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The critical properties for the transition to warm, asymmetric, nonhomogeneous nuclear matter are analyzed
within a thermodynamical spinodal approach for a set of well-calibrated equations of state. It is shown that even
though different equations of state are constrained by the same experimental, theoretical, and observational data,
and the properties of symmetric nuclear matter are similar within the models, the properties of very asymmetric
nuclear matter, such as the one found inside of neutron stars, differ a lot for various models. Some models predict
larger transition densities to homogeneous matter for β-equilibrated matter than for symmetric nuclear matter.
Since one expects that such properties have a noticeable impact on the the evolution of either a supernova or
neutron star merger, this different behavior should be understood in more detail.
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I. INTRODUCTION

Core-collapse supernovae (CCSN) and neutron star (NS)
mergers are two astrophysical explosive events where matter
can reach temperatures above ≈50 MeV. In CCSN matter,
β-equilibrium is not immediately reached, and a fixed proton
fraction in the range of 0 < yp < 0.6 is usually considered
in the simulations [1]. In these very energetic events, light
and heavy nuclear clusters are supposed to form, guiding
the neutrino dynamics, and affecting, for example, the cool-
ing of the protoneutron star [2], or the disk dissolution of a
NS merger [3–5]. Hence, it is extremely important for these
clusters to be included in the equations of state (EoS) for
CCSN and NS mergers simulations, and to determine under
which temperature, density, and proton fraction matter will be
clusterized.

At subsaturation densities, nuclear matter goes through a
liquid-gas phase transition [6]. The border between the stable
and unstable matter is denoted by spinodal [7], and it can be
estimated via dynamical or thermodynamical calculations. In
the first case, the instabilities are determined from the fluctua-
tions around equilibrium. The zero-frequency one defines the
spinodal surface. In this approach, both the presence of elec-
trons and the Coulomb field can be taken into account. In the
thermodynamical case, the region of instabilities is identified
by the negative curvature of the free energy density, and the
spinodal border is defined by a zero curvature. Considering
a calculation that does not include the electron contribution
and does not take into account the Coulomb interaction, the
dynamical spinodal coincides with the thermodynamical spin-
odal in the infinite wave length limit. In the limit of small
wavelengths, smaller than the nuclear force range, the instabil-
ity region defined by the dynamical spinodal disappears. This

same small wavelength limit is obtained in a calculation of the
dynamical spinodal that includes the electron contribution and
the Coulomb interaction.

While the dynamical spinodal may give more realistic pre-
dictions for the crust-core phase transition in neutron stars
because it allows us to take into account the finite-range
effects of the nuclear force and the Coulomb interaction,
the thermodynamic spinodal still gives a good estimation,
as shown in Refs. [8–10]. In particular, in Ref. [10], the
authors compared the nonhomogeneous to homogeneous mat-
ter transition density obtained within the thermodynamical
and dynamical spinodals, and a more realistic approach, a
Thomas-Fermi (TF) calculation of nonhomogeneous matter.
Taking the TF calculation as reference, it was shown that,
for β-equilibrium matter, the dynamical spinodal gives results
comparable with TF, and the thermodynamical spinodal gives
sligthly larger (≈10%) transition densities, [8]. Besides, for
matter with a proton fraction equal to 0.3, as found in CCSN
matter, the thermodynamical spinodal predicts transition den-
sities close to the ones of a TF calculation. The liquid-gas
phase transition calculated from the spinodal decomposition
has been used in experiments to study the fragmentation of nu-
clear systems, in particular the time evolution of a compound
nucleus during heavy-ion collisions [11].

The liquid-gas phase transition also occurs in stellar matter,
and that explains why at subsaturation densities, one should
expect clusterized matter in core-collapse supernovae, neutron
star mergers, and the inner crust of neutron stars. Light and
heavy clusters should form at subsaturation densities, which
in cold catalyzed neutron stars correspond to the inner crust
region [12]. In this case, spherical clusters form in the upper
layers of the inner crust and in the bottom layers close to
the crust-core transition, clusters with other geometries called
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pasta phases may arise due to a competition between the
Coulomb interaction and the nuclear force [13].

Calculations seem to indicate that heavy clusters, including
spherical clusters and pasta phases, may exist well above
1 MeV, as shown in studies that consider a molecular dy-
namical description [14], a statistical description [15,16], or a
single nucleus approximation [12,17–19]. Moreover, at finite
temperatures, one expects that light clusters, which may be
understood as few-nucleon correlations, dominate at low den-
sities. At larger densities, but still below saturation density,
light and heavy clusters coexist [20]. The existence of cluster-
ized matter is influenced by the temperature and proton frac-
tion, and depends on the isovector properties of the nuclear
matter model. Nonhomogeneous matter is expected below the
critical end point of the nuclear liquid-gas phase transition,
i.e., for a temperature of the order of 14–17 MeV [21].

Light clusters at low densities can be introduced as inde-
pendent degrees of freedom within a generalized relativistic
mean-field (RMF) approach [22–24]. The calibration of the
couplings of these clusters has been performed by reproducing
the equilibrium constants extracted from heavy ion collisions
(HIC) [22,25,26]. In particular, it has been shown that it
is important to take into account in medium effects when
extracting the equilibrium constants from the experimental
measurements [22]. Taking the parametrizations calibrated
to the INDRA measurements [22], we have shown that the
fraction of light clusters predicted up to the densities tested by
INDRA are similar for different models. However, different
models predict different dissolution densities [27].

In Ref. [28], a general approach to study the liquid-gas
phase transition in asymmetric nuclear matter has been pro-
posed within RMF models. The region of instability was
identified by the negative curvature of the free energy. The
approach allowed us to analyze the so-called distillation effect
discussed in Refs. [7,11], which is occurring in asymmetric
nuclear matter at the phase transition. In fact, the symmetry
energy favors the formation of a quite symmetric liquid phase,
while the gas phase stays very neutron rich. In Ref. [28] it was
discussed that the strength of the distillation effect is model
dependent and, in particular, density-dependent models show
a weaker effect with respect to models with constant coupling
constants. In Ref. [28], however, a very restricted number of
models was analyzed.

Applying the same approach, in Ref. [9], a comparison
of the behavior of two types of phenomenological nuclear
models, the nonrelativistic Skyrme models and the RMF mod-
els, was performed. These two sets of models showed similar
trends, although an anomalous behavior was obtained for one
of the Skyrme models, the SIII model [29]. In this model, the
spinodal has a convex behavior at the upper spinodal border
of symmetric matter, which we will refer in the discussion
as ρsym. As a consequence, for the SIII model, the transition
from nonhomogeneous matter to homogeneous matter occurs
at a larger density for neutron-rich matter than for symmetric
matter, a behavior that none of the other models tested in that
work showed. One of the characteristics of this model was its
very small symmetry energy slope at saturation, ≈10 MeV.

The same formalism was applied more recently to analyze
the effect of the density dependence of the symmetry energy

on the instability region [30]. In this work, the thermodynam-
ical instabilities were calculated for hot asymmetric nuclear
matter described by different RMF models. The goal was to
perform a more systematic study, and to determine the critical
densities and proton fractions, in order to understand how
sensitive these properties are to the density dependence of the
symmetry energy, and in particular, to its slope at saturation
density. In fact, presently there are strong constraints on the
symmetry energy, both from the experimental side [31] and
from ab initio calculations for neutron matter that did not exist
when the studies [9,28] were performed.

Present simulations of CCSN or neutron star mergers are
performed taking into account realistic EoS, see, for instance,
Refs. [32–34]. While the EoS chosen are generally calibrated
at T = 0 MeV, it is important to understand their behavior
under the extreme conditions attained in the above scenarios,
in order to properly discuss the results of the simulations.
It is the main objective of the present study to calculate
the thermodynamic instabilities of several recently proposed
RMF models in order to compare their finite-temperature
behavior, and, therefore, to determine the finite temperature
properties of nuclear models that have been calibrated at
T = 0 MeV. As discussed in Ref. [10] the determination of
the thermodynamical spinodal allows for a good estimation of
the nonhomogeneous nuclear matter inside a neutron star or a
CCSN while being numerically less demanding.

The following nuclear RMF models will be considered:
SFHo and SFHx [33], FSU2R and FSU2H proposed in
Refs. [35,36], TM1 [37], and the recently proposed TM1e
[19,38], DD2 [24] and DDME2 [39], and finally, D1 and
D2 [40], closely related to DD2. The main conclusion of the
present work is that while calibrated models behave in a very
similar way at zero temperature and symmetric matter, large
differences were identified for both the critical temperatures
and densities of β-equilibrated matter in very asymmetric
matter. In some models, like SFHo and SFHx, the onset of
homogeneous matter in β-equilibrated matter occurs at sim-
ilar or larger densities than the ones found for symmetric
nuclear matter. This will have consequences on the predictions
of CCSN or NS merger simulations.

The structure of the paper is the following: in Sec. II, the
general formalism of RMF models and spinodal calculation
are briefly introduced; Sec. III discusses and compares the
results on critical points, transition densities, and distillation
effect between different models; and, finally, in Sec. IV, a few
conclusions are drawn.

II. FORMALISM

A brief summary of the RMF formalism is given in the
first part of the section, and we follow the notation previously
used, see, e.g., Ref. [30], while the thermodynamical spinodal
calculation and respective critical points are addressed in the
Sec. II B.

A. Field theoretical models with RMF Lagrangian

In our set of RMF models, the nucleons, with mass M,
interact with the scalar-isoscalar meson field σ with mass
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mσ , the vector-isoscalar meson field ωμ with mass mω, and
the vector-isovector meson field ρμ with mass mρ . The La-
grangian density is given by:

L =
∑
i=p,n

Li + Lσ + Lω + Lρ + Lσωρ, (1)

where the nucleon Lagrangian reads

Li = ψ̄i[γμiDμ − M∗]ψi, (2)

with

iDμ = i∂μ − gωωμ − gρ

2
τ · ρμ. (3)

The Dirac effective mass is given by

M∗ = M − gσ σ. (4)

In the above equations, gσ , gω, and gρ are the meson-nucleon
couplings, and τ are the SU(2) isospin matrices.

The mesonic Lagrangians are

Lσ = +1

2

(
∂μφ∂μσ − m2

σ σ 2 − 1

3
κσ 3 − 1

12
λσ 4

)
,

Lω = −1

4
�μν�

μν + 1

2
m2

ωωμωμ + ζ

4!
ζg4

ω(ωμωμ)2,

Lρ = −1

4
Bμν · Bμν + 1

2
m2

ρρμ · ρμ + ξ

4!
g4

ρ (ρμρμ)2, (5)

where �μν = ∂μων − ∂νωμ, Bμν = ∂μρν − ∂νρμ −
gρ (ρμ × ρν ), and κ , λ, ζ , and ξ are coupling constants.

The mesonic Lagrangian is supplemented with the follow-
ing nonlinear term that mixes the σ, ω, and ρ mesons [33]:

Lσωρ = g2
ρ f (σ, ωμωμ)ρμ · ρμ. (6)

For the SFHo and SFHx models, f is given by

f (σ, ωμωμ) =
6∑

i=1

aiσ
i +

3∑
j=1

b j (ωμωμ) j
, (7)

while for the FSU2R, FSU2H, TM1, and TM1e models, this
function f reduces to

f (ωμωμ) = �vg2
vωμωμ. (8)

For these four models, the coupling constant of the nonlinear
term ξ is absent.

For the density-dependent models, DD2, DDME2, and D1,
the isoscalar couplings of the mesons i to the baryons are
written in the following way, in terms of the baryonic density
nB:

gi(nB) = gi(n0)ai
1 + bi(x + di )2

1 + ci(x + di )2
, (9)

and the isovector ones are given by

gi(nB) = gi(n0) exp [−ai(x − 1)]. (10)

Here, n0 is the symmetric nuclear saturation density, and x =
nB/n0. For the D2 model, there are additional terms in the
vector density because of the energy-dependent self-energies,
meaning that nB and nω are no longer equal. For all density-
dependent models, the coupling constants k, λ, ξ , and ζ are
zero, together with the f function.

The energy density E is given by:

ENL =
∑
i=p,n

Ei + ω(ρp + ρn) + ρ0(ρp − ρn)

+ 1

2
m2

σ σ 2 − 1

2
m2

ωω2 − 1

2
m2

ρρ
2
0 + κ

6
σ 3

+ λ

24
σ 4 − ζ

24
(gωω)4 − ξ

24
(gρρ0)4 − g2

ρρ
2
0 f , (11)

for the nonlinear (NL) models, which includes several nonlin-
ear mesonic terms, and by

EDD =
∑
i=p,n

Ei + 1

2
m2

σ σ 2 − 1

2
m2

ωω2 − 1

2
m2

ρρ
2
0 − �R

0 nB,

(12)
for the density-dependent (DD) models. �R

0 is the rearrange-
ment term that appears only in the density-dependent models
(see Refs. [24,39,40]), and is given by

�R
0 = ∂gω

∂nB
ω nB + ∂gρ

∂nB
ρ0(ρp − ρn)/2 − ∂gσ

∂nB
σρs. (13)

In Eqs. (11) and (12), the single-particle energies Ei are given
by

Ei = 1

π2

∫
d p p2 ε∗

i ( fi+ + fi−), (14)

the nucleon number density is

ρi = 1

π2

∫
d p p2( fi+ − fi−), (15)

the scalar density is

ρ i
s = 1

π2

∫
d p p2 M∗

ε∗
i

( fi+ + fi−), (16)

the distribution functions are defined as

fi± = 1

1 + exp [(ε∗
i ∓ νi )/T ]

, (17)

with ε∗
i =

√
p2 + M∗2, and the nucleons effective chemical

potential as

νi = μi − gωω − gρt3iρ0 − �R
0 , (18)

where t3i is the third component of the isospin operator, and
the rearrangement term is included only for the DD models.
The entropy density S is calculated from

S = −
∑
i=n,p

∫
d3 p

4π3
[ fi+ ln fi+ + (1 − fi+) ln (1 − fi+)

+ ( fi+ ↔ fi−)]. (19)

The free energy density F is then obtained from the thermo-
dynamic relation

F = E − TS. (20)

B. Stability conditions

In the present study, we determine the region of insta-
bility of nuclear matter constituted by protons and neutrons
by calculating the spinodal surface in the (ρp, ρn, T ) space.
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Stability conditions for asymmetric matter impose that the
curvature matrix of the free energy density [28]

Ci j =
(

∂2F
∂ρi∂ρ j

)
T

, (21)

or, equivalently,

C =
(

∂μn

∂ρn

∂μn

∂ρp
∂μp

∂ρn

∂μp

∂ρp

)
, (22)

is positive. The stability conditions impose Tr(C) > 0 and
Det(C) > 0, which is equivalent to the requirement that the
two eigenvalues

λ± = 1
2 (Tr(C) ±

√
Tr(C)2 − 4Det(C)) (23)

are positive. The largest eigenvalue, λ+, is always positive,
and the instability region is delimited by the surface λ− = 0.
Interesting information is given by the associated eigenvectors
δρ±, defined as

δρ±
p

δρ±
n

=
λ± − ∂μn

∂ρn

∂μn

∂ρp

. (24)

In particular, the eigenvector associated with the eigenvalue
that defines the spinodal surface determines the instability
direction, i.e., the direction along which the free energy de-
creases.

The critical points for different temperatures T , which are
important for the definition of conditions under which the sys-
tem is expected to clusterize, are also going to be calculated.
These points satisfy simultaneously [28,41]

Det(C) = 0 (25)

Det(M) = 0, (26)

with

M =
(C11 C12

∂|C|
∂ρp

∂|C|
∂ρn

)
. (27)

At a fixed temperature, the critical points, defined by the
pairs

(ρp,c, ρn,c) or (ρc, yp,c) (28)

with

ρc = ρp,c + ρn,c, yp,c = ρp,c/ρc, (29)

represent the points where the spinodal and the binodal are
coincident, and correspond to the points of the spinodal sec-
tion with maximum pressure (there are two pairs, which are
symmetrical with respect to the ρp = ρn line). For cold mat-
ter, the (ρp, ρn) line defined by the β-equilibrium condition
crosses the spinodal very close to the T = 0 critical point, and,
therefore, the crust-core transition density is well estimated
from the crossing of the β-equilibrium (ρp, ρn) line and the
spinodal section. The thermodynamical spinodals and respec-
tive critical points are going to be calculated for a series of the
introduced RMF models in the next section.

TABLE I. The symmetric nuclear matter properties at saturation
density for the models under study: the nuclear saturation density
n0, the binding energy per particle B/A, the incompressibility K , the
symmetry energy Esym, the slope of the symmetry energy L, and the
nucleon effective mass M∗. All quantities are in MeV, except for n0

that is given in fm−3, and the effective nucleon mass is normalized to
the nucleon mass.

Model n0 B/A K Esym L M∗/M

SFHo [33] 0.158 16.13 243 31.4 44 0.76
SFHx [33] 0.16 16.16 261 27 43 0.71
FSU2R [35,36] 0.15 16.28 238 30.7 47 0.59
FSU2H [35,36] 0.15 16.28 238 30.5 45 0.59
TM1 [37] 0.145 16.3 281 36.9 111 0.63
TM1e [19,38] 0.145 16.3 281 31.4 40 0.63
DDME2 [39] 0.152 16.14 251 32.3 51 0.57
DD2 [24] 0.149 16.02 243 31.7 58 0.56
D1 [40] 0.15 16.0 240 32.0 60 0.56
D2 [40] 0.146 16.0 240 32.0 60 0.56

III. RESULTS AND DISCUSSION

In this section, we start by elaborating in more detail
on the models we use. For each of them, we calculate the
thermodynamic instability regions, the critical points, the tran-
sition densities, and the isospin distillation effect for a given
temperature. To conclude, a discussion of the results will be
presented.

A. Models

In the present study we consider a set of RMF mod-
els calibrated to properties of nuclei and nuclear matter.
These models fall into two different types: one with density-
dependent couplings, DD2, DDME2, D1, and D2, which
we designate by DD models, and the other with nonlinear
couplings, SFHo, SFHx, FSU2R, FSU2H, TM1, and TM1e,
which we designate by NL models. In Table I, some symmet-
ric nuclear matter properties calculated at saturation density
are given for all the models that we explore. The calculations
performed in the present study for the SFHo and SFHx models
used the parametrizations published in Ref. [33]. However,
the reader should note that the values shown in this table for
these models are not equal to the ones shown in Table 2 of
Ref. [33] because the parametrizations published in Ref. [33]
do not correspond to the last version these authors used in their
work [42].

Concerning the NL models, SFHo and SFHx [33] include
several nonlinear terms of higher order. They were constructed
in such a way that they satisfy constraints coming from
nuclear masses, giant monopole resonances, and binding en-
ergies and charge radii of 208Pb and 90Zr. Besides, they satisfy
the 2-M� constraint [43], and the pressure of neutron matter
is always positive and increasing.

FSU2H and FSU2R were calibrated in order to repro-
duce the properties of finite nuclei, constraints from kaon
production and collective flow in HIC, and to predict neu-
tron matter pressures consistent with effective chiral forces
in Refs. [35,36]. Both models reproduce 2M� stars, have a
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symmetry energy and its slope at saturation consistent with
current laboratory predictions, and their neutron skin thick-
ness is compatible with several experiments, both for 208Pb
and for 48Ca, as from measurements of the electric dipole
polarizability of nuclei. The main difference between both
is the softer symmetry energy of FSU2H, with a slope at
saturation 5% smaller.

TM1e [19,38] accurately describes finite nuclei, gives two
solar-mass neutron stars and radii compatible with the lat-
est astrophysical observations by NICER [44]. Its symmetry
energy and slope at saturation are also consistent with as-
trophysical observations and terrestrial nuclear experiments
[1,45,46], while TM1 [37] fails these constraints, and, in
particular, has a very large symmetry energy and slope at
saturation.

With respect to the density-dependent models, D1 and D2
[40] are close to DD2 [24], which was fitted to properties
of nuclei and reproduces 2M� stars. D2 includes an energy
dependence that was fitted to the optical potentials [47]. This
model does not reach the two-solar-mass constraint since the
EoS becomes very soft when the optical potential constraint
is satisfied. DDME2 [39] was adjusted to reproduce the prop-
erties of symmetric and asymmetric nuclear matter, binding
energies, charge radii, and neutron radii of spherical nuclei.

In order to better understand the isovector properties of
these models besides their properties at saturation density,
in Fig. 1 the symmetry energy (top panel), its slope (middle
panel), and the neutron matter pressure (bottom panel) are
plotted as a function of the baryonic density. In the bottom
panel, we also include the 1σ constraint imposed on the pres-
sure of neutron matter EoS by chiral effective field theoretical
(χEFT) calculations [48]. Some conclusions may be drawn:
SFHo is the model that presents a softer symmetry energy
above ≈0.5ρ0 and, even below this density, it is only SFHx
that is slightly softer. While DDME2, DD2, SFHo, and SFHx
are quite similar below 0.5ρ0, FSU2R, FSU2H, and TM1e are
clearly stiffer in this range of densities. TM1 has an almost
linear behavior with density, presenting the smallest values
below ≈0.1 fm−3, and the largest above that value. In fact,
above ≈0.1 fm−3, all models have a similar behavior except
TM1 that is much stiffer, and SFHx that is quite soft.

Looking at the slope of symmetry energy, we see that
TM1e, FSU2R, and FSU2H follow the same trend, though
TM1e has the lowest L at saturation. TM1, on the other
hand, is the only model that stands out, never coming be-
low 100 MeV and having the steepest behavior for ρ <

0.02 fm−3. SFHx has a similar behavior compared to the
density-dependent models, while SFHo deviates slightly from
this trend, showing a steeper behavior.

It is also quite instructive to analyze the behavior of the
neutron matter pressure. As expected TM1 completely misses
the behavior of the χEFT EoS. However, the other models
also present a quite diversified behavior. Density-dependent
models are the ones that best satisfy the χEFT constraints.
SFHo also follows approximately the χEFT EoS behavior. On
the other hand, SFHx shows a quite low pressure in a consider-
able large range of densities, in particular, for ρ � 0.06 fm−3.
Finally, models TM1e, FSU2R, and FSU2H show a too soft
behavior of the neutron matter pressure with density below
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FIG. 1. The symmetry energy (top), the symmetry energy slope
(middle), and the neutron matter pressure (bottom) as a function of
the density for the models under consideration. The gray band in the
bottom panel represents the 1σ constraint from chiral effective field
theoretical calculations [48].

ρ = 0.08 fm−3, more strongly the last two models: model
FSU2R has an almost zero slope pressure at ρ ≈ 0.05 fm−3.
Above ρ = 0.1 fm−3, the pressure of these three models be-
comes too stiff. We will discuss how these behaviors reflect
themselves on the instability regions.
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FIG. 2. The spinodal regions on the (ρn, ρp) plane for the SFHo
model at T = 0, 6, 10, 12, and 14 MeV. Also shown are the β-
equilibrium EoS at T = 0 (green solid) and 10 MeV (green dashed),
the critical points line (black dashed), and the symmetric matter line
(blue solid).

B. Spinodal sections and critical points

In Fig. 2, we show the spinodal sections obtained with
the SFHo model at different temperatures, imposing λ− = 0,
defined in Eq. (23). The larger the temperature, the smaller
the section, which will be eventually reduced to a point at the
critical temperature, that corresponds to the critical end point
(CEP), and occurs for symmetric matter. For SFHo, the CEP
occurs at T = 16.14 MeV and ρ = 0.051 fm−3. It is interest-
ing to notice that the T = 0 spinodal is convex at the ρp = ρn

point. Many of the models previously studied are concave at
this point, see for instance Ref. [9] for a discussion. In Ref. [9],
only the model SIII [49] shows a quite abnormal behavior.
A consequence of this behavior is the prediction that highly
asymmetric matter is still nonhomogeneous at densities close,
or even above, the transition density from nonhomogeneous
to homogeneous matter of symmetric matter, designated in
the following as ρsym. However, one would expect that the
contribution of the repulsive symmetry term to the binding
energy of nuclear matter would move the transition density to
lower densities, as the proton-neutron asymmetry increases.

In the same figure, the EoS for β-equilibrium matter cal-
culated at two different temperatures, T = 0 and 10 MeV, is
also represented. The crust-core transition density at a given
temperature may be estimated from the intersection of the EoS
with the spinodal at that same temperature. In Refs. [8,10],
it was shown that this is a good estimation although slightly
larger than the values obtained within a Thomas-Fermi or
a dynamical spinodal calculations. For the two temperatures
shown, we conclude that: (i) the T = 0 MeV EoS intercepts
the T = 0 spinodal at ρt = 0.105 fm−3, indicating that the
crust of a neutron star described by this model extends until
approximately this density. The line yp = 0.5 intercepts the
spinodal at ρsym = 0.101 fm−3, a density slightly smaller than
ρt ; (ii) the T = 10 MeV EoS does not intercept the respective

TABLE II. The transition density ρt , the correspondent proton
fraction ypt , and the density of symmetric matter ρsym, obtained at
T = 0 MeV for some of the models considered in this work.

Model ρt (fm−3) ypt ρsym (fm−3)

SFHx 0.122 0.041 0.103
SFHo 0.105 0.047 0.101
FSU2R 0.087 0.045 0.095
FSU2H 0.092 0.046 0.095
TM1e 0.094 0.050 0.094
TM1 0.047 0.025 0.070
DD2 0.081 0.034 0.095
D1 0.082 0.032 0.102
DDME2 0.087 0.039 0.099

spinodal, and this indicates that β-equilibrium matter at this
temperature is homogeneous.

The line of critical points is also displayed in the figure. At
a given temperature, these are the two points in the spinodal
section that have maximum pressure, and where the direction
of the instability is parallel to the tangent to the spinodal. This
means that the pressure above Pmax belongs to the homoge-
neous matter phase.

In Table II, the transition density of both β-equilibrium
matter ρt , and of symmetric matter, ρsym, are given, together
with the proton fraction at the β-equilibrium transition for
each model. For β-equilibrium matter, the transition occurs
for yp � 0.5. All models have ρsym > ρt , except TM1e,
SFHo, and SFHx, the last model having an extreme transition
density of ≈0.12 fm−3. For TM1e, both densities are equal.
SFHo and SFHx are also the models that predict larger crust-
core transition densities.

The spinodal sections obtained at different temperatures
for the NL models we consider in this study are plotted in
Figs. 3 and 4. SFHo and SFHx present a convex curvature
at the transition density of symmetric matter. However, one
would expect that more neutron-rich matter would have a
smaller unstable density range. The convex behavior occurs
for low temperatures and it will have no astrophysical conse-
quences because for these temperatures stellar matter is very
neutron rich. However, it could have some noticeable effect
in multifragmentation heavy-ion collisions with symmetric
systems entering into multifragmentation at lower densities.
They also have a bigger instability region as compared to the
other models. Comparing TM1 and TM1e, it is clearly seen
that the ones with a smaller slope L at saturation have spinodal
sections that extend to more asymmetric matter, as discussed
in Ref. [8], right up to almost the CEP, which occurs for
symmetric nuclear matter. This implies that in warm stellar
matter in β equilibrium, as the one found in neutron star
mergers, finite clusters will appear at larger temperatures and
proton asymmetries, having direct implications in processes
such as neutrino cross sections.

On the other hand, the spinodals for DD models, which are
plotted in Fig. 5, show a behavior closer to the one presented
by TM1, although having a much smaller slope L: the spinodal
sections are smaller, do not extend to so asymmetric nuclear
matter, and they are all concave at yp = 0.5.
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FIG. 3. The spinodal sections on the (ρn, ρp) plane for SFHx (top
left), SFHo (top right), FSU2H (bottom left), and FSU2R (bottom
right) at T = 0, 6, 10, 12, and 14 MeV. The SFHx model is the only
one that presents an unstable region at T = 15 MeV. The critical
points line is given by the black dashed line.

The differences between the NL and DD spinodals are also
clearly seen by comparing the critical point properties at each
temperature. In Table III, we show, for several temperatures,
the critical densities and correspondent proton fractions. The

FIG. 4. The spinodal sections on the (ρn, ρp) plane for TM1 (top)
and TM1e (bottom), at T = 0, 6, 10, 12, and 14 MeV.

FIG. 5. The spinodal sections on the (ρn, ρp) plane for DD2 (top
left), DDME2 (top right), D1 (bottom left), and D2 (bottom right) at
T = 0, 6, 10, and 12 MeV. The smallest unstable regions shown are
for T = 13 MeV (DD2 and DDME2), 12.2 MeV (D1), and 14 MeV
(D2).

same information is given in Fig. 6, where the properties of
the critical points (T, ρc, ypc) are plotted.

At T = 0 MeV, the models SFHx, FSU2R, FSU2H, and
TM1e have a proton fraction at the critical point equal to zero
or very close to zero. All other models have a similar proton
fraction of the order of 0.028–0.039. At T = 6 MeV, SFHx,
FSU2R, FSU2H, and even TM1e, still present a critical proton
fraction of the order of 0.01 or below (for SFHx it is still zero),
while for all the other models, it grows up to ≈0.09–0.11.

The model SFHx presents a very extreme behavior, keep-
ing a critical proton fraction equal to zero for T < 10 MeV,
and a critical density of the order of ≈0.1 fm−3 for T <

12 MeV. The models FSU2H and FSU2R also show a critical
proton fraction very close to zero for T < 8 MeV. SFHo
stands out as being the model that, after SHFx, has the largest
critical densities, see Fig. 6 bottom panel. The thermodynamic
behavior of these two models will have direct implications
in the evolution of core-collapse supernova matter or neutron
star mergers since the nonhomogeneous matter will extend to
larger densities and larger temperatures. The models SFHx,
FSU2R, FSU2H, and TM1e predict clusterization of quite
asymmetric matter for quite high temperatures. This will af-
fect the evolution of asymmetric stellar matter as found in
neutron star mergers, or core-collapse supernova matter after
the neutrino trapped stage.

The CEP properties, i.e., the temperature and nuclear mat-
ter density and pressure, are given for each model in Table IV.
At the CEP, matter is symmetric. The largest CEP tempera-
ture, of the order of 16 MeV, is obtained for SFHx and SFHo.
D1 presents the smallest CEP temperature of the order of
12 MeV.

In Ref. [21], the authors made a compilation of experimen-
tal determinations of the critical temperature of symmetric
nuclear matter. The measurements were performed within
multifragmentation reactions or fission, and the critical tem-
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TABLE III. The critical density ρc and the correspondent proton
fractions ypc [see Eqs. (28), (29)] for different temperatures and the
models considered in this work.

Model T (MeV) ρc(fm−3) ypc

SFHx 0 0.1010 0.0
SFHo 0.1015 0.0283
FSU2R 0.0827 0.0037
FSU2H 0.0876 0.0022
TM1 0.0774 0.0496
TM1e 0.0902 0.0041
D2 0.0775 0.0296
D1 0.0840 0.0390
DD2 0.0796 0.0302
DDME2 0.0839 0.0274

SFHx 6 0.1015 0.0
SFHo 0.0886 0.0850
FSU2R 0.0673 0.0083
FSU2H 0.0728 0.0063
TM1e 0.0778 0.0154
D2 0.0679 0.0809
D1 0.0775 0.1110
DD2 0.0702 0.0855
DDME2 0.0750 0.0882

SFHx 10 0.1019 0.0056
SFHo 0.0746 0.1395
FSU2R 0.0633 0.0304
FSU2H 0.0676 0.0251
TM1 0.0601 0.1594
TM1e 0.0708 0.0339
D2 0.0569 0.1412
D1 0.0661 0.2181
DD2 0.0578 0.1523
DDME2 0.0612 0.1707

SFHx 14 0.0920 0.09
SFHo 0.0583 0.2509
FSU2R 0.0490 0.2686
FSU2H 0.0477 0.2607
TM1e 0.0619 0.1244
D2 0.0463 0.4167
D1 – –
DD2 – –
DDME2 – –

perature values fluctuate between 15 and 23 MeV. However,
some of the estimations are obtained with large uncertain-
ties. The analysis with smaller uncertainties [50] determined
a critical temperature of 16.6 ± 0.86 MeV, considering the
limiting temperature values obtained in five different mass
regions [51], where the authors obtained a temperature above
15 MeV, using both multifragmentation and fission processes.
In Ref. [52], the authors used results from six different sets of
experimental data, both involving compound nuclei or multi-
fragmentation, and the critical temperature of 17.9 ± 0.4 MeV
was obtained. In this last work, the authors also determined
the critical density and pressure to be 0.06 ± 0.01 fm−3,
and 0.31 ± 0.07 MeV/fm3, respectively. They used Fisher’s
droplet model, that was modified to account for several ef-

FIG. 6. The critical density (top) and the critical proton fraction
(bottom), as defined in Eq. (29), as a function of the temperature T
for some of the models considered in this work.

fects, such as Coulomb, finite-size, or angular momentum
effects.

Regarding the models we consider in this study, critical
temperatures above 15 MeV are obtained for TM1, TM1e,
SFHo, and SFHx. DD models have generally a critical
temperature of the order of 14 MeV, or below, and FSU2R
and FSU2H have a critical temperature just above 14 MeV.

TABLE IV. The temperatures, and nuclear matter density and
pressure at the CEP, for the models considered in this work. At the
CEP, the proton fraction is equal to 0.5.

Model Tc(MeV) ρc(fm−3) Pc (MeV fm−3)

SFHx 15.81 0.052 0.242
SFHo 16.14 0.051 0.249
FSU2R 14.19 0.045 0.186
FSU2H 14.16 0.044 0.183
TM1 15.62 0.049 0.239
TM1e 15.61 0.049 0.239
DD2 13.73 0.046 0.178
DDME2 13.12 0.045 0.156
D1 12.22 0.058 0.187
D2 14.14 0.046 0.193
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FIG. 7. The transition density, ρt , as a function of the tempera-
ture for β-equilibrium (top) and fixed proton fraction (bottom) matter
for some of the models considered in this work.

Concerning the critical density, all models have a density
ρc � 0.044 fm−3, but only the models SFHx, SFHo, TM1,
TM1e, and D1 predict a density �0.05 fm−3, as determined
in Ref. [52]. SFHx, SFHo, TM1, and TM1e are the models
that predict a critical pressure within the range obtained in
Ref. [52].

In Ref. [21], the authors have determined the CEP of sev-
eral RMF models, and, from all the models tested, only the
DD models and the models named Z271 predicted a criti-
cal temperature above 15 MeV, and the critical pressure and
density within the range proposed in Ref. [52]. We should,
however, note that the models Z271 predict a maximum stellar
mass below 1.7M�, as shown in Ref. [53].

C. Transition densities

In the following, we discuss the transition densities from
nonhomogeneous to homogeneous matter under different pro-
ton fraction conditions. In the present work, we estimate the
upper and lower density limits of the nonhomogeneous region
from the crossing of the yp line for a fixed proton fraction or
the crossing of the (ρp, ρn)β−eq line with the spinodal section
for a given temperature.

In Fig. 7, we show the transition densities as a function
of the temperature for two different cases: (i) β-equilibrium;

(ii) a fixed proton fraction of 0.3, a fraction that is representa-
tive in core-collapse supernova matter. Inside the represented
region, matter is, in principle, nonhomogeneous. This is only
an estimation of the instability region, since we are not taking
into account finite-size effects.

For yp = 0.3, all models coincide at low densities and
temperatures below 10 MeV. At the upper limit, the transition
densities take the values 0.1 ± 0.01 fm−3 at T = 0, and up to
T ≈ 10 MeV, they decrease ≈0.02 fm−3. There exists experi-
mental data that constrain matter with this kind of asymmetry,
and they show that the temperature does not affect much the
properties of nuclear matter below 10 MeV [25,26,54]. A
larger discrepancy is found for temperatures above 10 MeV.
The critical temperature for this matter asymmetry varies be-
tween 12 and almost 16 MeV, with SFHo and SFHx models
giving the largest temperatures, and DD2 and DDME2 the
lowest ones.

β-equilibrium matter has a much smaller proton fraction,
and there are no experimental data that can constrain the EoS
of this kind of matter. Let us, however, recall that all the mod-
els satisfy constraints coming from chiral effective field theory
calculations for neutron matter. For β-equilibrium matter, we
find that the instability region estimated by the models con-
sidered vary a lot. SFHx predicts a T = 0 transition density
above the one obtained for yp = 0.3, and a critical temperature
≈14 MeV. Although with more reasonable transition densities
at low temperatures, FSU2H and FSU2R also predict very
large critical temperatures, ≈12 MeV. All the other models
predict a critical temperature of the order of 3 MeV, but
show a large dispersion on the transition density, with SFHo
going above 0.1 fm−3. In Ref. [19], the authors have dis-
cussed the influence of the density dependence of symmetry
energy on the supernova evolution considering the models
TM1 and TM1e. They concluded that there are only minor
effects around the core bounce and in the first milliseconds
considering the evolution of stars with masses of the order of
12–15 M�, precisely because the proton fractions are still not
too far from symmetric matter at this stage, and the predictions
from both models do not differ much. However, more drastic
differences between TM1 and TM1e were found at a later
stage, with TM1e giving rise to larger neutrino emissions and
a slower decay of the neutrino luminosities.

As referred before, the thermodynamic calculation of the
instability regions only allows an estimation of the region
where nonhomogeneous matter is expected. Finite-size ef-
fects due to the finite range of nuclear force and Coulomb
interaction effects will affect the extension of the region of
instability, as discussed in Ref. [8]. The authors showed that
the transition density obtained from a dynamical spinodal ap-
proach would predict transition densities that are ≈0.01 fm−3

lower and proton fractions 10% smaller, which are good lower
limit estimations, as compared to a thermodynamical spinodal
calculation. A Thomas-Fermi calculation of the nonhomoge-
neous matter may give slightly larger transition densities, as
shown in Ref. [10].

It may be of interest to compare the present results on
the transition densities with the spinodal calculations men-
tioned in Sec. I, which also includes the calculation of the
pasta structures inside the instability region. These transition
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FIG. 8. The different pasta structures from a Thomas-Fermi cal-
culation for cold β-equilibrium matter for some of the models under
consideration. The points represent the transition densities from a
thermodynamical spinodal calculation given in Table II.

densities, given in Table II, are shown as points in Fig. 8,
together with the transition densities between the different
nuclear pasta phases, and the transition density to homo-
geneous matter, for five of the models under consideration,
calculated from a Thomas-Fermi approximation at T =
0 MeV and β-equilibrium matter [55]. As expected, the crust-
core transitions obtained in these calculations are lower than
the ones estimated from our thermodynamical approach, by
not more than 0.01 fm−3. It is interesting to notice that while
DD2 and DDME2 predict a large extension of the spherical
clusters in the inner crust, a shorter extension of the rod phase,
and no slab phase, or a very narrow one, the models FSU2H,
FSU2R, and TM1e predict similar extensions of the droplet-
like, rodlike, and slablike pasta structures. These different
geometries will certainly affect the transport properties of the
neutron star inner crust.

D. Distillation effect

Transport properties are also affected by the proton content
of the gas phase, when matter clusterizes. In the following,
we determine how the system separates into two phases and
the isospin content of each. This will be achieved comparing
the direction of the eigenvector of the free energy curvature
matrix associated with the negative eigenvalue as defined in
Eqs. (23), (24) with the direction defined by yp = ρp/(ρn +
ρp), see Ref. [56]. If the directions are coincident, the insta-
bility does not change the proton fraction, and the fluctuations
that drive the phase transition are purely density fluctuations.
In Ref. [56], it was shown that the eigenvector associated with
the instability tends to point in the direction of increasing
symmetry of the liquid phase, and, therefore, increasing asym-
metry of the gas phase.

We designate by isospin distillation effect the tendency of
matter to separate into a low-density phase, the gas phase, that
is more neutron rich, i.e., with low proton fraction, and a high-
density phase, the clusters, with a proton fraction closer to
the one of symmetric matter, i.e., with high proton fraction.
A simple way of identifying the distillation effect is by the

FIG. 9. The fluctuations δρ−
p /δρ−

n at T = 0, 6, and 12 MeV
as function of the density, with yp = 0.3 (thick lines) and 0.05
(thin lines), corresponding to ρp/ρn = 0.43 and 0.05, for DD2 and
DDME2.

comparison of the ratio δρ−
p /δρ−

n with ρp/ρn. This will be
used in the following to compare the distillation effect within
the models we are discussing.

In Fig. 9, we show the isospin distillation effect for DD2
and DDME2, by plotting the ratio of the proton to the neutron
density fluctuations associated with the smallest eigenvalue in
the density range 0 < ρ/ρ0 < 0.7, where this eigenvalue is es-
sentially negative, but may become positive at the upper limit,
as a function of the density, for three temperatures (T = 0,
6, and 12 MeV) and two proton fractions, yp = 0.05 and 0.3,
corresponding, respectively, to ρp/ρn = 0.05 and 0.43. The
proton fractions considered are representative of, respectively,
cold catalyzed matter in the inner crust [57], and warm matter
in protoneutron matter with trapped neutrinos just after the
supernova explosion [58]. In Fig. 10, the ratio of the pro-
ton to the neutron density is plotted for all the models, for

FIG. 10. The fluctuations δρ−
p /δρ−

n at T = 0 (left panels) and
12 MeV (right panels) as a function of the density, with yp = 0.3
(top panels) and 0.05 (bottom panels), corresponding to ρp/ρn =
0.43 and 0.05, for FSU2R and FSU2H, SFHo and SFHx, DD2 and
DDME2, TM1 and TM1e.
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temperatures T = 0 and 12 MeV, and the same proton frac-
tions, 0.05 and 0.3.

The higher the ratios, the higher the distillation effect,
because the liquid phase becomes proton richer. This effect
decreases when the temperature increases, and, except for
TM1, it attains a maximum for 0.1 � ρ/ρ0 � 0.3. The largest
differences between models are identified for the proton frac-
tion 0.05 and zero temperature. DD2, DDME2, D1, and D2 all
show a very similar behavior in the whole range of densities.
In fact, all models have a similar behavior for ρ/ρ0 � 0.2, and
the differences occur above this density. In particular, the ratio
of the proton to the neutron density fluctuations for FSU2H
and FSU2R (SFHo and SFHx) decreases faster (slower) with
the density. For densities around half the saturation density,
FSU2H and FSU2R have the smallest distillation effect. These
different behaviors reflect the density dependence of the sym-
metry energy of the models as shown in the top and middle
panels of Fig. 1: between ρ = 0.06 and 0.1 fm−3, these two
models, together with TM1e, have the largest symmetry en-
ergy and the smallest symmetry energy slope.

IV. CONCLUSIONS

In the present work, we have studied the instability region
of warm and asymmetric nuclear matter, considering several
recently proposed calibrated RMF models. At T = 0 MeV,
these models have been constrained by nuclear properties, ab
initio theoretical calculations for neutron matter, and neutron
star observations. No constraint was imposed at finite temper-
ature. The thermodynamical spinodal sections in the (ρp, ρn)
plane for several temperatures and the critical points have
been calculated.

The main conclusions are (i) for symmetric nuclear matter,
the transition density to homogeneous matter spreads over a
range narrower than 0.01 fm−3, 0.094 < ρsym < 0.103 fm−3;
(ii) for asymmetric matter, in particular, for yp = 0.3, the
transition density to homogeneous matter obtained from the
models considered is compatible within ≈0.02 fm−3, for tem-
peratures below 8 MeV; (iii) above T = 8 MeV, the models
differ much more, and the critical temperatures vary in a
range of 4 MeV, 12.2 < Tc < 16.2 MeV; (iv) properties pre-
dicted for very asymmetric matter, as β-equilibrated stellar

matter, differ a lot, both on the transition density, and on the
critical temperature above which β-equilibrated matter is not
clusterized. SFHo, SFHx, FSU2H, and TM1e models predict
transition densities from clusterized matter to homogeneous
matter for β-equilibrated matter equal or similar to the one for
symmetric matter. Since the symmetry energy contribution is
a repulsive contribution, one could expect that the extension of
the instability region of asymmetric matter would be smaller
than the one of symmetric nuclear matter, as it happens with
all density-dependent models we have considered. The conse-
quences of this behavior for the evolution of neutrons stars
should be understood. It is also interesting to compare the
critical temperature of β-equilibrated matter: models SFHx,
TM1e, FSU2R, and FSU2H predict a temperature that is just
�2 MeV smaller than the one obtained for symmetric nuclear
matter, while all the other models predict temperatures be-
tween 8–10 MeV smaller. Again, it is expectable that these
properties will have noticeable impact on the the evolution of
either a supernova or neutron star mergers.

Sumiyoshi et al. [19] have shown, by using two mod-
els, TM1 and TM1e [38], which only differ in the isospin
channel, that a softer symmetry energy is responsible for a
more drastic evolution of the protoneutron star with larger
neutrino emissions, giving rise to higher neutrino luminosities
and average energies. Also, very recently, the SFHo EoS has
been used in several simulations of neutron star mergers,
black hole-neutron star (BH-NS) mergers and core-collapse
supernova [59–62]. In particular, in Ref. [60], the authors
have discussed the possibility of a kilonova production during
a BH-NS merger using several EoS. Among these models,
SFHo predicted the smallest fractions of mass in the disk and
ejecta, i.e., the smaller mass fractions outside the black hole.
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[39] G. A. Lalazissis, T. Niksić, D. Vretenar, and P. Ring, Phys. Rev.

C 71, 024312 (2005).
[40] S. Antic and S. Typel, Nucl. Phys. A 938, 92 (2015).
[41] M. Modell and R. C. Reid, Thermodynamics and Its Applica-

tions, 2nd ed. (Prentice-Hall, Englewood Cliffs, 1983).
[42] M. Hempel (private communication).
[43] P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts,

and J. W. T. Hessels, Nature (London) 467, 1081 (2010); J.
Antoniadis et al., Science 340, 6131 (2013).

[44] T. E. Riley, A. L. Watts, S. Bogdanov, P. S. Ray et al.,
Astrophys. J. Lett. 887, L21 (2020); M. C. Miller, F. K. Lamb,
A. J. Bogdanov, Z. Arzoumanian et al., ibid. 887, L24 (2020).

[45] I. Tews, J. M. Lattimer, A. Ohnishi, and E. Kolomeitsev,
Astrophys. J. 848, 105 (2017).

[46] J. Birkhan, M. Miorelli, S. Bacca et al., Phys. Rev. Lett. 118,
252501 (2017).

[47] S. Hama, B. C. Clark, E. D. Cooper, H. S. Sherif, and R. L.
Mercer, Phys. Rev. C 41, 2737 (1990); E. D. Cooper, S. Hama,
B. C. Clark, and R. L. Mercer, ibid. 47, 297 (1993).

[48] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk,
Astrophys. J. 773, 11 (2013).

[49] D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).
[50] J. B. Natowitz, K. Hagel, Y. Ma, M. Murray, L. Qin, R. Wada,

and J. Wang, Phys. Rev. Lett. 89, 212701 (2002).
[51] V. A. Karnaukhov, Phys. At. Nucl. 71, 2067 (2008).
[52] J. B. Elliott, P. T. Lake, L. G. Moretto, and L. Phair, Phys. Rev.

C 87, 054622 (2013).
[53] H. Pais and C. Providência, Phys. Rev. C 94, 015808

(2016).
[54] J. Pochodzalla et al., Phys. Rev. Lett. 75, 1040 (1995).
[55] F. Grill, H. Pais, C. Providência, I. Vidaña, and S. S. Avancini,

Phys. Rev. C 90, 045803 (2014).
[56] J. Margueron and P. Chomaz, Phys. Rev. C 67, 041602(R)

(2003).
[57] F. Grill, C. Providência, and S. S. Avancini, Phys. Rev. C 85,

055808 (2012).
[58] M. Prakash, I. Bombaci, M. Prakash, P. J. Ellis, J. M. Lattimer,

and G. E. Brown, Phys. Rept. 280, 1 (1997).
[59] C. Barbieri, O. S. Salafia, M. Colpi, G. Ghirlanda, A. Perego,

and A. Colombo, Astrophys. J. 887, L35 (2019).
[60] C. Barbieri, O. S. Salafia, A. Perego, M. Colpi, and G.

Ghirlanda, Eur. Phys. J. A 56, 8 (2020).
[61] J. R. Westernacher-Schneider, E. O’Connor, E. O’Sullivan, I.

Tamborra, M.-R. Wu, S. M. Couch, and F. Malmenbeck, Phys.
Rev. D 100, 123009 (2019).

[62] J. M. Miller, B. R. Ryan, J. C. Dolence, A. Burrows,
C. J. Fontes, C. L. Fryer, O. Korobkin, J. Lippuner, M. R.
Mumpower, and R. T. Wollaeger, Phys. Rev. D 100, 023008
(2019).

055804-12

https://doi.org/10.1103/PhysRevC.78.015802
https://doi.org/10.1103/PhysRevLett.50.2066
https://doi.org/10.1103/PhysRevC.77.035806
https://doi.org/10.1103/PhysRevC.81.049902
https://doi.org/10.1016/j.nuclphysa.2010.02.010
https://doi.org/10.1103/PhysRevC.82.065801
https://doi.org/10.1016/0375-9474(91)90452-C
https://doi.org/10.1016/S0375-9474(98)00236-X
https://doi.org/10.3847/1538-4357/ab5443
https://doi.org/10.1103/PhysRevC.95.045804
https://doi.org/10.1103/PhysRevC.95.065212
https://doi.org/10.1103/PhysRevLett.125.012701
https://doi.org/10.1103/PhysRevC.97.045805
https://doi.org/10.1103/PhysRevC.81.015803
https://doi.org/10.1088/1361-6471/ab56ba
https://doi.org/10.1103/PhysRevLett.108.172701
https://doi.org/10.1140/epja/s10050-020-00302-w
https://doi.org/10.1103/PhysRevC.74.024317
https://doi.org/10.1016/0375-9474(75)90338-3
https://doi.org/10.1103/PhysRevC.95.055808
https://doi.org/10.1103/PhysRevC.86.015803
https://doi.org/10.1103/PhysRevLett.122.061102
https://doi.org/10.1088/0004-637X/774/1/17
https://doi.org/10.1017/pasa.2017.63
https://doi.org/10.1017/pasa.2017.60
https://doi.org/10.3847/1538-4357/834/1/3
https://doi.org/10.1016/0375-9474(94)90923-7
https://doi.org/10.3847/1538-4357/ab72fd
https://doi.org/10.1103/PhysRevC.71.024312
https://doi.org/10.1016/j.nuclphysa.2015.03.004
https://doi.org/10.1038/nature09466
https://doi.org/10.1126/science.1233232
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/1538-4357/aa8db9
https://doi.org/10.1103/PhysRevLett.118.252501
https://doi.org/10.1103/PhysRevC.41.2737
https://doi.org/10.1103/PhysRevC.47.297
https://doi.org/10.1088/0004-637X/773/1/11
https://doi.org/10.1103/PhysRevC.5.626
https://doi.org/10.1103/PhysRevLett.89.212701
https://doi.org/10.1134/S1063778808120077
https://doi.org/10.1103/PhysRevC.87.054622
https://doi.org/10.1103/PhysRevC.94.015808
https://doi.org/10.1103/PhysRevLett.75.1040
https://doi.org/10.1103/PhysRevC.90.045803
https://doi.org/10.1103/PhysRevC.67.041602
https://doi.org/10.1103/PhysRevC.85.055808
https://doi.org/10.1016/S0370-1573(96)00023-3
https://doi.org/10.3847/2041-8213/ab5c1e
https://doi.org/10.1140/epja/s10050-019-00013-x
https://doi.org/10.1103/PhysRevD.100.123009
https://doi.org/10.1103/PhysRevD.100.023008

