
PHYSICAL REVIEW C 103, 055810 (2021)

Thermal fluctuations in nuclear pasta
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Despite their astrophysical relevance, nuclear pasta phases are relatively unstudied at high temperatures. We
present molecular dynamics simulations of symmetric nuclear matter with several topologies of “lasagna” at
a range of temperatures to study the pasta-uniform transition. Using the Minkowski functionals, we quantify
trends in the occupied volume, surface area, mean breadth, and Euler characteristic. The amplitude of surface
displacements of the pasta increase with temperature which produce short-lived topological defects such as
holes and filaments near melting, resulting in power laws for increasing surface curvature with temperature.
We calculate the static structure factor and report the shear viscosity and thermal conductivity of pasta, finding
that the shear viscosity is minimized at the melting temperature. These results may have implications for the
thermoelastic properties of nuclear pasta and finite-temperature corrections to the equation of state at pasta
densities.
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I. INTRODUCTION

As matter is compressed and the density approaches nu-
clear saturation, it is energetically favorable for nucleons to
rearrange from spheres into more complicated shapes such as
cylinders and sheets which may contain millions of nucleons,
resembling spaghetti and lasagna. These nuclear pasta phases
exists on the QCD phase diagram as a transition between iso-
lated nuclei and uniform matter at relatively low temperatures
[T � O(15 MeV)] [1–3].

Work studying the behavior of nuclear pasta at finite tem-
perature is well motivated observationally, as the inner crusts
of neutron stars may form nuclear pasta in many astrophys-
ically relevant scenarios. If present, pasta may affect many
transport properties and astrophysical observables. To name
a few: The electron transport and conductivities in pasta may
impact magnetic field evolution and thermal evolution [4,5],
the elastic properties of pasta may set the maximum mass
quadrupole which can be a continuous source of gravitational
waves [6–8], and dark matter annihilation in the pasta layer
has even recently been proposed as a detectable heat source
[9].

Properties of pasta at finite temperatures and transport
properties near the melting temperature may be relevant to the
evolution of remnants in neutron star mergers. Recent numer-
ical simulations by Hanauske et al. predict nuclear matter at
pasta densities to be present approximately 10 to 14 km from
the center of the merger remnant with temperatures between
10 and 20 MeV for tens of milliseconds postmerger [10].
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As time-dependent Hartree-Fock simulations by Schuetrumpf
et al. predict a melting temperature between 10 and 14 MeV,
one may expect melted or partially melted crusts in merger
remnants [11,12]. Any temperature dependence in the trans-
port properties, especially near the melting temperature, may
impact the postmerger gravitational ringdown. This motivates
the study of nuclear pasta phases near the melting temperature
and the calculation of transport properties which may be of
interest to numerical simulations of mergers.

While the exact geometry of pasta phases is likely
a subdominant contributor to the heat capacity and ther-
mal conductivity of nuclear matter, thermal fluctuations
in pasta near the melting temperature may produce long-
range disorder which may affect other transport properties.
Finite-temperature defects and thermal excitation of phonons,
disrupting long-range order in pasta, will effect the static
and dynamic response factors S(q) and S(q, ω) and has been
studied in a few specific cases by Schneider et al. [13] and
Horowitz et al. [5]. As an illustrative example of the kinds
of defects one might expect, consider analogs from terrestrial
physics. Pasta resembles block copolymers, which are known
to have complex geometric phases including defects [14]. Dis-
tortions of the pasta surface may include topological defects
such as filaments or holes [6]. Filaments or holes disrupt local
order similar to interstitials, vacancies, and impurity substitu-
tions in conventional crystal lattices. Helicoids which connect
lasagna sheets, directly analogous to screw dislocations in
both liquid crystals and conventional crystal lattices, are now
well studied in pasta MD and are also resolved in analog
terrestrial experiments with biological membranes [5,15,16].
Larger-scale dislocations such as stacking faults may also
be present at domain boundaries in “polycrystalline” pasta,
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TABLE I. Model parameters for Eq. (1)

a b c �

110 MeV −26 MeV 24 MeV 1.25 fm2

which may be expected at the mesoscale [6,17]. Some low-
angle or tilt boundary defects between domains have been
resolved in MD simulations by Caplan et al. [6] and Schneider
et al. [13].

We report on simulations of nuclear pasta in symmetric
nuclear matter (Ye = 0.5) in this work, which has not yet
been well characterized in our model [18,19]. While the elec-
tron (proton) fraction in neutron stars may be Ye ∼ 0.1 or
less, matter may reach pasta densities with relatively high
proton fractions in a supernova which could have impor-
tant consequences for neutrino trapping and the evolution of
the protoneutron star [20]. Many pasta models predict the
lasagna/slab phase will form even at much lower proton frac-
tions, so even if the quantitative results we obtain do not match
the low proton fraction lasagna, the qualitative results we
obtain may extend to much lower proton fractions [21]. If the
exact thermodynamic conditions simulated in this work are
not found in any astrophysical environment, these results may
still be useful to future authors modeling transport properties
of pasta as limiting cases of high temperature and high proton
fraction (e.g., for corrections to the nuclear surface energy in
pasta for supernova codes).

In this work we study the pasta phases near the melting
temperature with molecular dynamics simulations. Section II
describes our model formalism, Sec. III presents our sim-
ulations. In Sec. III C we present calculations of the static
structure factor which we use to compute observables in
Sec. III D. Section IV summarizes.

II. MODEL AND FORMALISM

A. Semiclassical pasta model

The nuclear pasta model used in this work is the same
as in a large body of past work and is discussed in detail in
Refs. [2,19,22,23]. We briefly review it here for completeness.

We simulate using the Indiana University Molecular Dy-
namics code, version 6.3.1, a CUDA-Fortran code which runs
on the Big Red II supercomputer at Indiana University. The
semiclassical model treats nucleons i and j as point particles
(with periodic separation r) which interact via the two-body
potential

Vi j (r) = ae−r2/� + [b ± c]e−r2/2� + eie j

r
e−r/λ. (1)

The parameters a, b, c, and � are given in Table I and were
chosen by Horowitz et al. to reproduce known properties of
nuclear matter near saturation, while λ is the Coulomb screen-
ing length due to the electron gas (included in our simulations
only through this term) and is fixed at 10 fm as in past work
[22].

These potentials are qualitatively similar to a binary
Lennard-Jones mixture, as the b + c (b − c) term sets a

weak (strong) attraction between like (unlike) nucleons. The
final term is a long-range screened Coulomb repulsion be-
tween protons due to their electric charges ei and e j (eie j ≈
1.44 MeV fm). All simulations in this work use periodic
boundary conditions.

B. Pasta configurations

We study planar phases of nuclear pasta called lasagna
which are equivalent to lamellar phases in block copolymer
studies [14]. Lasgana has an obvious advantage for resolv-
ing thermal fluctuations quantitatively. This is the only phase
where we should expect both principal curvatures k1 and k2 of
the pasta surface to be locally zero everywhere in the ground
state. Thus, the topological characterizations we use (which
integrate curvature over the surface) will be zero in the ground
state. This means we can readily resolve absolute deviations
from zero due to thermal fluctuations no matter how small.
In contrast, a surface with finite ground-state curvature will
need thermal fluctuations whose curvature is comparable to
the ground-state curvature to be easily resolved.

Our initial conditions are three variations of the planar
“lasagna” phase, shown in Fig. 1. These configurations were
used in prior work to study the elastic properties of nuclear
pasta [6]. They are (i) a set of plates with a helicoid wall
(“defects”), (ii) a set of plates with no defects which are
not aligned with the simulation boundary (“nonparallel”), and
(iii) a set of that are aligned with the simulation boundary
(“parallel”). The “defects” simulation with the helicoidal wall
was produced from random initial conditions and is fully
topologically connected, meaning that there is a path between
any point on the surface of the pasta structure to any other. The
“nonparallel” configuration was produced from a simulation
which sheared the “defects” configuration until the helicoids
broke and then contracted back to a cubic box. Through the
periodic boundary, there are three topologically distinct plates
in the simulation volume. Last, the “parallel” simulation in
which the plates are aligned with the box boundary was gen-
erated by including a sinusoidal external potential when first
initialized and contains seven topologically distinct structures.
This external sinusoidal potential is not included in any further
simulations described in this work and is not required for this
structure to remain stable. More detailed information about
these configurations is presented in Ref. [6].

All simulations in this work contain 102 400 nucleons in
a cubic volume at a nucleon density of n = 0.05 fm−3, ap-
proximately a third of saturation density where most models
predict the existence of the lasagna phase [11,12,19]. In con-
trast to past work with our model which focused on proton
fractions of YP = 0.4, we report on simulations of symmetric
nuclear matter with equal numbers of protons and neutrons
(YP = 0.5). To convert our configurations to this higher proton
fraction neutrons were chosen at random to be switched for
protons. We use the higher proton fraction because we expect
the pasta to be stable for a larger range of temperatures and
also to allow for comparison to Ref. [24] whose model is sim-
ilar to our own and has been characterized in these regimes.

The three configurations we consider are all similar in
energy (per nucleon) and are long lived. As in many glassy
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FIG. 1. Faces of our pasta configurations at the lowest tem-
perature studied in this work, T/Tm = 0.70, effectively our initial
conditions. The golden surfaces are isosurfaces of charge density
of nch = 0.03 fm−3 (i.e., surfaces bounding the region where the
protons are most abundant) while the cream fill shows where charge
density of nch > 0.03 fm−3 within the pasta structure, visible due to
the intersection of the pasta structure with the periodic box boundary.
Panels (a)–(c) show three orthogonal faces of the simulation with
“defects.” The defects consist of a wall of helicoids, seen in (a), con-
necting the plates; in (b) one can see the axis of the helicoids on the
left, highlighted by the arrows. In (c), one can see how the following
the helicoids cause the plates to bend up at the periodic boundary
on the right, connecting the seemingly distinct plates. These can be
compared with the related configuration without defects, which we
call “nonparallel,” shown in (d)–(f). In (g) and (h) we show two views
of the configuration which is “parallel” with the box, and in (i) we
show a configuration above the melting temperature.

systems, there may be many local minima separated by large
tunneling barriers in the energy landscape, making our pasta
structures long lived even if they are not the true ground
state. Taken together, these three structures will allow us to
characterize the behavior of thermal fluctuations in nuclear
pasta with similar topologies.

C. Melting temperature

We perform one simulation for each topology described in
Sec. II B to resolve the melting temperature in our model.
These simulations begin using three configurations at T =
1.7 MeV and are heated by rescaling the velocities to a
Maxwell Boltzmann distribution +�T = 10−4 MeV hotter
every 103 time steps. The temperature thus increases to a
final temperature of T = 1.8 MeV after the 106 time steps

of the simulation. The melting transition is resolved at Tm =
1.72 MeV from these simulations. Caloric curves produced
from these simulations (omitted for length) show that the
energy per nucleon changes discontinuously, consistent with
a first-order phase transition. Furthermore, above this tem-
perature the nuclear pasta structure appears to dissolve into
a disordered set of filaments with little long-range order and
large fluctuations. This result is consistent with Fig. 6b in
Ref. [24].

With the melting temperature known, we prepare three
addition configurations above the melting temperature, at T =
1.8, 1.9, and 2.0 MeV. The initial conditions are largely unim-
portant, as these configurations are disordered and fluidlike.
These simulations were run for 100 000 time steps to allow
them to equilibrate; the energy converged within 1000 time
steps suggesting that at these high temperatures our model
equilibrates quickly.

D. Simulations of thermal fluctuations

From the initial configurations described above, we per-
form a set of 21 simulations from which we calculate the
Minkowski functionals and static structure factors to study
thermal fluctuations in nuclear pasta. These include a simu-
lation of each of our three topologies at T = 1.2, 1.3, 1.4,
1.5, 1.6, and 1.7 MeV, for a total of 18 simulations below
the melting temperature, and one simulation each at T = 1.8,
1.9, and 2.0 MeV to study the behavior above the melting
temperature (hereafter we refer to these simulations in units
of the model melting temperature, Tm = 1.72 MeV).1 These
simulations are evolved for 105 MD time steps and config-
urations are stored every 100 time steps for a total of 103

snapshots of the configuration. These simulations are run in
the microcanonical ensemble and do not include any tem-
perature renormalizations (unlike most past work with our
model). Video renders of these simulations are available in
the supplemental materials (SM) (online in Ref. [25]) while
select frames from these are shown in Fig. 2.

E. Minkowski functionals

We study thermal fluctuations in our pasta structures us-
ing the normalized Minkowski functionals. In summary, the
Minkowski functionals quantify the geometry of the pasta sur-
faces, including surface curvature, topological connectivity,
occupied volume, and surface area and so they are useful for
characterizing the pasta model. While they may have limited
immediate application to astrophysics, it is possible that future
authors interested in corrections to the nuclear equation of
state at pasta densities may find them useful when building
curvature corrections to the surface energy in nuclear equa-
tions of state [26].

1The minimum temperature is constrained by the model; at low
T the semiclassical model undergoes a phase transition to a solid,
which we do not regard as physically relevant for nuclear physics,
though this phase transition and the behavior of the model at low T
may be interesting if this model is used to study analagous systems,
such as self-assembly in colloidal mixtures [2,15].
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FIG. 2. Faces of our pasta configurations at a range of tem-
peratures. Top three rows show our “defects,” “nonparallel,” and
“parallel” configurations at three temperatures (columns). The bot-
tom row shows simulations above the melting temperature. See the
SM for animations.

In three dimensions, the four Minkowski functionals are
proportional to the occupied volume Vocc, surface area A, mean
breadth B, and Euler characteristic χ . The volume and surface
area are straightforward to understand while the mean breadth
and Euler characteristic depend on the principal curvatures
k1 and k2 of the pasta surface ∂K . The mean breadth is
defined by

B = 1

4π

∫
∂K

(k1 + k2)dA (2)

and measures the average curvature of the bounding surfaces
dA; it is a surface integral over the mean curvature (k1 + k2)
on domain ∂K . The Euler characteristic is similarly defined,

χ = 1

4π

∫
∂K

(k1k2)dA, (3)

and measures the bounding surface curvature as a surface inte-
gral over the Gaussian curvature (k1k2). From the definition of
the Gaussian curvature this integral is proportional to the total
curvature which is a measure of the convexity (χ < 0), con-
cavity (χ > 0), or flatness (χ = 0) of the bounding surface.
By the Gauss-Bonnet theorem this also makes χ a measure of
the topology (connectedness) of the surface. Large negative
χ implies a well connected surface with many tunnels, large
positive χ implies many topologically disconnected surfaces,
and zero χ is reserved for planar structures. We normalize by
total surface area to B/A and χ/A using

A =
∫

∂K
dA. (4)

While the exact computational details of our algorithm are
very extensive and are beyond the scope of this work, they are
laid out in detail in Sec. IIb in Ref. [19]. Our nucleons are
pointlike, so finding bounding surfaces is nontrivial. To find
them we treat protons as a normal distribution (σ = 1.5 fm)
centered on the particle and calculate the “nucleon density”
on a three-dimensional (3D) grid of “voxels” (i.e., a 3D pixel).
This is used to produce a discretized binary image of a config-
uration; if the nucleon density of the voxel is above a threshold
of nth > 0.03 fm−3; it is considered “occupied,” while if it
is below threshold it is considered “unoccupied.” The binary
occupation of each voxel taken together with that of its nearest
neighbors contributes can be used to calculate the Minkowski
functionals following the algorithm by Lang et al. [27]. For
example, Vocc is simple the number of occupied voxels. The A
is proportional to the number of unoccupied voxels which are
adjacent to occupied voxels. The curvatures B and χ are more
complicated to compute but similarly follow from calculating
occupations of all 2 × 2 × 2 subvolumes and summing the
curvature contributions from each. It is worth noting that
our Minkowski functionals are technically quantized by this
formalism; however, they are at such high resolution that they
are effectively continuous for our purposes. We emphasize
that the choices of σ and nth, among others, are the result of
a thorough analysis by Schneider et al. and have been used
extensively in a growing body of work [19].

III. RESULTS

A. Simulations

To begin, we describe the qualitative features of the pasta
structures in Fig. 2 and in the SM. At the lowest temperatures
considered (T/Tm = 0.70) all three configurations studied are
relatively smooth with little surface roughness or variation,
shown in Fig. 1. Very few holes spontaneously form and their
lifetimes are short, appearing in only one or two frames of
the simulation before collapsing. They are most easily ob-
served in the nonparallel simulation (center SM). We conclude
that the topology is constant and frozen in for configurations
below this temperature. The plate splay is notable as well.
The related “defects” and “nonparallel” configurations both
show a sharp buckling angle while the plates are nearly planar
to either side, while the “parallel” plates show some weak
sinusoidal or hyperbolic splay with a length scale of order the
box width.
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Topological thermal fluctuations become increasingly fre-
quent at higher temperatures (T/Tm = 0.76 and 0.81), shown
in Figs. 2(a), 2(d), and 2(g). One or a few holes can be seen
at almost all times in the SM animation. This is easily seen
in both the surface and also in the simulation edges. Discon-
tinuities in the cream surface are due to holes which cross
the periodic boundary. Increasing the temperature increases
the surface roughness as larger amplitude oscillations become
more frequent, though their amplitude does not appear to be
sufficiently large to produce filaments connecting the plates
with high-enough probability to resolve on MD timescales.
The magnitude of splay is largely unchanged relative to the
lowest temperature considered, though some lateral transla-
tion of the plates may have occurred in the “parallel” system.
We note that the “defects” appear to migrate in the SM ani-
mation at these temperatures. There are two pairs of defects,
forming an alternating wall of left-handed and right-handed
defects, visible in Figs. 2(a) and 1(a) and from the top in the
left-hand side of Fig. 1(b). Past work has argued that these he-
licoidal ramps tend to experience long-range attractive forces,
explaining their organization into walls of dipoles of alternat-
ing helicity [15,16]. The apparent migration of these helicoids
suggests that thermal energy is sufficiently high to overcome
the attraction between these ramps and unbind their clustering
but not sufficiently high to dissolve the ramps, which may
have implications for the structure of nuclear pasta that forms
as neutron star crusts cool and anneal.

Further increasing the temperature (T/Tm = 0.87), we now
resolve the formation and dissolution of filaments which con-
nect the plates, seen in Figs. 2(b) and 2(e). As filaments first
appear at higher temperatures than holes, we argue that they
experience a higher formation barrier than holes. They have
lifetimes comparable to holes or greater. These filamentary
fluctuations have significant effects on the topology in all
of our simulation. The helicoids dissolve in the “defects”
simulations; we observe that the bridges between adjacent
plates dissolve over the span of about 105 MD time steps,
while in the “nonparallel” simulation we see the spontaneous
formation of helicoidal defects connecting a few plates. These
simulation may be near a critical temperature for the forma-
tion and dissolution of helicoidal defects. We also note that the
splay of the “nonparallel” configuration has changed, while
previously the buckle was sharp in Fig. 2(d) it appears more
sinusoidal in Fig. 2(e), similarly to the splay of the “parallel”
configuration in Figs. 2(g)–2(i).

Our highest temperature simulations below the melting
temperature (T/Tm = 0.93 and 0.99) show similar behavior
for all three configurations, seen in Figs. 2(c), 2(f), and 2(i).
The pasta weakly maintains its coarse long-range order as all
three configurations show a large number of filaments and
holes quickly forming and dissolving. Oscillations in the splay
of the plates can be observed on MD timescales, particularly
in the “parallel” simulation.

Above the melting transition (T/Tm = 1.05, 1.10, and
1.16) the “disordered” simulations all show roughly the same
behavior, shown in Figs. 2(g)–2(i), having a large number of
spongelike filaments with no long-range order or temporal
persistence. Notably, the size of filaments in the “disordered”
simulations may be smaller at higher temperatures, likely

due to a larger number of nucleons entering a gaseous phase
between the condensed structures.

B. Minkowski functionals

We quantify the evolution in topology using the four
Minkowski functionals (normalized by the total volume or
surface area where appropriate) in Fig. 3 and interpret each
below.

1. Occupied volume fraction

The occupied volume Vocc is the region bound by the
gold and cream surfaces in our figures with proton density
nch > nth = 0.03 fm−3. The total volume Vtot is just that of
the cubic simulation volume. To zeroth order, approximately
41% of the simulation volume contains condensed nuclear
matter for all three topologies below the melting tempera-
ture. At nucleon densities of 0.05 fm−3, this suggests that
uniform nuclear matter occurs around 0.12 fm−3 at these
proton fractions, which is consistent with other simulations
used to produce phase diagrams of our pasta model [19]. We
observe that Vocc/Vtot increases approximately linearly with
temperature for T/Tm � 0.8. We argue that this is due to
greater average displacements of nucleons in the potential
wells of nearest neighbors. Higher thermal velocities result
in greater root-mean-square separations of nucleons produc-
ing slightly enlarged pasta structures, though the effect is
small, of order 10−2. This can be seen clearly in the radial
distribution functions g(r) shown in Fig. 4. In the neutron-
proton, neutron-neutron, and proton-proton pair correlations
we see broadening of the first peak with temperature, with
mean separations decreasing by about 0.1 fm when increasing
T/Tm from 0.70 to 0.87 (top inset). As the plate thickness and
spacing are both nearly 10 fm, we see that this broadening
explains the observed �10−2 enhancement in Vocc/Vtot.

For 0.87 � T/Tm � 1.0 we observe a turnover in Vocc/Vtot.
Naively this may seem to contradict our argument above, that
broadening of the first peak in g(r) with temperature should
result in monotonically increasing Vocc/Vtot with T/Tm. One
possibility is that the mean-square displacements may become
sufficiently large that the mean nucleon density (near the sur-
face) is below the threshold to count as being in the volume,
i.e., the surface becomes “puffy.” Additionally, some nucleons
appear to be entering a sparse gas between plates, if this pop-
ulation is of order 10−2Ntot, where Ntot is the number of nucle-
ons in the simulation volume, then the reduction is explained.

Above the melting temperature the occupied volume frac-
tion shows a discontinuity consistent with a first-order phase
transition, and a steepening trend towards lower Vocc/Vtot

is observed with likely the same explanation (low density
surfaces and losses of nucleons to the gas). This is again
supported by g(r); the loss of sharpness in the second peak and
beyond suggests a more gaslike distribution of neighbors at
r > 5 fm, indicating that the characteristic pasta length-scale
decreases with temperature above Tm, which can be seen in
Figs. 2(j)–2(l) as well as the SM.

2. Surface area

Isosurfaces in charge density of nch = nth = 0.03 fm−3

are the gold surfaces in our figures. The total surface area
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FIG. 3. The four normalized Minkowski functionals for our simulations. Clockwise from top right: The occupied volume fraction, surface
area density, Euler characteristic, and mean breadth. Note the sign on the units of the Euler characteristic.

(or, equivalently, surface area density) increases with tem-
perature for all three configurations and is discontinuous at
T/Tm = 1.0, consistent with a first-order phase transition.
This is easily explained by arguing that thermal fluctuations
produce deviations in the surface such as filaments, holes, or
buckling modes. Thermal fluctuations at greater temperatures
produce greater average displacements of the surface, result-
ing in greater increases in surface area, and can clearly be seen
in Figs. 2(a)–2(i). Observe that A/Vtot increases by about 20%
between T/Tm = 0.70 to 0.99, comparable to the growth in
temperature.

3. Mean breadth

We find that B/A is monotonically increasing with tem-
perature. At low temperature we observe different behavior
for the three topologies. The mean breadth for the “non-
parallel” and “parallel” configurations which contain only
planar lasagna follow a power law (B/A ∝ T 9.7). The heli-
coidal ramps provide some nonzero surface curvature at low
temperature, so that the “defects” configuration asymptoti-
cally approaches B/A ≈ 3 × 10−3 at low temperatures. At
temperatures approaching the melting temperature B/A for the
“defects” converges with what is seen in the “nonparallel”
and “parallel” simulations, as thermal fluctuations come to
dominate the surface curvature. It is worth noticing that the
“onparallel” simulation at 0.86Tm spontaneously forms small
local helicoids, as discussed above. The calculated B/A for

this simulation is in closer agreement with that of the simula-
tion with “defects” than the “parallel” simulation. Asymptotic
low T/Tm behavior is similar to values obtained for simula-
tions of same size and density but at lower proton fraction
(Y = 0.40) in previous works, B/A � 10−3 fm−1, see Fig. 2
in Ref. [13] and Fig. 14 in Ref. [17].

4. Euler characteristic

First, observe the negative units of χ/A in Fig. 3 so that
χ/A is actually monotonically decreasing. This indicates that
the surfaces display saddle splay rather than convexity. As
with the mean breadth there is a clear power law with tem-
perature for the lasagna without helicoids (−χ/A ∝ T 12.5).
The “defects” show the same behavior as in B/A; they asymp-
totically approach a nonzero value at low temperature due
to the finite contribution to the curvature from the helicoids.
The spontaneous formation of helicoids at T/Tm = 0.87 in
the “nonparallel” simulation again shifts χ/A for that run to
become more in line with what is observed for the simulations
with “defects.” As above, these results are same order of
magnitude as for low T runs in past work with n = 0.05 fm−3

and YP = 0.40 which find χ/A � 5 × 10−5 fm−2 [13,17].

C. Static structure factors

We report on the static structure factor for nucleons in
our simulations. As this is just the Fourier transform of
the radial distribution function and our proton-proton and
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FIG. 4. Radial distribution functions g(r) as function of temper-
ature for (top) neutron-proton correlations, (center) neutron-neutron
correlations, and (bottom) proton-proton correlations. We normalize
to 1 at the position of the first peak which occurs at 1.9 fm for gnp(r)
and at 2.5 fm for both gnn(r) and gpp(r). The inset in gnp(r) shows
the approximate 0.1 fm broadening of the first peak, discussed in
text. Below Tm we use configurations from our “parallel” simulations.
Note the similarity between gnn(r) and gpp(r) which may be due
to the equal numbers of protons and neutrons in these simulations
(compare to Fig. 2 in Ref. [19]).

neutron-neutron radial distribution functions are nearly iden-
tical, we only report the proton static structure factors here.
Our procedure for calculating these is described in detail in
our past work (Refs. [13,17]). Structure factors Sp(q) are
calculated from the time average (of 103 MD configurations)

0 0.5 1 1.5 2

100

101
0.70

0.76

0.81

0.87

0.93

0.99

1.05

1.10

1.16

0 0.5 1 1.5 2

100

101
0.70

0.76

0.81

0.87

0.93

0.99

1.05

1.10

1.16

0 0.5 1 1.5 2

100

101
0.70

0.76

0.81

0.87

0.93

0.99

1.05

1.10

1.16

FIG. 5. Angle-averaged proton structure factor Sp(q) = 〈Sp(q)〉q

for the range of temperatures studied, smoothed with Bragg peaks
removed; (top) configurations with defects, (middle) nonparallel
plates, and (bottom) parallel plates. Lines T/Tm > 1 are the same
in all three plots. Neutron structure factors Sn(q) are nearly identical,
following from similarities in gnn(r) and gpp(r) in Fig. 4.

of the nucleon density in momentum space:

Sp(q) = 〈ρ∗
p(q, t )ρp(q, t )〉t − 〈ρ∗

p(q, t )〉t 〈ρp(q, t )〉t (5)

with ρp(q, t ) = N−1/2
p

∑Np

j=1 eiq·r j (t ) the nucleon density in
momentum space, Np the number of protons, and r j (t ) the
position of the jth proton at time t . The angled brackets 〈A〉t

then denote the average of quantity A over time interval t .
Angle-averaged proton static structure factors Sp(q) =

〈Sp(q)〉 are shown in Fig. 5. These Sp(q) are smoothed to
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FIG. 6. Top: Angle-averaged proton static structure factor Sp(q) = 〈Sp(q)〉q (solid black) bounded by the maximum and minimum in Sp(q)
for each q = |q| for our simulations with (left) defects, (center) nonparallel plates, and (right) parallel plates. Bottom: Heat map of proton
structure factor Sp(q) as a function of momentum transfer q = |q| and angle θ .

show the reduction and broadening of the first peak with
temperature. As expected the static structure factor is largely
independent of the exact configuration that we consider, but
we do observe some small sensitivity in the magnitude of
the first and second peaks which are sharpest in our parallel
simulations and weakest in our simulations with defects.

In Figs. 6 and 7 we show detailed information about the
static structure factors for three temperatures below and three
temperatures above the melting temperature. In the top of
Fig. 6 we show the angle-averaged proton static structure fac-
tor, including the Bragg peaks composing the first maximum
near q ∼ 0.37 fm−1 and second near q ∼ 0.75 fm−1. In the
shaded regions we show the range between the maximum and
the minimum value of S(q) for each q. These can be obtained
from heatmaps similar to the ones shown in the bottom of
Fig. 6, which show S(q) for all θ and for q near the first
peak in S(q). Due to the finite box size only specific (q, θ )
points can be calculated from which we interpolate to produce

the heatmap, resulting in the apparent grainy texture. The
interpolation and smoothing scheme is described in detail in
our past work [17].

Below the melting temperature we find that the structure
of the peaks are largely independent of temperature, though
we resolve a weak broadening of the peak with temperature
as seen in Fig. 5. Most notably, the nonparallel plate con-
figuration at T = 0.87Tm shows the weakest Bragg peaks in
the first peak. This is explained by the presence of small
helicoidal defects with finite lifetimes which begin forming
at this temperature. In contrast, the simulations above the
melting temperature in Fig. 7 show an order of magnitude
reduction in the first peak relative to the configurations below
the melting temperature. The first peak also decays in magni-
tude by approximately a factor of two over the temperatures
studied. There is no apparent θ dependence observed above
the melting temperature which is expected due to the relatively
uniform randomness of the structure.
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FIG. 7. Top: Angle-averaged proton static structure as in Fig. 6
for our disordered configurations above the melting temperature and
(bottom) heat map of proton structure factor Sp(q) as a function of
momentum transfer q = |q| and angle θ .

D. Observables

From the static structure factors we calculate the averaged
shear viscosity η̄ and thermal conductivity κ̄ , shown in Fig. 8.
Following the methods of our previous work, we calculate

η = πv2
F ne

20α2�
η
ep

, (6)

κ = πv2
F kF k2

BT

12α2�κ
ep

, (7)

using electron Fermi velocity and momentum vF and kF ,
electron density ne, fine structure and Boltzmann constants
α and kB, with T the temperature of the system [13].
We approximate the Coulomb logarithms �η

ep and �κ
ep

FIG. 8. Averaged shear viscosity (top) and averaged thermal con-
ductivity (bottom).

via

�η
ep =

∫ 2kF

0

dq

qε2(q)

(
1 − q2

4k2
F

)(
1 − v2

F q2

4k2
F

)
Sp(q), (8)

�κ
ep =

∫ 2kF

0

dq

qε2(q)

(
1 − v2

F q2

4k2
F

)
Sp(q). (9)

where ε(q) is the Thomas-Fermi approximation to the dielec-
tric function, taken to be ε(q) = 1 + k2

TF/q2 which uses the
inverse screening length kTF ≡ λ−1 = 2kF

√
α/π . We calcu-

late kF = (3π2ne)1/3 from the electron (proton) density ne by
assuming charge neutrality. We use k−1

TF = 11.5 fm [13,18].2

Last, the angle-averaged η̄ is found by

η̄ =
∫

η(θ ) sin θdθ∫
sin θdθ

. (10)

and similarly for κ̄ .
Our results for the shear viscosity η̄ and the thermal con-

ductivity κ̄ are of the same order as in our past work and we
resolve rough trends with temperature [19]. These results are
about one order of magnitude larger than the ones obtained
by Nandi and Schramm [28] considering the same proton

2In our simulations we use λ = 10 fm for the proton-proton
Coulomb screening. However, using k−1

TF = 11.5 or k−1
TF = 10 results

in only a 2% variation in �ep.
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fraction, Yp = 0.5, temperatures in the range from 0 to 5
MeV in 1-MeV increments, and similar densities, ρ/ρ0 = 0.3
and 0.43 with the nuclear saturation density ρ0 = 0.165 fm−3

[29]. We attribute this order-of-magnitude difference to the
smaller simulation sizes of Nandi and Schramm as their runs
contained 12 288 nucleons. Smaller simulation volumes can
increase correlations between nucleons in the pasta due to
the periodic boundary conditions, leading to higher peaks in
Sp(q) and, thus, larger Coulomb logarithms which appear in
the denominator of Eqs. (6) and (7).

We observe in our simulations that the “parallel” configu-
rations show a fairly linear trend in both η̄ and κ̄ , which we
argue most reasonably captures the evolution of the observ-
ables with temperature. The large fluctuations of the “defects”
and “nonparallel” simulations are due to spontaneous forma-
tion and dissolution of defects which biases our averaging
when calculating S(q), as shown in Sec. III C. Coarsely, we
can at least see the approximate trend of η̄ decreasing with
temperature below T/Tm = 1 and κ̄ increasing with temper-
ature below T/Tm = 1. A discontinuity in both η̄ and κ̄ are
consistent with the first-order phase transition at T/Tm = 1,
where both η̄ and κ̄ drop by about 30–40% before increasing
again. Given how S(q) behaves for T/Tm > 1 (Fig. 7), where
there is not much noise in the angle-averaged static structure
factor, the time-averaged S(q) is more precise above the melt-
ing temperature than below.

Finally, we note here the QMD formalism from Maruyama
et al. [29] and used by Nandi and Schramm [28,30,31] allows
pasta structures to exist at higher temperatures than in our
semiclassical MD simulations. In runs that explore a simi-
lar parameter space to ours in Ref. [28], we infer from the
decrease in Sp(q) that pasta structures melt between 3 and
4 MeV for Yp = 0.5, see also Ref. [31]. However, due to
the large 1-MeV increments in temperature, it is not clear
in Ref. [28] what type of phase transition takes place as the
pasta melts, although it is argued in Ref. [31] for a Yp = 0.30
system that the transition observed is also of first order, nor if
the overall topology of the pasta is similar across the range of
temperatures explored. Still, Nandi and Schramm determine
that the thermal conductivity increases fast with temperature
below 5 MeV while the shear viscosity shows no clear tem-
perature dependence for Yp = 0.50 and ρ/ρ0 = 0.3–0.4. We
speculate that the discrepancies in observed trends for the
thermal conductivity between Ref. [28] and our results are due
to finite-size effects and differences in pasta topology.

Under more realistic circumstances (like what has been
seen larger MD simulations, see Refs. [6,17]) it is reasonable
to expect features like transient defects and domains below
the melting temperature, so the simulations containing defects
with finite lifetimes do not necessarily give us unphysical
results. We show a linear fit, motivated by the nearly smooth
trend with T/Tm seen in our “parallel” configurations, which
effectively allows us to average over the kind of structures

3Although ρ/ρ0 = 0.3 better matches the density we simulate in
this work, ρ/ρ0 = 0.4 is where the QMD model often finds the
lasagna phase [37,38]. Therefore, we look at both densities when
making parallels between our results and those of Ref. [28].

seen in all of our simulations below the melting temperature.
Far below the melting temperature we expect η̄ and κ̄ to
have different asymptotic behavior as they converge to values
characteristic of cold catalyzed nuclear pasta.

IV. DISCUSSION

We have resolved the behavior of nuclear pasta at a range
of finite temperatures. In a cooling neutron star one might
expect nuclear pasta to evolve through these phases, which
may determine the ground-state structure of pasta once an-
nealed. Astrophysical cooling mechanisms operate on much
longer timescales than the characteristic nuclear timescales
in pasta. Therefore, in an annealing neutron star crust, the
pasta might be expected to be in a quasiequilibrium state at
any given temperature above some quenching temperature.
The temperature that the topological thermal fluctuations are
quenched out may be an effective freezing temperature for the
nuclear pasta layer in neutron star crusts which determines the
domain size and thus transport properties.

Consider the geometric evolution of a volume of subsatura-
tion density matter in a cooling neutron star. Below the critical
temperature nuclear pasta can form but it has many short-
lived topological defects such as holes and filaments. These
filaments may provide a mechanism for annealing the crust
by exchanging nucleons between plates. At lower tempera-
tures, we observe that these filaments and holes can be more
organized in the form of large helicoidal defects. We observe
both the spontaneous dissolution and formation of helicoidal
defects in simulations at the same temperature which suggests
there is a critical temperature for their formation. These he-
licoids appear to be metastable at high temperature, and may
be frozen in as the pasta anneals; energy differences between
similar shapes may be small and timescales for tunneling may
be large given the large number of nucleons involved. Once
frozen in they may interact weakly via a long-range attractive
force causing them to cluster into dipoles or quadrupoles of
alternating handedness (see Refs. [15,16]).

In contrast, short-lived topological fluctuations at high tem-
peratures may be a mechanism to anneal pasta and relieve
stress via creep. Even if tunneling barriers between similar
pasta structures are large, as in a glass, stress may be re-
lieved by slowly exchanging nucleons between plates and
changing the topology. We speculate that there may be some
temperature threshold where filaments and holes may form
on timescales comparable to astrophysical cooling, potentially
relaxing the crust. Their presence may allow for the probing
of many different pathways through the energy landscape
and allow the pasta structures to reach lower energy, lower
stress states. Therefore, topological thermal fluctuations may
provide a mechanism to relieve stress.

This work also observes evolution of the plate
splay/buckling with increasing temperature, which may
similarly affect the elastic properties. In Caplan et al. [6],
we argue that that the “defects” can produce large shear
moduli in the pasta, while parallel plates of the “lasagna”
phase have zero in-plane shear modulus, as plates may slide
freely parallel to each other. Dissolution of the helicoids
at high temperature may effectively weaken the pasta, but
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high temperature nontopological thermal fluctuations may
also stiffen the pasta. Surface roughness of the plates may
provide some resistance to sliding [8,32]. As we observe
that there may generally be some spontaneous curvature of
the pasta surfaces, for example hyperbolic splay, one might
expect corrugations to resist to shear stresses even at high
temperature. How the magnitude of such shear modulus
compares to the topological shear modulus studied in Ref. [6]
remains to be seen, but taken together this motivates future
work studying the thermoelastic properties of pasta.

Bridging equations of state from the crust to the core will
likely require corrections at subsaturation density for pasta.
While some of the exact results in this work are model depen-
dent (such as the occupied volume fraction and exact melting
temperature) and are perhaps less useful for astrophysics, oth-
ers may be general features of a liquid drop model for pasta.
The nuclear pasta model in this work has been fit to reproduce
known properties of nuclear matter near saturation, and should
be expected to reproduce at least the bulk behavior of the
pasta structure in the classical limit of many thousands of
nucleons. For example, the surface area density found in this
work may be useful for developing surface energy corrections
to equations of state at pasta densities which bridge nuclear
equations of state to the ion crust above it. Similarly, the
observed surface roughness could motivate the inclusion of
next-order surface energy terms, such as a curvature term,
similar to curvature energy corrections used for models of
fission and permanent nuclear deformations [33–35].

The observables we report show interesting evolution with
temperature near the melting temperature. Given the large

proton fractions used and the small sizes of the simulations
reported in this work the exact values of η̄ and κ̄ we report
have considerable uncertainty. However, the apparent trends
may be useful in astrophysical simulations where nuclear mat-
ter reaches high temperature. Discontinuities at the melting
temperature could have interesting astrophysical implications,
especially since our results suggest the viscosity reaches its
minimum at the melting temperature. Detailed calculations
of the observables as a function of temperature may not be
easily accessible to MD without large simulations and long
simulation times. Thus, this motivates future work which goes
beyond MD to model pasta in a more computationally effi-
cient manner, like a scalar field models and others common in
the diblock copolymer literature [36].
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