting spherical approximation for the WS cell [31].
Meanwhile, if set 1 is adopted, rods or tubes in honeycomb
configuration and slabs also appear. The core-crust transition
density becomes larger as well. In such cases, a smaller slope
of symmetry energy L favors the nonuniform structures for
nuclear matter and consequently increases the density region
of crusts in neutron stars, which may play important roles in
the glitch activities of pulsars [15,107–109].
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Similar to our findings with fixed proton fractions, the
obtained values of Rd, Rlatt , and Yp are indistinguishable be-
tween bcc and fcc configurations, while the lattice constant
a of fcc lattice is larger than that of bcc lattice. Meanwhile,
we notice that Rd, Rlatt , and Yp usually decrease with density,
as the proton fraction varies continuously. Finally, the EOS
table corresponding to the obtained neutron star matter in β

equilibrium is presented in Table II. Note that our results for
set 0 are indistinguishable from the previous one in Ref. [31,
Table II].

V. CONCLUSION

In this work, we have investigated nuclear pasta structures
in a three-dimensional geometry with reflection symmetry,
where the RMF model with Thomas-Fermi approximation
was adopted. To improve the numerical accuracy and effi-
ciency, we have exploited the reflection symmetry of unit
cells and expanded the mean fields according to fast cosine
transformation, where the computation time was reduced by
considering only one octant of the unit cell [36]. For fixed
nuclear shape, lattice structure, baryon number density nb,
and proton fraction Yp, the effect of finite cell size [36,101]
was treated carefully by searching for the minimum energy
per baryon with respect to the cell size. For droplet or bubble
phases, it is found that the obtained energy per baryon in sc
lattices is typically a few keV larger than that of bcc and
fcc lattices. For rod or tube phases, the energy per baryon
for those in simple lattice is always a few keV larger than
that of the honeycomb lattice. Meanwhile, we have noticed
that the energy per baryon E/A, droplet size Rd, and lattice
constant Rlatt for droplets or bubbles in bcc and fcc lattices
are rather close to each other, suggesting that the properties
of droplets or bubbles are insensitive to the lattice structures.
The corresponding differences for E/A are found to lie within
≈ 0.1 keV, while the fcc lattice can be obtained by the bcc
lattice via elongation. Such a small difference may cause the
possible coexistence of both bcc and fcc lattices as polycrys-
talline configurations.

By introducing an ω-ρ cross-coupling term, the slope of
symmetry energy was reduced from L = 89.39 to L = 41.34

MeV, which is consistent with recent constraints from nuclear
physics and pulsar observations [89–94]. More specifically,
the neutron skin thickness of 208Pb, and radii and tidal defor-
mation of 1.4-solar-mass neutron stars coincide with recent
observations as the slope of symmetry energy is reduced to
L = 41.34 MeV. The impact of adopting different slopes of
symmetry energy is then examined for nuclear pasta struc-
tures with both fixed proton fractions and β equilibration.
For symmetric nuclear matter, as expected, the difference is
insignificant. However, for asymmetric nuclear matter, the
obtained core-crust transition density and the onset density
of nonspherical nuclei become larger for smaller L, which
confirms previous findings adopting the spherical and cylin-
drical approximation for the WS cell [95–98]. Instead of a
bcc lattice, stable droplets or bubbles in the fcc lattice emerge
as density increases, where the density range becomes larger
for smaller L as well. Meanwhile, the differences between
droplets or bubbles in bcc and fcc lattices are found to be
small despite the large difference on L. Bulk properties of
neutron stars such as their maximum mass are not so changed
by the variation of L. However, the larger core-crust transition
density predicted by smaller L is expected to alter the fraction
of crust in neutron stars, which may play important roles in
explaining the glitch activities of pulsars [15,107–109], the
quasiperiodic oscillation frequencies in giant flares of magne-
tars [110,111], the gravitational waves emitted by millisecond
pulsars [112], etc.
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