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We conjecture and verify a set of relations between global parameters of hot and fast-rotating compact stars
which do not depend on the equation of state, including a relation connecting the masses of the mass-shedding
(Kepler) and static configurations. We apply these relations to the GW170817 event by adopting the scenario
in which a hypermassive compact star remnant formed in a merger evolves into a supramassive compact star
that collapses into a black hole once the stability line for such stars is crossed. We deduce an upper limit on the
maximum mass of static, cold neutron stars 2.15+0.18

−0.17 � M�
TOV/M� � 2.24+0.45

−0.44 for the typical range of entropy
per baryon, 2 � S/A � 3, and electron fraction Ye = 0.1 characterizing the hot hypermassive star. Our result
implies that accounting for the finite temperature of the merger remnant relaxes previously derived constraints
on the value of the maximum mass of a cold, static compact star.
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I. INTRODUCTION

Neutron (or compact) stars, containing matter at densi-
ties exceeding that at the centers of atomic nuclei, represent
unique laboratories to probe matter under extreme condi-
tions. Considerable effort is under way to pin down the
dense matter equation of state (EoS) as present in neutron
stars, which is pressed ahead by many recent observations
and the prospects opened by the dawn of multimessen-
ger astrophysics. Among these are the precise pulsar mass
determinations from the pulsar timing analysis [1–5], mea-
surements of compact star masses and radii through the x-ray
observations of their surface emission [6,7], particularly the
results of the NICER experiment [8,9], and the gravitational
wave detection of binary neutron star (BNS) mergers by the
LIGO-Virgo Collaboration [10,11]. Among the events in the
last category, the GW170817 event is currently outstanding,
since it has been possible to measure not only the neutron
star tidal deformability during inspiral, but also electromag-
netic counterparts [12,13]. As a result, the GW170817 event
has triggered a large number of works which are aimed at
constraining neutron star properties and the EoS, either from
the analysis of the tidal deformability alone (see, for example,
Refs. [14–22]), or from a combination of tidal deformability
and the electromagnetic signal [23–30]. Including the infor-
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mation from the electromagnetic signal requires as an input
numerical modeling of the merger process, which introduces
additional uncertainties but, at the same time, broadens the
experimental base of the analysis.

Another interesting event is GW190814, where the mass
of the lighter object has been determined (at 90% credible
level) to be 2.50M�–2.67M� [31]. In the standard interpre-
tation [32–39] this is either the most massive neutron star
observed to date or a black hole that is located in the so-called
mass gap. Other, more exotic models include for example a
strange star [40,41] or a compact star in an alternative theory
of gravity [42]. The neutron star interpretation of the light
companion in the GW190814 challenges our current under-
standing of the EoS, even if one assumes that this star is
rotating very rapidly [32–39].

An important aspect of the merger process is that before
the merger the two stars are well described by a one-parameter
EoS of cold matter in weak (β) equilibrium, which typically
relates pressure to (energy) density. This means that the mea-
sured tidal deformabilities and masses of the two merging
stars essentially concern this cold EoS of dense matter in
β equilibrium. In contrast, after the merger the evolution of
the postmerger remnant (if there is no prompt black hole
formation) requires as an input an EoS at nonzero temperature
and out of (weak) β equilibrium; i.e., the pressure becomes a
function of three thermodynamic parameters [43–46]. Most
commonly, these are chosen to be baryon number density,
nB, temperature T , and charge fraction YQ = nQ/nB, where
nQ is defined as the total hadronic charge density [47]. The
electron fraction Ye = YQ due to electrical charge neutrality.
In the following, when referring to cold compact stars, we
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assume that they are in β equilibrium. Small deviations from β

equilibrium, which can lead to some kinematical effect (bulk
viscosity, etc,), are neglected.

Alongside full-fledged hydrodynamics simulations of the
postmerger phase, different studies focused on stationary so-
lutions for compact star configurations, which give, among
other things, hints on the magnitude of the maximum mass
supported by a postmerger object and thus the conditions for
the formation of a black hole. As evidenced by numerical sim-
ulations, postmerger objects are rapidly rotating and support
significant internal flows. Therefore, to assess the stability
of the postmerger object, rapidly and differentially rotating
configurations of compact stars should be studied.

Universal relations, i.e., relations between different global
quantities of the star found empirically to be independent of
the EoS, have attracted much attention in this context. Such
relations have been established for both uniformly [48–51]
and differentially rotating stars [52–54] in the case of cold
stars, described by zero-temperature EoS with the matter
under β equilibrium. However, for the merger remnant the
thermal effects cannot be ignored and can influence, among
other observables, the maximum mass of a static or rapidly
rotating star [55,56] as well as the applicability of universal
relations. In Refs. [55,57,58], it was shown that thermal ef-
fects induce deviations from the universal relations obtained
for β-equilibrated matter at zero temperature. Subsequently,
Ref. [59] demonstrated that universality is restored if finite-
temperature configurations with the same entropy per baryon
and electron fraction are considered. Here we extend the study
of Ref. [59], which focused on nonrotating or slowly rotating
stars to rapid rotation.

As a consequence of our findings on universality for hot
stars, we revisit the inference of the maximum mass of a
compact star from the analysis of the GW170817 event.
This problem has been addressed by several authors (see
Refs. [24,28–30]) using the scenario of the formation of a
hypermassive compact star in the merger event and its de-
layed collapse to a black hole close to the neutral stability
line for supramassive compact stars. Some of these authors
employed the universality of the linear relation between the
maximum gravitational mass for uniformly rotating stars at
the Kepler limit, M�

K , and the same quantity for a nonrotating
star, M�

TOV = max(MTOV) [48,51,60]:

M�
K = C�

MM�
TOV. (1)

Here and below the superscript � refers to quantities charac-
terizing the maximum mass objects. The employed value for
C�

M ≈ 1.2 [48,51,60], relating M�
K and M�

TOV, has, however,
been determined assuming that the star rotating at Kepler fre-
quency is cold and in β equilibrium, which is not necessarily
the case for the merger remnant. Therefore we revisit this
question and determine the impact of nonzero temperature and
matter out of β equilibrium on the value of C�

M .
This paper is organized as follows. In Sec. II we de-

scribe briefly the numerical setup for modeling fast-rotating
hot compact stars and our collection of EoS. In Sec. III we
investigate different universal relations for fast-rotating stars.
Section IV is devoted to the discussion of the maximum mass
of fast-rotating compact stars. We derive a new upper limit on

M�
TOV using the universal relations in Sec. V. Our conclusions

are collected in Sec. VI. Throughout this paper we use natural
units with c = h̄ = kB = G = 1.

II. SETUP

This section is devoted to a description of our strategy to
solve for the structure of a hot rapidly and rigidly rotating
relativistic star. More details on the formalism can be found
in Refs. [55,61,62]. Combined Einstein and equilibrium equa-
tions are solved, assuming stationarity and axisymmetry. In
addition, we assume the absence of meridional currents such
that the energy-momentum tensor fulfills the circularity con-
dition; i.e., there is no convection. An EoS is needed to close
the system of equations. In neutron stars older than several
minutes matter is cold, neutrino transparent, and in (approxi-
mate) β equilibrium. Its EoS is barotropic; i.e., it depends only
on one variable, which commonly is chosen as baryon number
density nB. In contrast, the merger-remnant matter is hot and
not necessarily in β equilibrium, such that the EoS depends
in addition to nB on temperature T and electron fraction Ye =
ne/nB or thermodynamically equivalent variables. Under the
above-mentioned assumptions, in particular stationarity, the
most general solution for the star’s structure becomes again
barotropic; i.e., the electron fraction and the temperature need
to be related to nB [61–63].1 To fulfill this requirement, we
consider below stars characterized by constant entropy per
baryon, S/A, and some fixed value of the electron fraction or
constant electron lepton fraction YL = (ne + nν )/nB = nL/nB

(nν and nL being the neutrino and electron lepton number
densities, respectively). It should be stressed that this simpli-
fied setup does not reflect realistic conditions in the merger
remnant. A variation of the values of S/A and Ye or YL should
nevertheless allow us to cover the relevant conditions and thus
to estimate the sensitivity of the universal relations and those
observables needed to place limits on M�

TOV on the thermal and
out-of-β-equilibrium effects and to give an uncertainty range.

A. Numerical models of rapidly rotating hot stars

For computing numerical models of hot rapidly rotating
stars, we have used the LORENE library [66,67]. LORENE is
a set of C++ classes developed for solving problems in nu-
merical relativity. It contains tools for computing equilibrium
configurations of relativistic rotating bodies [68] for which
combined Einstein and equilibrium equations are solved as-
suming stationarity, axisymmetry, asymptotic flatness, and
circularity.

Using a quasi-isotropic gauge, the line element expressed
in spherical-like coordinates reads [68]

ds2 = −N2dt2 + A2(dr2 + r2dθ2)

+ B2r2 sin2 θ (dϕ2 + Nϕdt )2, (2)

1If the assumption of rigid rotation is relaxed, then stationary solu-
tions can be constructed with nonbarotropic equations of state (see,
for example, Refs. [64,65]).
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with N , Nϕ , A, and B being functions of coordinates (r, θ ).
Under the present symmetry assumptions, Einstein equations
for the four metric potentials reduce to a set of four elliptic
(Poisson-like) partial differential equations, in which source
terms contain both contributions from the energy-momentum
tensor (matter) and nonlinear terms with noncompact support,
involving the gravitational field itself. More details and ex-
plicit expressions can be found in Ref. [68].

The matter is assumed to behave as a perfect fluid such that
the energy-momentum tensor can be written as

T αβ = (ε + p) uαuβ + p gαβ, (3)

where ε is the total energy density (including rest mass), p the
pressure, and uα the fluid four-velocity. The angular velocity
of the fluid then becomes 	 := uϕ/ut . Equilibrium equa-
tions are derived from energy and momentum conservation,
∇αT αβ = 0, and become within the present setup [55,61–63]

∂i(H + ln N − ln �) = e−H

mB
[T ∂i(S/A)+ μL∂iYL]− uϕut∂i	,

(4)

where � = Nut is the Lorentz factor of the fluid with respect
to the Eulerian observer and S/A the entropy per baryon (kB =
1), and

H = ln

(
ε + p

mB nB

)
(5)

is the pseudo-log enthalpy with mB being a constant of the
dimension of a mass.2 Since in this work we consider only
uniform rotations with 	 = const, constant S/A, and constant
Ye (μL = 0) or constant YL, the right hand side of Eq. (4)
vanishes and the equilibrium equation takes the same form
as in the zero-temperature and β-equilibrium case.

Upon computing models of rotating stars, at finite tem-
perature, an additional difficulty arises from the fact that the
surface of the star is no longer well defined since an extended
dilute atmosphere can form (see, for instance, the discussion
in Refs. [59,69]). For simplicity, we assume that the surface
corresponds to the density nB = 10−5 fm−3 for all EoS models
and any considered combinations of S/A and Ye/YL. We have
checked that our conclusions do not depend on the choice of
the definition of the surface (see the Appendix).

Employing LORENE, we find global stellar parameters such
as gravitational, MG, and baryon, MB, mass, and equatorial
circumferential radius R. We additionally compute the angu-
lar momentum, the moment of inertia, and the quadrupole
moment. The corresponding expressions for the quadrupole
moment can be found in Refs. [70,71]. For our setup with con-
stant S/A, the star’s total entropy is simply given by S/A MB.

B. Equations of state

The system of equations for solving for the star’s struc-
ture discussed in the preceding section is closed by an EoS.
To ensure that our results are not an artifact of a particular

2We chose the value mB = 939.565 MeV.

choice of EoS model, we performed the same calculations
for a set of different EoS models. There exists a large
number of EoS models obtained for cold matter in com-
pact stars. The number of EoS covering the regimes of
finite temperature and varying electron fraction is, however,
small. These are mostly based on density functional the-
ory. Here we choose a set of EoS models that are based
either on relativistic density functional theory with various
parametrizations or a nonrelativistic model based on a Skyrme
functional and an empirical extension of a variational mi-
croscopic model. These models are reasonably compatible
with existing constraints from nuclear experiments, theory,
and astrophysics; in particular, they predict maximum masses
above 2M� [1–3,72] or at least marginally consistent with
this value. To be specific, we consider one nonrelativistic
density-functional theory (DFT) model, RG(SLy4) [73,74];
five variants of relativistic DFT, one with density-dependent
couplings, HS(DD2) [75,76], and four with nonlinear cou-
plings, HS(IUF) [77,78], SFHo [79], NL3ωρ [80,81], and
FSU2H [82,83]; as well as the SRO(APR) model [84,85].
The latter is based on the APR EoS [86], which itself is
partly adjusted to the variational calculation of Ref. [87]. If
available, we compare the above purely nucleonic EoS models
with the corresponding EoS allowing for the presence of hy-
perons. These are BHB�� [88],3 the extension of HS(DD2);
SFHoY [89], an extension of SFHo; NL3ωρY, an extension of
NL3ωρ; and FSU2HY, an extension of FSU2H. For NL3ωρY
and FSU2HY we adopt the parametrizations in Ref. [90]
but disregard the σ ∗-meson field. Except for FSU2H(Y) and
NL3ωρ(Y), EoS data are publicly available in the COMPOSE

database [91,92]. Key properties of our collection of the EoS
are summarized in Table I together with present constraints.
The value for the tidal deformability of NL3ωρ lies above the
90% confidence interval given by the GW170817 event [14],
but in view of the large uncertainty we feel it premature to
exclude a certain EoS model and keep the NL3ωρ model as
representative of a large deformability in our EoS sample. In
Fig. 1 we show the pressure as a function of energy density
for cold, β-equilibrated matter.

III. UNIVERSAL RELATIONS FOR FAST-ROTATING
STARS AT FINITE TEMPERATURE

Although the properties of static and rotating stars depend
strongly on the EoS, a series of “universal” relations has been
found between global parameters of static stars which are
almost EoS independent (see, for a review, Ref. [95]). These
were later extended to slowly and maximally fast-rotating
stars [60,96–101]. The practical importance of such relations
resides in their potential to provide constraints on quantities
that are difficult to access experimentally.

3The EoS model BHB�φ contains only � hyperons and not the
full baryon octet. There exists a version, DD2Y [55], based on the
same nucleonic HS(DD2) EoS, which contains the full baryon octet.
For the present purpose, both give very similar results.
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TABLE I. Global parameters of cold neutron stars (first four columns) for EoS considered in this work. These columns list (from left to
right) the EoS model acronym, maximum gravitational and baryonic masses, radius of a 1.4M� star, and the tidal deformability �̃ range for the
GW170817 event. The latter quantity is calculated assuming for the merger stars the masses m1 ∈ (1.36, 1.60)M� and m2 ∈ (1.16, 1.36)M�,
which corresponds to the mass ratio range 0.73 � q = m2/m1 � 1. The remaining columns list properties of symmetric nuclear matter at
saturation density according to the employed EoS model: the binding energy per nucleon, EB, saturation density ns, compression modulus K ,
symmetry energy ES , and its slope L. Presently available observational and experimental constraints on listed quantities include a lower limit
on the maximum gravitational mass M�

TOV � (2.01 ± 0.04)M� [2], simultaneous constraint on the radius and mass of a compact star from the
NICER experiment for PSR J0030+0451 R(1.44+0.15

−0.14M�) = 13.02+1.24
−1.06 km [9] and R(1.34+0.15

−0.16M�) = 2.71+1.14
−1.19 km [8], and a range for the

tidal deformability obtained from the GW170817 event �̃ = 300+500
−190 (90% credible interval) or �̃ = 300+420

−230 (90% highest posterior density)
for a low spin prior [14]. The nuclear matter properties have been determined as EB = −15.8 ± 0.3 MeV [93], ns = 0.155 ± 0.005 fm−3 [93],
K = 230 ± 40 MeV [94], Es = 31.7 ± 3.2 MeV [47], and L = 58.7 ± 28.1 MeV [47].

M�
TOV M�

B R1.4 EB ns K ES L
Model (M�) (M�) (km) �̃ (MeV) (fm−3) (MeV) (MeV) (MeV)

RG(SLy4) 2.06 2.46 11.73 322–353 −15.97 0.159 230.0 32.0 46.0
HS(DD2) 2.42 2.92 13.2 758–799 −16.00 0.149 242.6 31.7 55.0
HS(IUF) 1.95 2.27 12.64 499–530 −16.40 0.155 231.3 31.3 47.2
SFHo 2.06 2.45 11.9 366–401 −16.19 0.158 245.4 31.6 47.1
NL3-ωρ 2.75 3.39 13.82 1042–1051 −16.24 0.148 271.6 31.7 55.5
FSU2H 2.39 2.86 13.28 635–655 −16.28 0.150 238.0 30.5 44.5
SRO(APR) 2.17 2.66 11.33 271–295 −16.00 0.160 266.0 32.6 57.6
BHB�φ 2.10 2.45 13.22 754–789 −16.00 0.149 242.6 31.7 55.0
SFHoY 1.99 2.34 11.9 366–401 −16.19 0.158 245.4 31.6 47.1
NL3-ωρ NY 2.35 2.77 13.82 1042–1051 −16.24 0.148 271.6 31.7 55.5
FSU2H NY 1.99 2.37 13.28 637–653 −16.28 0.150 238.0 30.5 44.5

It was previously shown that most of the universal relations
for slowly rotating stars remain valid at finite temperature
if the same thermodynamic conditions are maintained (for
example by fixing S/A and YL) [59]. Here we extend this
investigation to rapidly rotating hot stars. In Sec. III A we first
address the universal relations between global properties of
nonrotating and Keplerian configurations for stars with con-
stant S/A and Ye. In the subsequent Sec. III B we address the
universal relations among the normalized moment of inertia,
quadrupole moment, and the compactness for the maximum
mass configuration of a compact star at the Kepler limit.

0 0.5 1 1.5 2 2.5 3
)3 g/cm15 (10∈

0

2

4

6

8

10

12

14

16

18) 
 

2
 d

yn
/c

m
35

 P
 (

10

RG(SLy4)
; NρωNL3-
; NYρωNL3-

FSU2H; N
FSU2H; NY
SRO(APR)
HS(DD2)

φΛBHB
SFHo
SFHoY
HS(IUF)

=0
L

μT=0, 

FIG. 1. Pressure of cold, β-equilibrated neutron star matter as a
function of its energy density according to the EoS models employed
in this work. The symbols indicate the central energy density of the
maximum mass configuration for cold, β-equilibrated matter.

A. Relations between global properties of nonrotating
and Keplerian configurations

In this section, we are interested in a particular class
of universal relations, among the parameters of nonrotating
and maximally rotating (at the mass-shedding limit) stars.
The original motivation for studying these relations was to
constrain on the stellar radii using the measurements of
masses and frequencies of submillisecond pulsars [96–98].
The nonobservation of a rapidly rotating pulsar in the remnant
of SN1987A led to a declining interest in these relations,
although searches of submillisecond pulsars continued [102].
The fastest rotating pulsar observed to date [103] rotates at
716 Hz, which is still far from Kepler frequencies predicted
by the various EoS of dense matter. The gravitational wave
event GW170817 and the attempt to deduce a maximum mass
constraint for a nonrotating cold neutron star stimulated sev-
eral recent studies of rigidly [101] and differentially rotating
stars [52,53]. Furthermore, the GW190814 event rekindled
the interest in the subject within the scenario in which the
light component of this merger event is a maximally rotating
compact star [32–38,41].

Equation (1) which expresses the maximum gravitational
mass of the Keplerian configuration as a function of the
maximum mass of a nonrotating star is an example of such
relations. It was initially proposed in Refs. [48,60] and later
on confirmed by extensive computations in Ref. [51]. Other
examples are a relation between the circumferential equatorial
radius of the maximum mass configuration at the Kepler limit
and the circumferential radius of the maximum mass static
configuration [48,60],

R�
K = C�

RR�
TOV, (6)
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and the dependence of the rotation frequency of this maximum
mass configuration at the Kepler limit on mass and radius of
the nonrotating maximum mass configuration [96–99],

f �
K = C�

f x�
TOV, (7)

where x�
TOV = (M�

TOV/M�)1/2(10 km/R�
TOV)3/2. This func-

tional form is actually identical to the Newtonian expression
for the mass shedding frequency of a rotating sphere (see
also the discussion in Ref. [98] about its justification in the
relativistic case).

Motivated by the findings of Ref. [59] we reinterpret
Eqs. (1), (6), and (7) as relations between properties of max-
imum mass Keplerian and static configurations with identical
thermodynamic conditions

M�
K (S/A,Ye) = C�

M (S/A,Ye)M�
S (S/A,Ye) , (8)

R�
K (S/A,Ye) = C�

R(S/A,Ye)R�
S (S/A,Ye) , (9)

and

f �
K (S/A,Ye) = C�

f (S/A,Ye)x�
S (S/A,Ye) , (10)

which implies that the coefficients C�
i , i ∈ M, R, f , depend on

two additional thermodynamic parameters, which are chosen
here to be S/A and Ye. The subscript S refers to static, hot
configurations and the subscript “TOV” refers to cold static
stars in β equilibrium.

Relations (8)–(10) are shown in Fig. 2 for various combina-
tions of S/A = 2, 3 and Ye = 0.1, 0.4 and for 11 different EoS
models. Nature does of course not supply us with hot stars
under these idealized conditions with constant S/A and Ye.
For the sake of the argument, we chose these values from the
typical range of values we encounter in the central part of hot
stars, i.e., proto–neutron stars or the binary merger remnants.
For completeness, we show also the results corresponding to
cold stars. The values of C�

i obtained by a fit to these results
are provided in Table II for each considered thermodynamic
condition. In the bottom panel of Fig. 2 the dependence of
f �
K on x�

K is considered, too. As a trivial consequence of the
linear dependencies in Eqs. (8)–(10), one finds again a linear
relation f �

K = C′�
f x�

K [101]. Our results show that universality
holds reasonably well for hot rapidly rotating stars as well if
the same constant S/A and Ye values are considered. Similar
results were obtained and discussed for nonrotating stars in
Ref. [59]. Moreover, since our set of EoS models contains
purely nucleonic models as well as models with hyperons, we
conclude that these relations are insensitive to the baryonic

FIG. 2. Top: Maximum gravitational mass at the Kepler limit
(M�

K ) vs maximum gravitational mass of a static star (M�
S ), Eq. (8).

Middle: Equatorial circumferential radius of the maximum mass
Keplerian configuration (R�

K ) vs circumferential radius of the max-
imum mass static configuration (R�

S), Eq. (9). Bottom: Rotation
frequency of the maximum mass configuration at the Kepler limit
f �
K as function of x�

S or x�
K , i.e., for the maximum mass static (S)

and Keplerian (K) configurations [see Eq. (10)]. The results corre-
spond to 11 EoS models and different thermodynamic conditions
expressed in terms of S/A and Ye. Results for cold stars are shown for
comparison.

TABLE II. Fitting parameters entering Eqs. (8)–(10) and their standard errors (in parentheses), under different thermodynamic conditions
specified in the first column.

Thermodynamic conditions C�
M C�

R C�
f C′�

f

T = 0, β equilibrium 1.2187 (0.0064) 1.3587 (0.0104) 1259.63 (9.72) 1795.30 (4.35)
S/A = 2, Ye = 0.1 1.1617 (0.0032) 1.3459 (0.0051) 1237.68 (5.47) 1791.62 (2.69)
S/A = 2, Ye = 0.4 1.1084 (0.0029) 1.3282 (0.0038) 1231.58 (4.46) 1789.23 (2.62)
S/A = 3, Ye = 0.1 1.1181 (0.0026) 1.3593 (0.0051) 1201.11 (5.60) 1798.54 (2.17)
S/A = 3, Ye = 0.4 1.0877 (0.0023) 1.3506 (0.0063) 1199.01 (7.10) 1798.92 (2.17)
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FIG. 3. The dependence of C�
M (top) and C�

R (bottom) on
the compactness of the maximum mass static configuration. The
same thermodynamic conditions and EoS models as in Fig. 2 are
considered.

composition of matter, be it purely nucleonic or with an ad-
mixture of hyperons. As mentioned above, the proportionality
coefficients depend, however, on the thermodynamic condi-
tions. A small residual dependence of C�

R on the EoS remains.

It arises, as previously discussed for cold stars [60], from a
weak dependence of the maximum mass static configuration
on the compactness ��

S = M�
S/R�

S . The ��
S dependence of C�

M
and C�

R is depicted in Fig. 3 for the same EoS models and
thermodynamic conditions as in Fig. 2.

References [98,100,104] suggested that relations analo-
gous to Eqs. (6) and (7) hold for stars with the same
gravitational mass (and not only at the maximum of a se-
quence). These can again be generalized to configurations
with the fixed S/A and Ye to find

RK (M ) = CRRS (M ), (11)

fK (M ) = Cf xS (M ), (12)

where xS = [(M/M�)(10 km/RS (M ))3]
1/2

.
Equations (11) and (12) are plotted in Figs. 4 and 5 for our

collection of 11 EoS. The same for a cold star as well as for
stars with S/A = 2, Ye = 0.1, are also plotted. It can be seen
that relation (11) holds, but the proportionality constant CR

slightly depends on the EoS for finite S/A. Relation (12) is
confirmed, too. The observed deviations occur only for MS �
0.7M�

S–0.8M�
S , in agreement with previous findings [100]. We

thus find again that the different thermodynamic conditions
lead to different values for the proportionality coefficients in
Eqs. (11) and (12), but the linear relationships remain well
fulfilled.

B. Relations between global parameters of the maximum mass
configuration at the Kepler limit

For cold compact stars in β equilibrium numerous other
universal relations between global properties have been found,

FIG. 4. Equatorial circumferential radius of the Keplerian configuration RK vs radius of the nonrotating configuration RS for the same
mass (top panels) and relative residual errors with respect to the fit employing Eq. (11) (bottom panels). The value of the fit parameter CR is
mentioned in the top panels and the result of Eq. (11) using this value is shown by a solid line. Left and right panels corresponds to cold stars
and, respectively, hot stars with S/A = 2 and Ye = 0.1. The results are shown for a set of EoS models as indicated by the labels.
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FIG. 5. Rotation frequency at the Kepler limit fK as a function of the parameter x corresponding to a static configuration with the same
mass (top panels) and relative residual errors with respect to the fit employing Eq. (12) (bottom panels). The value of the fit parameter Cf is
mentioned in the top panels; Eq. (12) using this value is indicated by a solid line. Left and right panels correspond to cold stars and, respectively,
hot stars with S/A = 2 and Ye = 0.1. The results are shown for a set of EoS models as indicated by the labels.

notably the so-called I-Love-Q relations [105,106] between
the moment of inertia (I), the tidal deformability (λ), and the
quadrupole moment (Q). In this context, different relations
expressing global properties in terms of the star’s compactness
� have received much attention, too [50,51,107,108].

Here, we consider as an example two such relations and
investigate whether they hold for rapidly rotating hot compact
stars. These are Ī = I/M3 and Q̄ = QM/J2, with J standing
for the angular momentum, expressed as polynomials of �−1:

Ī = a1�
−1 + a2�

−2 , (13)

Q̄ = b1�
−1 + b2�

−2 . (14)

Slightly different polynomial expressions of Ī and Q̄ in terms
of �−1 were previously proposed in Ref. [51], which also
showed that they are universal for rigidly and slowly rotating
cold, β-equilibrated stars. In Ref. [59] these relations were
shown to be universal also for hot stars, as long as the same
pair of constant S/A and Ye/YL is considered.

More specifically, we investigate the behavior of the dif-
ferent quantities taken for the maximum mass Keplerian
configuration; i.e., we study Ī�

K and Q̄�
K as a function of

��
K = M�

K/R�
K . Note that because of rotational stretching of

the star, the equatorial and polar radii are different; we recall
that R�

K refers to the equatorial circumferential one. Fig-
ure 6 depicts these relationships. Each symbol indicates a
particular EoS model and the different colors differentiate
different thermodynamic conditions among S/A = 2, 3 and
Ye = 0.1, 0.4. Results for cold stars in β equilibrium are
shown by black symbols for comparison. Results of fits using

Eqs. (13) and (14) are illustrated with lines in Fig. 6; values of
the fitting parameters entering Eqs. (13) and (14) are provided
in Tables III and IV. These fits reproduce the exact results with
good accuracy; the reduced χ2 values are of the order of 10−3

(10−2) for Q̄� vs �� (Ī vs ��) and are slightly increasing with
S/A. Although some scattering is seen in Fig. 6, a functional
form similar to the one obtained for slowly rotating stars
applies reasonably well to the maximum mass configuration
at the Kepler limit, too, and universality is again reasonably
well fulfilled. However, the relative displacement of points
corresponding to a given combination of entropy and electron
fraction indicates that the values of the parameters ai, bi enter-
ing Eqs. (13) and (14) depend on thermodynamic conditions,
as expected.

IV. MAXIMUM MASS OF RIGIDLY ROTATING HOT STARS

As is well known, for cold compact stars the value of M�
K

is 20% larger than M�
TOV, independent of the EoS [48,51,60].

As seen in the previous section, the value of C�
M ≈ 1.2 is,

however, only valid if both M�
TOV and M�

K are computed for
cold, β-equilibrated, stars. The assumption of a cold star fails
for the merger remnant, as the EoS obtains significant thermal
corrections and a hot star potentially out of β equilibrium
should be considered for M�

K , as has been argued in the case of
the GW170817 event [24,28–30]. The purpose of this section
is to investigate the relation between M�

K for various ther-
modynamic conditions and the cold M�

TOV to verify to which
extent thermal and out-of-equilibrium effects can change the
estimated value of M�

TOV.
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FIG. 6. Relations between global properties of maximum mass
configurations at the Kepler limit: normalized moment of inertia Ī
as a function of the star’s compactness (bottom) and normalized
quadrupole moment Q̄ as a function of compactness (top). Compact-
ness is here defined with the equatorial radius. The results correspond
to 11 different EoS models and various thermodynamic conditions as
indicated in the legend. The lines correspond to Eqs. (13) and (14),
respectively; the values of the fitting parameters are provided in
Tables III and IV.

What are the effects of finite-temperature EoS on the
maximum masses of a static and a rapidly rotating star, respec-
tively? First, compact stars expand due to thermal effects (e.g.,
Refs. [59,109]); therefore, a same-mass hot star will have
a larger radius than its cold counterpart. Consequently, the
larger centrifugal force acting on particles on the stellar sur-
face will be larger and, therefore, the Keplerian limit will be
achieved for smaller frequencies, which will result in smaller
masses at the Kepler limit. Second, the thermal pressure adds
to the degeneracy pressure, which means that a larger mass
can be supported against the gravitational pull. Thus we see

TABLE III. Fitting parameters entering Eq. (13), and their
standard errors (in parentheses), under different thermodynamic con-
ditions specified in the first column.

Thermodynamic conditions a1 a2

T = 0, β-eq. 0.9398 (0.1093) 0.1246 (0.0277)
S/A = 2, Ye = 0.1 1.1632 (0.0788) 0.0379 (0.0180)
S/A = 2, Ye = 0.4 1.2474 (0.0867) −0.0130 (0.0178)
S/A = 3, Ye = 0.1 1.1458 (0.0976) 0.0159 (0.0190)
S/A = 3, Ye = 0.4 1.1777 (0.0844) −0.0109 (0.0153)

TABLE IV. Fitting parameters entering Eq. (14), and their
standard errors (in parentheses), under different thermodynamic con-
ditions specified in the first column.

Thermodynamic conditions b1 b2

T = 0, β-eq. 0.2129 (0.0248) 0.0458 (0.0063)
S/A = 2, Ye = 0.1 0.2148 (0.0192) 0.0378 (0.0044)
S/A = 2, Ye = 0.4 0.2228 (0.0251) 0.0259 (0.0052)
S/A = 3, Ye = 0.1 0.1749 (0.0272) 0.0395 (0.0053)
S/A = 3, Ye = 0.4 0.1877 (0.0270) 0.0293 (0.0049)

that there is an interplay between two competing effects. Fig-
ure 7 shows the variation of C�

M with S/A for different purely
nucleonic EoS and a constant electron fraction of Ye = 0.1.
The value of the Keplerian maximum mass M�

K is normalized
to that of the TOV maximum mass M�

TOV computed for a
cold star. An inspection of Fig. 7 shows that one EoS model
[RG(SLy4)] manifests a monotonic increase of C�

M over the
considered S/A range while the remaining six models show a
nonmonotonic behavior; the position of the minimum value of
C�

M for the latter category of models is situated in the domain
1 � S/A � 3.5. This variety of behaviors is associated with
the interplay between the effects of the increase of the pressure
due to the thermal contribution and expansion of the star with
temperature and the associated reduction of the Keplerian
frequency. The first effect increases C�

M , whereas the second
one decreases it. In addition to the two factors described
above, C�

M is expected to depend on the composition of matter
as well. The reason is that different compositions and electron
fractions were shown to influence the maximum mass and the
star’s compactness [55,59,110], too.

To disentangle the different effects discussed above, Fig. 8
shows M�

K this time normalized to the maximum mass of a
nonrotating configuration with the same values of S/A and
Ye (instead of the nonrotating TOV mass of a cold star). In
this way, we eliminate the thermal and Ye dependence and
we observe the change in C�

M due entirely to the expansion
of the star. Indeed, the masses in Fig. 8 are observed to almost
linearly decrease with S/A and increasing radii as expected.

FIG. 7. Dependence of C�
M [see Eq. (1)] on entropy per baryon,

S/A, for fixed Ye = 0.1 and for various nucleonic EoS as labeled.
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FIG. 8. Same as in Fig. 7 except that the normalization is done
by the maximum gravitational mass of the nonrotating star with the
same S/A and Ye values.

For completeness, we reproduce in Table V as an example
the results in the case of the HS(DD2) EoS. The compact-
ness is given here as an indication for the expansion of the
star with increasing entropy. We thus confirm the earlier
expectation borne out from the analysis of Fig. 7, namely,
that for low entropies the variation in the mass is controlled
predominantly by the expansion. As the entropy increases,
however, the thermal effects lead to a substantial increase in
mass and outweigh the effect due to the growth in radius and
thus reduced compactness.

Up to now, we have investigated configurations with a
particular value of constant electron fraction, Ye = 0.1. As
discussed above, the value of the electron fraction influences
maximum masses and radii and thus our results. Also, at the
center of the merger remnant, neutrinos are trapped at least
during early postmerger [111] such that a related question is
to which extent choosing constant electron or constant lepton
fraction YL changes our findings. To examine the dependence
on Ye and YL, we show in Fig. 9 the maximum masses at Kepler
frequency normalized to the nonrotating maximum mass as a
function of S/A for different values of constant Ye and YL. The
SFHoY EoS model [89] was chosen for that purpose; we have
checked that other EoS models behave qualitatively similarly.

First, since neutrinos themselves only contribute weakly
to the EoS at high density and therefore only have a very
small impact on maximum masses, we observe that the main
difference between choosing Ye or YL arises from the fact that
the electron fraction is equal to the hadronic charge fraction

TABLE V. Dependence on S/A of some global properties of
the maximum mass configuration of stars at Kepler limit for the
HS(DD2) EoS [75,76] and for fixed Ye = 0.1. Listed are gravitational
and baryonic masses, equatorial circumferential radius, compactness
and central baryonic number density.

S/A M�
K M�

B R�
K n(c)

B

(kB) (M�) (M�) (km) ��
S (fm−3)

1 2.92 3.44 16.0 0.27 0.72
2 2.84 3.27 17.1 0.25 0.72
3 2.79 3.09 19.7 0.21 0.65
4 2.84 3.01 26.3 0.16 0.46

FIG. 9. The same dependence as in Fig. 8, for three cases of
constant electron fraction Ye and constant lepton fraction YL and one
specific EoS model, SFHoY [89].

YQ, whereas due to the presence of neutrinos YL �= YQ. This
shift in YQ induces a different behavior of the hadronic part of
the EoS which is well visible in the maximum masses. This
implies, too, that for our study it is sufficient to vary either
Ye or YL if the range is chosen large enough. Second, since a
higher electron/lepton fraction increases the star’s radius, the
Kepler frequency is lower and the supported mass, too. Thus
the ratio of the Kepler maximum mass M�

K and the static one
M�

S decreases with increasing Ye/YL with the most pronounced
reduction observed at low entropies per baryon, where thermal
effects are small. A related question is whether the presence
of muons would change our results. It is obvious that in equi-
librium, for the thermodynamic conditions considered here,
charged muons will be abundant. In contrast to core-collapse
supernovas, where there are no muons in the progenitor star
and complete equilibrium has to be reached by dynamical
reactions (see, e.g., Ref. [112]), the two neutron stars before
merger contain already muons, such that the merger remnant
should indeed contain a non-negligible fraction of muons.
The EoS itself is, however, still dominated by the hadronic
part, such that again the influence of muons on our results
would manifest itself only by a potential shift in the hadronic
charge fraction since in the presence of charged muons we
have YQ = Ye + Yμ. In the following discussion we choose
Ye = 0.1, which should be close to the conditions in the central
part of the merger remnant (see, e.g., Ref. [113]), keeping in
mind that, if the electron fraction in the merger remnant is
higher, then C�

M is reduced.

Comparison between nucleonic and hyperonic equations of state

So far, when selecting the EoS of dense matter, we as-
sumed that neutron star matter contains nucleons and leptons.
At densities exceeding several times the nuclear saturation
density, non-nucleonic degrees of freedom, such as hyperons,
meson condensates, and even quark matter may appear [114].
Below we explore the effect of different compositions on the
observables discussed by comparing the results for purely nu-
cleonic EoS with those obtained in the models allowing for the
presence of hyperons. In the present context, the focus is on
the changes in the composition of matter at finite temperature
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FIG. 10. Dependence of M�
K (upper panels) and M�

K/M�
TOV (lower panels) on entropy per baryon (see also Fig. 7). The left two panels

correspond to nucleonic EoS, the right two panels to EoS which allow for hyperons.

favoring the onset of hyperons [115,116], which is expected
to change the value of C�

M at high entropies.
Figure 10 depicts this comparison in detail. The bottom

panels display C�
M vs S/A for four different EoS models

and their hyperonic counterparts. Although qualitatively the
behavior for all the EoS models is the same, a quantitative dif-
ference exists between the purely nucleonic models and those
with an admixture of hyperons. More precisely, for low S/A
values the hyperonic models start with higher values of the
ratio C�

K/C�
TOV and manifest a much stronger decrease of C�

M
with S/A than the nucleonic models. To understand this, dif-
ferent effects have to be considered. First, M�

TOV for hyperonic
models is much smaller than for purely nucleonic models,
since the presence of hyperons softens the EoS. Second, this
softening reduces the radius, thus leading to a comparatively
higher rotation frequency and supported mass at Kepler limit
(see the upper panels in Fig. 10). The increasing abundance of
hyperons with increasing S/A leads to a less pronounced in-
crease in the supported mass due to thermal effects, which ex-
plains the more pronounced decrease in M�

K/M�
TOV with S/A.

V. MAXIMUM TOV MASS FROM GW170817

The event GW170817 and its electromagnetic counterpart
have been used by several authors to place an upper limit
on the value of the maximum mass of static cold compact
star configurations, M�

TOV [24,28–30]. In Ref. [24] a selection
of microscopic zero-temperature EoS were approximated by
piecewise polytropes and a maximum mass M�

TOV � 2.17M�
was inferred from conservative estimates of energy deposited
into the short-γ -ray burst and kilonova ejecta. Reference [28]

used the universal relation between the mass of Keplerian
configurations and static ones, derived for cold compact stars
[see Eq. (1)], to place a limit M�

TOV � 2.16+0.17
−0.15M� consis-

tent with the one derived in Ref. [24]. A weaker constraint
M�

TOV � 2.3M� was found in Ref. [29], which used EoS based
on ad hoc piecewise polytropic parametrization in combina-
tion with the angular momentum conservation and numerical
simulation to show that the merger remnant at the onset of
collapse to a black hole needs not to rotate rapidly. Note that
Ref. [117] derived a lower (instead of an upper) limit on M�

TOV
from straightforward numerical simulations, i.e. without use
of universal relations, on the basis of the fact that no prompt
BH collapse has been observed.

The physical picture of the GW170817 event that under-
lies the argumentation for placing the upper limit on M�

TOV
is as follows [28–30]. Initially, the merger leaves behind a
hypermassive neutron star (HMNS) which is differentially
rotating. The HMNS star spins down by losses to gravitational
and neutrino radiation, as well as mass ejection, whereas
the internal dissipation leads to vanishing internal shears and
eventually to uniform rotation. (The magnetodipole radiation
due to the star’s B field can be neglected over the time scales
of 10 ms.) At this stage, the star is in the region of stability of
supramassive neutron stars, which support themselves against
gravitational collapse due to uniform rotation. Subsequently,
the star crosses the stability line beyond which it is unstable to
collapse. While in principle the star may cross this line (which
connects MTOV and MK ) at any point, it has been argued that
the dynamics of the merger suggest that this crossing occurs
in the vicinity of M�

K . (See, however, Ref. [29], where this
assumption has been questioned and the resulting corrections
to the limits have been explored. Since the slower rotation
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implies a larger maximum mass limit, one should keep in
mind that our estimate below may be relaxed somewhat.)

The extraction of the upper limit circumvents the full dy-
namical study and uses the baryon mass conservation between
the instances of creation of HMNS in the merger (hereafter
t = 0) and the moment of collapse to a black hole (t = tc),
which reads

MB(tc, S/A,Ye) = MB(0) − Mout − Mej, (15)

where Mout refers to the baryon mass of the torus formed
around the black hole, after the merger, and Mej refers to the
baryon mass of the ejecta. The left-hand side of Eq. (15) refers
here to a hot supramassive compact star at the instance of
collapse; MB(0) is the baryonic mass of the HMNS formed
in the merger at the initial time t = 0.

As already mentioned in the Introduction, the previous esti-
mates of the M�

TOV were based on EoS of cold baryonic matter;
i.e., they do not account for the thermal pressure in the BNS
merger remnant and consider in particular the cold mass on the
left-hand side of Eq. (15). Numerical simulations, however,
show evidence that the BNS merger remnant is heated up to
temperatures of the order of tens of MeV. Thus, it is necessary
to carry out the analysis of the postmerger remnant taking into
account the finite-temperature EoS of baryonic matter.

In the left-hand side of Eq. (15) we now substitute

MB(tc, S/A,Ye) = η(S/A,Ye)M(tc, S/A,Ye)

= η(S/A,Ye)M�
K (S/A,Ye), (16)

where the second equality assumes that at the instance of
collapse the star is rotating at the maximum of its rotational
speed, consistent with Ref. [28] (but see also Ref. [29]). The
coefficient η(S/A,Ye) relates the baryonic and gravitational
masses of the hot compact star at the instance of collapse
and is an EoS-dependent quantity. On the right-hand side of
Eq. (15) we introduce the same quantity for the newly formed
object via MB(0) = η(0)M(0), where M(0) = 2.73M� [14]
is the gravitational mass of the merger as measured during
inspiral for the GW170817 event, i.e., for cold stars. Thus, the
mass conservation equation (15) can be rewritten as

M�
K (S/A,Ye) = 1

η(S/A,Ye)
[η(0)M(0) − Mout − Mej]. (17)

It has been estimated from the analysis of GW170817
that Mej 	 0.03M�–0.05M� [118] and 0.02M� �
Mout � 0.1M� [29]. Taking Mout = 0.06M� ± 0.04M�
and Mej = 0.04M� ± 0.01M� we have Mout + Mej =
0.1M� ± 0.041M�. Thus, the masses on the right-hand
side are fixed within the given limits and the knowledge of
the two η coefficients allows one to estimate the Keplerian
maximum mass of a hot supramassive compact star on the
left-hand side of Eq. (17).

As illustrated in Fig. 11, for cold compact stars based
on our collection of EoS we have η(0) 	 1.120 ± 0.002
for M = 1.6M� and η(0) 	 1.085 ± 0.001 for M = 1.2M�.
The chosen values of gravitational masses bracket the range
1.2 � M/M� � 1.6 from which the masses of two stars are
drawn to add up to the gravitational mass 2.73+0.04

−0.01M� of
the merger remnant at t = 0 [14]. For our estimates we
adopt the value η(0) 	 1.1004+0.0014

−0.0003 leading to MB(0) =

FIG. 11. Dependence of the η parameter on the gravitational
mass for spherically symmetric (nonrotating) stars at T = 0 and in
β equilibrium (top), for hot stars rotating at the Kepler limit for
S/A = 2 (middle) and S/A = 3 (bottom panel) for fixed Ye = 0.1.

3.00+0.05
−0.01M�. We extract values of η(S/A,Ye) for two values

of entropy as given in Fig. 11 assuming that the star is rotating
at the Keplerian frequency. We then find that η(2, 0.1) 	
1.139 ± 0.004 and η(3, 0.1) 	 1.099 ± 0.003. For the quan-
tity (Mout + Mej )/η(S/A,Ye) we obtain 0.087 ± 0.036 and
0.091 ± 0.037 for S/A = 2 and 3 and Ye = 0.1, respectively.
Substituting the numerical values we find

M�
K (2, 0.1) = 2.55+0.06

−0.04M�, M�
K (3, 0.1) = 2.64+0.06

−0.04M�.

(18)

It was shown recently that several universal relations hold
for hot, isentropic stars out of β equilibrium [59] if ther-
modynamic conditions in terms of entropy per baryon and
electron/lepton fraction are fixed. In Sec. III we extended
these findings to relations between stars rotating at Kepler
frequency and nonrotating ones. The above limits can thus be
used to set a limit on the maximum mass of nonrotating hot
compact stars, using Eq. (8) and fitting parameters in Table II.
We find

M�
S (2, 0.1) = 2.19+0.05

−0.03M�, M�
S (3, 0.1) = 2.36+0.05

−0.04M�.

(19)
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We can also use the limits (18) in combination with the results
shown in Fig. 7 to deduce an upper limit on the maximum
mass of cold compact stars. Let us stress that in this case
universality is lost, and C�

M assumes values in a range 1.15 <

C�
M < 1.23 (S/A = 2) and 1.10 < C�

M < 1.29 (S/A = 3) for
the 11 EoS models considered here. The average values C�

M =
1.19 ± 0.04 for S = 2 and C�

M = 1.18 ± 0.11 for S = 3 can
now be used to obtain, respectively,

M�
TOV = 2.15+0.09+0.16

−0.07−0.16M�, M�
TOV = 2.24+0.10+0.44

−0.07−0.44M�.

(20)

In this last relation, the errors correspond to 2σ standard
deviation. Here and in the formulas for the masses above, the
error propagation for the upper and lower limits was com-
puted independently. The first uncertainty thereby stems from
the propagation of errors from M�

K , whereas the second part
indicates the EoS dependence in C�

M . When comparing the
limits (20) with those of previous works [28,29], one should
keep in mind that we used a (recent) value for the mass M(0),
which is slightly lower than the value of 2.74M� [10] used
in these studies. Our limits on M�

TOV would have been higher
had we adopted the larger value of M(0). It is seen that, if
just before collapse the supermassive neutron star has average
entropy per baryon S/A = 3, then the estimate of the TOV
mass is significantly relaxed compared to the bound placed
in Refs. [24,28,30]. According to the discussion in Sec. IV, a
higher electron fraction in the merger remnant would further
relax the bound on the TOV mass. Please note that we have
considered stars at constant entropy per baryon and constant
electron fraction, whereas a realistic merger remnant shows
in particular strong entropy gradients [65,113]. The values of
S/A = 2 and 3 can be roughly taken as typical average values
for the inner part of the merger remnant, thus most relevant for
the mass. As is obvious from the difference in the results for
S/A = 2 and S/A = 3, the detailed entropy profile influences
the final limit for M�

TOV. These profiles cannot be measured
and the exact entropy distribution in the remnant depends
on many parameters, among others the EoS. Including the
uncertainty on the exact entropy profiles would considerably
increase the global uncertainty and further relax the limits.

The limit we found is similar to the one in Ref. [29] but
for a physically different reason. The last fact indicates that
lifting the assumption that the star rotates at the Keplerian
frequency would further loosen the bound on the TOV mass.
Let us, however, stress the fact that universality is lost when
extracting the cold TOV mass limits (20) from the information
on the hot merger remnant, independent of the assumption
about rotation at collapse; i.e., these final limits become EoS
dependent.

VI. SUMMARY AND CONCLUSIONS

In this work, we addressed two interrelated topics that rely
on the knowledge of finite-temperature EoS of dense matter.
First, we extended the universal relations, previously found
for hot slowly rotating compact stars, to rapidly rotating stars.
In particular we considered in detail the mass-shedding (Ke-
plerian) limit. Second, we discussed an improvement of the
previous maximum mass limits for nonrotating compact stars

obtained from the GW170817 event in the scenario where the
merger remnant is a hypermassive compact star that collapses
to a black hole upon crossing the neutral stability line as a
supramassive (uniformly rotating) compact star.

Our analysis was carried out using a variety of finite-
temperature EoS. The collection used includes relativistic
density functional theory based EoS with nucleonic degrees
of freedom as well as EoS models allowing for the presence
of hyperons. These EoS satisfy the astrophysical constraints
on neutron stars and nuclear data (nuclear binding energies,
rms radii, etc.). As an alternative to the covariant description,
we used a nonrelativistic model based on a Skyrme-type func-
tional and a parametrization of a microscopic model. In this
way, we were able to bracket the range of possible predictions
for the observables stemming from various EoS with different
underlying methods of modeling.

When considering universal relations, we followed the
strategy of Ref. [59] to search universality under the same
thermodynamical conditions, meaning that we compare ob-
servables of the same star or various rotating and nonrotating
configurations at the same fixed entropy per baryon, S/A, and
electron fraction Ye. Specifically, we considered a class of re-
lations which connect the Keplerian configurations with their
nonrotating counterparts given by Eqs. (8)–(10) generalizing
the earlier zero-temperature studies to the finite-temperature
case. We find that these relations are universal (in the sense of
independence on the EoS) to good accuracy. Similarly, finite-
temperature universality propagates beyond zero-temperature
results for the relations connecting radii and frequencies of
the same mass Keplerian and nonrotating stars [see Eqs. (11)
and (12)]. Finally, we verified (partially) the validity of the
I-Love-Q relations by computing the first and the last quan-
tity of the triple, specifically, Ī = I/M3 and Q̄ = QM/J2 for
maximum-mass Keplerian configurations. We find that the
functional dependence of these quantities for the maximum
mass configurations at the Kepler limit on the compactness
of the star is similar to the one obtained for slowly rotating
stars.

The relation between the maximum masses of nonrotat-
ing and Keplerian sequences is an important link needed for
placing limits on the maximum mass of a cold, nonrotating
star from studies of the millisecond pulsars or gravitational
wave analysis of binary neutron star mergers. We have ex-
plored this relation for finite-temperature stars finding that
there are two competing effects: One is the thermal expansion
of the star, which reduces the Kepler frequency and, implic-
itly, the star’s mass at this limit and the additional thermal
pressure which makes a star of a given mass more stable
against collapse. If the static and maximally rotating config-
urations are taken at the same values of S/A and Ye, then we
find universality of the coefficient relating their masses (see
Fig. 8).

The second important application of our analysis con-
cerns the upper limit on the maximum mass of a nonrotating
cold compact star. Several works, using various methods and
scenarios, claimed that this maximum mass can be tightly con-
strained using the GW170817 event [24,28–30] to the range
M�

TOV � 2.17M�–2.3M�, where the upper range in this limit
arises when considering below-Keplerian rotations, instead of

055811-12
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Keplerian ones. We have improved on the previous analysis
by extracting the ratio of the baryonic to gravitational masses
for hot compact stars of given S/A and Ye and applying this to
the same scenario. Our central finding is that the upper limit
on the maximum mass of static, cold neutron stars is

2.15+0.09+0.16
−0.07−0.16 � M�

TOV/M� � 2.24+0.10+0.44
−0.07−0.44

for a typical parameter range 2 � S/A � 3 and Ye = 0.1 of
the hot merger remnant. Note that the large error in the case
of S = 3 is dominated by the nonuniversal behavior C�

M as
displayed in Fig. 7. We thus conclude that accounting for the
finite temperature of the merger remnant relaxes the derived
constraints on the maximum mass of the cold, static compact
star, obtained in Refs. [24,28–30]. In particular, universality is
lost and the final number becomes EoS dependent due to the
EoS dependence of C�

M . In case the collapse to a black hole
does not occur at the maximum possible mass of supramassive
compact stars [29], as we assumed here, the upper limit will
become less stringent.
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APPENDIX: INFLUENCE OF THE SURFACE
DEFINITION ON RESULTS

In this Appendix, we discuss the sensitivity of our results
on the density at which the surface is located. This is essential
for establishing the validity of our results and conclusions.
The available data for most finite-temperature EoS models
are limited to temperatures above T = 0.1 MeV, such that
for a range of entropy per baryon, no solution for the EoS at
very low densities can be found. In practice, for the values
of S/A considered, many of the EoS models used did not
have solutions for densities below roughly (10−6–10−7 fm−3).
This calls for an extrapolation of the required thermodynamic
quantities from the densities where solutions were available
to lower densities. Extrapolation of thermodynamic quantities
introduces an error in the EoS. To avoid the above-stated ex-
trapolation we define the surface of the star at nB = 10−5fm−3

uniformly in our modeling. This surface definition allows us
to use the data provided for every EoS model in the parameter
range used in our calculations.

To gauge the amount by which the value of the maxi-
mum mass changes with a variation of the location of the
surface, we refer to the results for M�

K in Sec. IV. We verified
that changing the surface density from nB = 10−7 fm−3 to
10−5 fm−3 resulted in a change of the value of M�

K only in
the third decimal. The extrapolation was thereby performed
assuming linear dependencies of log ε and log p on log nB with
parameters calculated over the densities covering the lowest
available data, 10−5 � nB � 10−4 fm−3. The small change in
M�

K can be understood from the fact that the maximum mass
is sensitive only to the high-density physics.

To quantify the uncertainties on the results in Sec. III, we
consider again two different values of the density at which we
define the surface of the star. This time, in addition to the value
of nB = 10−5 fm−3 for the surface density, we take a surface at
nB = 10−8 fm−3, implying again an extrapolation of EoS data
over the domain for which data are not available. We find that
the extension of the surface by locating it at a lower density di-
minishes the maximum rotation frequency and that the higher
the entropy per baryon the larger the induced differences in all
studied quantities. However, neither the Kepler frequency, nor
the quadrupole moment, the moment of inertia, or the values
of the gravitational mass in the ranges discussed in Sec. III
are modified by a few 0.1% upon varying the location of the
surface. We, therefore, conclude that we can safely define the
surface at nB = 10−5 fm−3.
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