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Nuclear pasta and symmetry energy in the relativistic point-coupling model
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Nonuniform structure of low-density nuclear matter, known as nuclear pasta, is expected to appear not only
in the inner crust of neutron stars but also in core-collapse supernova explosions and neutron-star mergers.
We perform fully three-dimensional calculations of inhomogeneous nuclear matter and neutron-star matter
in the low-density region using the Thomas-Fermi approximation. The nuclear interaction is described in the
relativistic mean-field approach with the point-coupling interaction, where the meson exchange in each channel
is replaced by the contact interaction between nucleons. We investigate the influence of nuclear symmetry energy
and its density dependence on pasta structures by introducing a coupling term between the isoscalar-vector and
isovector-vector interactions. It is found that the properties of pasta phases in the neutron-rich matter are strongly
dependent on the symmetry energy and its slope. In addition to typical shapes like droplets, rods, slabs, tubes,
and bubbles, some intermediate pasta structures are also observed in cold stellar matter with a relatively large
proton fraction. We find that nonspherical shapes are unlikely to be formed in neutron-star crusts, because the
proton fraction obtained in β equilibrium is somewhat small. The inner crust properties may lead to a visible
difference in the neutron-star radius.
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I. INTRODUCTION

A core-collapse supernova explosion is one of the most
spectacular events in the universe, which marks the violent
death of a massive star. After the explosion, it leaves behind
either a neutron star or a black hole depending on its mass
[1–3]. Nuclear matter in supernovae and neutron stars cov-
ers a wide range of baryon density, temperature, and isospin
asymmetry [4,5]. In the interior of neutron stars, the uniform
matter is highly isospin asymmetric, while its baryon density
may be as high as several times nuclear saturation density
ρ0. From the inside to the outside of a neutron star, the mat-
ter density decreases to subnuclear region and the core-crust
transition occurs when homogeneous matter becomes unsta-
ble against the formation of nuclear clusters. It is believed
that a neutron star consists of an inner crust of nuclei in a
gas of neutrons and electrons, as well as an outer crust of
nuclei in a gas of electrons without dripped neutrons [6–8].
The inner crust of neutron stars has attracted much attention
because of its complex phase structure and important role
in astrophysical observations [9–14]. With increasing density
in the inner crust, spherical nuclei become unstable and the
favored geometric shape may change from droplet to rod, slab,
tube, and bubble before the crust-core transition. These exotic
nuclear shapes are known as pasta phases, which are expected
to appear not only in the inner crust of neutron stars but
also in core-collapse supernova explosions and neutron-star
mergers. In warm stellar matter relevant for supernovae, light
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clusters like α particles and deuterons may be formed before
the formation of heavy nuclei and nuclear pasta [4,5,15].
It was found that the presence of nuclear pasta in core-
collapse supernovae could alter the late-time neutrino signal
and affect the evolution of a protoneutron star [16,17]. The
elastic properties of nuclear pasta are currently interesting to
some researchers for their relevance to the gravitational-wave
searches from supernovae and neutron-star mergers [18–21].

During the last decades, the properties of pasta phases have
been studied by using various methods, such as the liquid-
drop model [9,15,22,23] and the Thomas-Fermi approxima-
tion [11,12,24–28]. In these calculations, the Wigner-Seitz
approximation was generally employed, where typical geo-
metric shapes of nuclear pasta were assumed to simplify the
calculations. However, the assumption of geometric symmetry
would artificially reduce the configuration space, and as a
result, other possible pasta shapes in addition to the typical
structures may be missed. For a more realistic description
of pasta phases, there are some studies that have not ex-
plicitly assumed any geometric shape and performed fully
three-dimensional calculations for nuclear pasta based on the
Thomas-Fermi approximation [13,29,30], Hartree-Fock ap-
proach [14,31–35], and molecular dynamics method [36–41].
In these calculations, not only the typical pasta shapes as-
sumed in the Wigner-Seitz approximation were reproduced
but also other complex structures such as the waffle phase
were reported [14,41].

The properties of pasta phases appearing in the inner crust
of neutron stars can be significantly influenced by the nuclear
symmetry energy and its density dependence [11,12,25]. In
recent years, the symmetry energy has received great interest
because of its importance for understanding many phenomena
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in nuclear physics and astrophysics [4,42,43]. It was shown
that the properties of neutron stars, such as the radius and
the crust structure, are sensitive to the symmetry energy Esym

and its slope parameter L [11,12,25,44–50]. Great efforts have
been devoted to constraining the values of Esym and L based on
astrophysical observations and terrestrial nuclear experiments
[51–57]. In Ref. [4], a sufficient number of constraints on the
symmetry energy parameters have been summarized, and the
most probable values for the symmetry energy and its slope at
saturation density were found to be Esym = 31.7 ± 3.2 MeV
and L = 58.7 ± 28.1 MeV, respectively, with a much larger
error for L than that for Esym.

The first detection of gravitational waves from a binary
neutron-star merger, known as GW170817, provides valuable
constraints on the tidal deformability [58–60], which also
restricts the radii of neutron stars [61–65]. More recently, the
gravitational-wave events, GW190425 [66] and GW190814
[67], were reported by the LIGO and Virgo Collaborations,
which may give important information for the equation of
state (EOS) of dense matter. The recent observation by the
Neutron Star Interior Composition Explorer (NICER) pro-
vided a simultaneous measurement of the mass and radius
for PSR J0030+0451 [68,69]. These exciting developments
in astrophysical observations suggest relatively small radii of
neutron stars, which is likely to favor a small value of the
symmetry energy slope L. It is well known that there is a
strong correlation between the symmetry energy slope and the
neutron-star radius [47,70]. Furthermore, other properties of
neutron stars, such as the crust structure and the crust-core
transition, are also directly affected by the symmetry energy
and its slope [11,12,25]. In Ref. [25], the density region of
nonspherical nuclei was calculated by using a parametrized
Thomas-Fermi approximation, which was found to be sensi-
tive to the symmetry energy slope L. In our previous work
[12], a self-consistent Thomas-Fermi approximation was em-
ployed to study the pasta structures presented in the inner crust
of neutron stars and we found that only spherical nuclei can
be formed before the crust-core transition for L � 80 MeV,
whereas nonspherical pasta phases may appear for smaller
values of L (e.g., L = 40 MeV). A similar calculation using
the coexisting phases method in the quark-meson coupling
model with L = 69 and 90 MeV was performed and showed
that only droplets could present in the inner crust of neutron
stars [71].

It is interesting to clarify the correlation between the
symmetry energy slope and nuclear pasta structures. In the
present work, we perform fully three-dimensional calcula-
tions without any assumption about the pasta shapes. We
carry out the calculation in a cubic box with periodic bound-
ary conditions. The pasta phase presented in neutron-star
crusts is highly isospin asymmetric matter in β equilibrium,
whereas the one occurring in supernovae is less asymmetric
and out of β equilibrium. Therefore, we investigate the pasta
structures for stellar matter with a fixed proton fraction and
neutron-star matter in β equilibrium. In this study, all calcu-
lations are carried out at zero temperature for simplicity. It is
known that nonuniform structure in supernova matter exists
at low temperatures (T < 15 MeV) [4,5,72], but the three-
dimensional calculations at finite temperature require much

more computational time. For the nuclear interaction, we
employ the relativistic mean-field model with point-coupling
force (RMF-PC), which has achieved great success in de-
scribing various phenomena in nuclear physics over the past
decades [73–84]. In the RMF-PC approach, the finite-range
interactions through meson exchange in Walecka-type models
are replaced by corresponding zero-range interactions (point-
coupling) together with derivative terms. In the present work,
we use the PC-PK1 parametrization proposed by Zhao et al.
[80], which was determined by fitting to observables of 60
selected spherical nuclei and provides a good description of
ground-state properties for the nuclei all over the nuclear chart
[82–84]. To examine the effect of the symmetry energy slope
L on nuclear pasta structures, we generate a set of models
with different values of L at saturation density based on the
PC-PK1 parametrization by introducing an additional cou-
pling term between the isoscalar-vector and isovector-vector
interactions, which corresponds to the ω-ρ coupling in the
finite-range RMF models [85]. It was found that this term
plays a crucial role in determining the density dependence
of the symmetry energy and affecting neutron-star properties
[12,23,45,46,85–88]. By adjusting two parameters simultane-
ously, a given slope L at saturation density ρ0 can be achieved
and the symmetry energy Esym at average nuclear density
ρB = 0.12 fm−3 is fixed to the value predicted by the origi-
nal PC-PK1 parametrization. We note that all models in the
set have the same isoscalar properties and a fixed symmetry
energy at ρB = 0.12 fm−3, but they have different symmetry
energy slope L. The difference of L does not significantly
affect the properties of stable nuclei except the neutron-skin
thickness. Therefore, the set of models can provide very
similar description of finite nuclei and symmetric nuclear
matter. It is helpful to use these models to study the impact
of the symmetry energy slope L on nuclear pasta structures at
subnuclear densities. Recently, the Lead Radius Experiment
(PREX-II) [89] reported a new value of 0.283 ± 0.071 fm
for the neutron-skin thickness of 208Pb by combining the
original and updated results. Exploiting the strong correlation
between the neutron-skin thickness and the symmetry energy
slope, a somewhat large slope parameter L = 106 ± 37 MeV
was obtained in Ref. [90]. Furthermore, Yue et al. [91] con-
sidered various constraints from astrophysical observations,
flow data in heavy-ion collisions, and properties of finite
nuclei together with the newly announced PREX-II results,
they suggest the slope parameter to be L = 85.5 ± 22.2 MeV.
By combining astrophysical data with PREX-II and chiral
effective field theory constraints, a nonparametric analysis
leads to L = 58 ± 19 MeV [92]. In addition, a recent mea-
surement of the spectra of charged pions [93] implies the
slope parameter to be in the range of 42 < L < 117 MeV,
which is compatible with the constraints from PREX-II. In
the present work, we employ a set of generated models cov-
ering the range of L = 40 − 113 MeV (see Table II below)
to estimate the influence of the L value on nuclear pasta
structures.

This article is organized as follows. In Sec. II, we
briefly describe the RMF-PC model employed in the three-
dimensional calculations of nuclear pasta phases. In Sec. III,
we discuss the model parameters used in this study. In Sec. IV,
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we present the numerical results and discuss the effects of the
symmetry energy and its slope on pasta structures. Sec. V is
devoted to the conclusions.

II. FORMALISM

The nonuniform matter at subnuclear densities is stud-
ied within the Thomas-Fermi approximation. Generally, the
Wigner-Seitz approximation with several typical geometric
shapes is employed in the Thomas-Fermi calculation of nu-
clear pasta phases, where the assumed geometric symmetry
can help simplify the calculation to a one-dimensional prob-
lem, but it artificially reduces the configuration space. In the
present work, we prefer to perform fully three-dimensional
calculations without any assumption about the geometric sym-
metry. The calculation is carried out in a large cubic cell
where the periodic boundary condition is used. The nucleons
in the cell tend to form clusters to lower the free energy of the
system. The electrons are assumed to be uniformed in the cell
for simplicity, because the electron screening effect caused by
its nonuniform distribution is relatively small at subnuclear
densities [94].

For the nuclear interaction, we employ the RMF-PC ap-
proach, where the finite-range interactions through meson
exchange are replaced by corresponding zero-range interac-
tions together with derivative terms. For a system of nucleons
and electrons, the Lagrangian density of the RMF-PC model
reads

L = ψ̄ (iγμ∂μ − mN )ψ + ψ̄e(iγμ∂μ − me)ψe

−1

2
αS (ψ̄ψ )(ψ̄ψ ) − 1

2
αV (ψ̄γμψ )(ψ̄γ μψ )

−1

2
αTV (ψ̄ �τγμψ )(ψ̄ �τγ μψ ) − 1

3
βS (ψ̄ψ )3

−1

4
γS (ψ̄ψ )4 − 1

4
γV [(ψ̄γμψ )(ψ̄γ μψ )]2

−γC[(ψ̄γμψ )(ψ̄γ μψ )][(ψ̄ �τγμψ )(ψ̄ �τγ μψ )]

−1

2
δS∂ν (ψ̄ψ )∂ν (ψ̄ψ ) − 1

2
δV ∂ν (ψ̄γμψ )∂ν (ψ̄γ μψ )

−1

2
δTV ∂ν (ψ̄ �τγμψ )∂ν (ψ̄ �τγ μψ ) − 1

4
FμνFμν

−e
1 − τ3

2
ψ̄γμψAμ + eψ̄eγμψeAμ, (1)

where mN and me are the nucleon and electron masses,
respectively. Aμ is the four-vector potential of the electro-
magnetic field with Fμν being its antisymmetric field tensor.
The interactions include four-fermion terms with coupling
constants α, while β and γ refer to third- and fourth-
order terms, respectively. The interactions with δ contain
the derivative couplings. The subscripts S, V , and TV refer
to isoscalar-scalar, isoscalar-vector, and isovector-vector re-
spectively, which correspond to the exchange of σ , ω, and
ρ mesons in the finite-range RMF models. We employ the
PC-PK1 parametrization proposed in Ref. [80], where the
isovector-scalar channel (δ meson) is neglected because the
inclusion of the isovector-scalar interactions generally does

not help improve the description of ground state properties of
stable nuclei. Attempts to include the isovector-scalar inter-
actions in Ref. [75] show that the addition of isovector-scalar
terms does not incorporate real physical improvements and is
not required for a viable description of the strong interaction
in finite nuclei. To study the influence of nuclear symmetry
energy, we introduce an additional coupling (γC) between the
isoscalar-vector and isovector-vector interactions based on the
PC-PK1 parametrization, which plays a crucial role in modi-
fying the density dependence of nuclear symmetry energy.

In the mean-field approximation, the interactions in the
Lagrangian density are replaced by their expectation values,
which can be expressed in terms of corresponding local den-
sities. The energy density functional of the system is derived
from the energy-momentum tensor. By using standard varia-
tional techniques, one can obtain the Dirac equation for the
nucleon,

[
− iα · ∇ + β(mN + VS ) + VV + τ3VTV + e

1 − τ3

2
A

]
ψk

= εkψk, (2)

where the potentials are given by the following relations:

VS = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (3)

VV = αV ρV + γV ρ3
V + δV �ρV + 2γCρV ρ2

TV , (4)

VTV = αTV ρTV + δTV �ρTV + 2γCρ2
V ρTV , (5)

with ρS (r), ρV (r), and ρTV (r) being the local densities in
scalar, vector, and isovector-vector channels, respectively.
�ρS , �ρV , and �ρTV are the corresponding derivative terms,
where � is the Laplace operator. We use the nuclear physics
convention for the isospin, i.e., the neutron is associated with
τ3 = +1 and the proton with τ3 = −1. In the Thomas-Fermi
approximation, the chemical potentials of nucleons are ex-
pressed as

μp =
√

kp
F

2 + m∗
N

2 + VV − VTV + eA, (6)

μn =
√

kn
F

2 + m∗
N

2 + VV + VTV , (7)

where m∗
N (r) = mN + VS (r) is the effective nucleon mass

and ki
F (r) is the Fermi momentum. We emphasize that the

chemical potential is spatially constant throughout the whole
system, while other quantities such as various densities de-
pend on the position r. The electrostatic potential A(r) satisfies
the Poisson equation

�A(r) = −e
[
ρ

p
V (r) − ρe

V

]
, (8)

where the electron number density ρe
V is assumed to be uni-

form in the system for simplicity.
For nonuniform matter at a given average baryon density

ρB and fixed proton fraction Yp, the most stable state is the
one with the lowest energy. We calculate the energy of a large
cubic cell by performing the three-dimensional integration,

E =
∫

d3r ε(r), (9)
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TABLE I. Coupling constants in the original PC-PK1
parametrization.

Coupling constant Value Dimension

αS −3.96291 × 10−4 MeV−2

βS 8.6653 × 10−11 MeV−5

γS −3.80724 × 10−17 MeV−8

δS −1.09108 × 10−10 MeV−4

αV 2.6904 × 10−4 MeV−2

γV −3.64219 × 10−18 MeV−8

δV −4.32619 × 10−10 MeV−4

αTV 2.95018 × 10−5 MeV−2

δTV −4.11112 × 10−10 MeV−4

γC 0 MeV−8

where the local energy density within the Thomas-Fermi ap-
proximation is given by

ε(r) =
∑

b=p,n

1

π2

∫ kb
F

0
dk k2

√
k2 + m∗2

N

−1

2
αSρ

2
S − 1

2
δSρS�ρS − 2

3
βSρ

3
S

−3

4
γSρ

4
S + 1

2
αV ρ2

V + 1

2
δV ρV �ρV

+1

4
γV ρ4

V + 1

2
αTV ρ2

TV + 1

2
δTV ρTV �ρTV

+1

2
eA

(
ρ

p
V − ρe

V

) + γCρ2
V ρ2

TV

+ 1

π2

∫ ke
F

0
dk k2

√
k2 + m2

e . (10)

We use the iteration method to solve this problem. In practice,
we start with an initial guess for all density distributions ρS (r),
ρV (r), ρTV (r), and the electrostatic potential A(r). Then, the
chemical potentials, μp and μn, are respectively determined
by given proton and neutron numbers inside the cell. Once the
chemical potentials are achieved, the new Fermi momentum,
kp

F (r) and kn
F (r), can be obtained from the relations (6) and

(7), which result in new density distributions. Furthermore,

new A(r) is obtained by solving the Poisson equation. This
procedure should be iterated until convergence is achieved.

III. PARAMETERS

The parameters of the RMF-PC models are generally de-
termined by fitting to the ground-state properties of finite
nuclei. Several successful RMF-PC parametrizations have
been proposed and widely used in describing various nuclear
properties [74,75,78,80,83,84]. In the present work, we em-
ploy the PC-PK1 parametrization proposed by Zhao et al.
[80], which was determined by fitting to observables of 60 se-
lected spherical nuclei, including the binding energies, charge
radii, and empirical pairing gaps. The PC-PK1 parametriza-
tion provides satisfactory description for both spherical and
deformed nuclei throughout the nuclear chart [84]. For com-
pleteness, we present the PC-PK1 parametrization of the
RMF-PC model in Table I. With the PC-PK1 parametriza-
tion, the predicted saturation properties of nuclear matter
are as follows: the saturation density ρ0 = 0.153 fm−3, en-
ergy per nucleon E0 = −16.12 MeV, incompressibility K =
238 MeV, symmetry energy Esym = 35.6 MeV, and the slope
of symmetry energy L = 113 MeV. Because of the large value
of L, the PC-PK1 parametrization of the RMF-PC model
predicts somewhat large radii and tidal deformabilities of neu-
tron stars [95], which are disfavored by recent astrophysical
observations as discussed in the introduction. The inclusion
of a coupling term between the isoscalar-vector and isovector-
vector interactions can help to reduce the symmetry energy
slope, whereas the properties of symmetric nuclear matter
remain unchanged.

To investigate the effect of the symmetry energy slope L on
nuclear pasta phases, we generate a set of RMF-PC models
with different values of L at saturation density based on the
PC-PK1 parametrization. For this purpose, we introduce an
additional coupling term with coefficient γC in Eq. (1), which
corresponds to the ω-ρ coupling in the finite-range RMF
models. It is well known that this term plays an important role
in modifying the density dependence of the symmetry energy
and affecting neutron star properties [12,23,45,46,85–88]. By
simultaneously adjusting the coupling constants αTV and γC ,
one can achieve a given L at saturation density ρ0 while keep-
ing the symmetry energy Esym fixed at a density of 0.12 fm−3.
The resulting parameters αTV and γC are presented in Table II.
The reason for fixing Esym at a density of 0.12 fm−3 is that
the set of generated models should reproduce similar binding
energies of finite nuclei with the experimental data. It was

TABLE II. Parameters αTV and γC generated from the PC-PK1 parametrization for different slope L at saturation density ρ0 with fixed
symmetry energy Esym = 27.733 MeV at ρfix = 0.12 fm−3. The last line shows the symmetry energy at saturation density.

L (MeV) 40 50 60 70 80 90 100 113

αTV (10−5 MeV−2) 4.0168 3.8706 3.7243 3.5780 3.4317 3.2854 3.1392 2.9502
γC (10−18 MeV−8) −6.2734 −5.4131 −4.5528 −3.6924 −2.8321 −1.9718 −1.1114 0
Esym(ρ0) (MeV) 31.69 32.23 32.77 33.31 33.84 34.38 34.92 35.61
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FIG. 1. Binding energy per nucleon of 208Pb vs the symmetry
energy slope L with different choices of ρfix based on the PC-PK1
parametrization.

found that the binding energy of finite nuclei is essentially
determined by the symmetry energy at a density of 0.10–
0.12 fm−3, not by the one at saturation density [45,85,87,96].
To examine the sensitivity of the binding energy to the fixed
density ρfix of the symmetry energy, we perform a standard
RMF calculation with the PC-PK1 parametrization for 208Pb
using different choices of ρfix. In Fig. 1, one can see that
the binding energy per nucleon of 208Pb remains almost un-
changed with the variation of L for ρfix = 0.12 fm−3, whereas
it deviates from the experimental value (7.87 MeV) when
ρfix = 0.11 fm−3 or ρfix = ρ0 is used. We note that the result
for L = 113 MeV corresponds to the original PC-PK1 case
with γC = 0, and therefore all three lines terminate at the same
point.

We emphasize that all generated models in Table II have
the same isoscalar properties and fixed symmetry energy at
ρB = 0.12 fm−3, but they have different density dependence
of the symmetry energy. In Fig. 2, we display the symmetry
energy Esym as a function of the baryon density ρB for the set
of generated models. It is obvious that all models have the
same Esym at a density of 0.12 fm−3, but they have different
Esym at lower and higher densities because of the difference
of the slope L. One can see that a smaller L corresponds to a
larger (smaller) Esym at lower (higher) densities. It is feasible
and interesting to use these models for studying the effect of
L on pasta structures at subnuclear densities.

In the present work, we perform three-dimensional cal-
culations in a large cubic cell with the periodic boundary
condition. Considering the balance between desired accuracy
and computational time, we use the cell size of 60 fm with 64
grid points in each direction. Such choices are generally large
enough for obtaining convergent results in three-dimensional
calculations of nuclear pasta [30,35]. It was reported in
Ref. [35] that changing the box size from 24 to 48 fm in
the Skyrme Hartree-Fock calculation would not significantly
change the total energies of the ground state. In our calcula-
tions, enlarging the number of grid points from 64 to 128 leads

FIG. 2. Symmetry energy Esym as a function of the baryon den-
sity ρB for the generated models with different L. The symmetry
energy is fixed at a density of 0.12 fm−3.

to a energy difference within a few keV, which is negligible
for determining the pasta configuration. The computational
time in three-dimensional calculations is estimated to scale
as n3, where n is the number of grid points in each direc-
tion. Therefore, the calculation with a larger n is much more
time-consuming. Using the cell size of 60 fm with n = 64,
the grid spacing is 0.9375 fm, which is a reasonable value
for three-dimensional calculations of nuclear pasta [30,35]. At
a typical density of ρB = 0.05 fm−3, there are about 10 800
nucleons in a cubic cell with the size of 60 fm, where several
periods of pasta structures can be formed (see Figs. 3, 5, and
6 below).

IV. RESULTS AND DISCUSSION

In this section, we present the results of three-dimensional
calculations for nonuniform matter at subnuclear densities.
We explore the pasta structures for both cold stellar matter
with a fixed proton fraction and neutron-star matter in β

equilibrium. The influence of nuclear symmetry energy is
examined by using the generated models from the PC-PK1
parametrization.

A. Pasta structures with a fixed proton fraction

We first present and compare the pasta structures for
fixed proton fraction by using two limit RMF-PC models in
Table II, namely the ones with L = 40 and 113 MeV. In sym-
metric nuclear matter (Yp = 0.5), these two models provide
almost the same features of pasta structures. In Fig. 3, we
show the proton density distributions of nonuniform matter
for Yp = 0.5 in a cubic cell with a length of 60 fm. The results
are obtained from the three-dimensional Thomas-Fermi calcu-
lations by using the RMF-PC model with L = 40 MeV. At a
low density of ρB = 0.014 fm−3, the matter forms a crystalline
structure of droplets. As the density ρB increases, typical
pasta phases like rods, slabs, tubes, and bubbles are observed
before the transition to uniform matter. In addition, some
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�a������
B
=0.014 fm-3 �b������

B
=0.018 fm-3 �c������

B
=0.022 fm-3 �d������

B
=0.046 fm-3

�e������
B
=0.05 fm-3 �f������

B
=0.078 fm-3 �g������

B
=0.09 fm-3 �h������

B
=0.114 fm-3

FIG. 3. Proton density distributions in pasta phases for Yp = 0.5 obtained using the RMF-PC model with L = 40 MeV.

intermediate structures around the shape transition are also
observed [see Figs. 3(b) and 3(d)], which make the transition
between different shapes more smooth. In our calculations,
the ground state at low densities is a body-centered cubic (bcc)
lattice of droplets, whereas a face-centered cubic (fcc) lattice
may appear as a metastable state. This is consistent with the
previous studies in Refs. [24,76], but inconsistent with the
results in Refs. [13,30] where the fcc lattice is energetically
more favorable than the bcc one. In practical calculations,
the final configurations are somewhat influenced by the initial
density distributions. When different initial configurations are
used, some metastable states may arrive after the convergence
is achieved. In Fig. 4, we compare the energy per nucleon
E among different configurations observed around the tran-
sition from droplets to rods. It is found that a simple cubic
(sc) lattice of droplets emerges as a metastable state at low

FIG. 4. Energy per nucleon E for different configurations ob-
served around the transition from droplets to rods.

densities, whose energy is obviously larger than that of the bcc
lattice. On the other hand, the energy of an fcc lattice is only
slightly higher than that in the bcc case, while their energy
difference decreases as the density increases. At the density
ρB > 0.02 fm−3, the rod phase becomes the ground state with
the lowest energy, but its energy per nucleon E is only a few
keV lower than that of the bcc lattice. In Fig. 3(g), an fcc
lattice of bubbles is observed before the transition to uniform
matter, which is consistent with the results in Refs. [13,30].

To explore the influence of symmetry energy and its slope,
we compare the pasta structures obtained using the models
with L = 40 and 113 MeV for lower values of Yp, where the
isovector part is expected to play a crucial role. In Figs. 5 and
6, we display the proton density distributions in typical pasta
phases for Yp = 0.3 and 0.05, respectively. It is found that
the pasta structures obtained with L = 40 MeV (left panels)
and L = 113 MeV (right panels) show similar features in the
case of Yp = 0.3, but significant differences are observed for
a low value of Yp = 0.05. In Fig. 6, one can see that the
proton densities at the center of nuclear pastas obtained with
L = 40 MeV are relatively larger than that of L = 113 MeV.
Furthermore, at a density of ρB = 0.076 fm−3, the matter
forms a crystalline structure of bubbles with L = 40 MeV,
but it is already in uniform phase with L = 113 MeV. The
differences of pasta properties between L = 40 and 113 MeV
can be seen more clearly in Fig. 7, where the density profiles
in droplet configurations for different Yp are displayed along a
line passing through the center of the droplets. In the top panel
with Yp = 0.5, there is no visible difference in the density
distributions between the two models. With decreasing Yp, one
can see that the model with L = 40 MeV results in larger neu-
tron densities at the center of the droplet compared to that with
L = 113 MeV, and this trend is more pronounced for lower
values of Yp. Meanwhile, the proton densities at the center of
the droplets with L = 40 MeV are only slightly higher than
those with L = 113 MeV. This behavior can be understood
from the density dependence of the symmetry energy Esym
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�
B
=0.014 fm-3

�
B
=0.022 fm-3

�
B
=0.05 fm-3

�
B
=0.08 fm-3

�
B
=0.098 fm-3

L=113 MeVL=40 MeV

�
B
=0.014 fm-3

�
B
=0.022 fm-3

�
B
=0.05 fm-3

�
B
=0.08 fm-3

�
B
=0.098 fm-3

FIG. 5. Proton density distributions in typical pasta phases at a
fixed proton fraction of Yp = 0.3. The results obtained with L =
40 MeV (left panels) are compared to those with L = 113 MeV (right
panels).

shown in Fig. 2. With a smaller slope L = 40 MeV, Esym is
relatively small at higher densities (ρB > 0.12 fm−3), which
leads to larger neutron densities at the center of the droplet.
Similar differences between L = 40 and 113 MeV are also
observed in other pasta configurations. On the other hand,
we can see that dripped neutrons exist outside the droplets
for small values of Yp = 0.1 and 0.05, whereas all nucleons
participate in forming nuclear clusters for Yp = 0.3 and 0.5.
Generally, a free neutron gas may appear for Yp < 0.3 and its
density increases with decreasing Yp.

L=40 MeV L=113 MeV

�
B
=0.036 fm-3

�
B
=0.05 fm-3

�
B
=0.064 fm-3

�
B
=0.076 fm-3

�
B
=0.036 fm-3

�
B
=0.05 fm-3

�
B
=0.064 fm-3

�
B
=0.076 fm-3

FIG. 6. Proton density distributions in typical pasta phases at a
fixed proton fraction of Yp = 0.05. The results obtained with L =
40 MeV (left panels) are compared to those with L = 113 MeV (right
panels).

In Fig. 8, we show the energy per nucleon E as a function
of the baryon density ρB for Yp = 0.5, 0.3, 0.1, and 0.05.
For comparison, the results of uniform matter are displayed
by dashed lines, which are obviously higher than those of
pasta phases at lower densities. The results obtained with
L = 40 MeV (left panels) are compared to those with L =
113 MeV (right panels). One can see that the behaviors of E
are very similar between these two models for larger values of
Yp = 0.5 and 0.3, whereas significant differences are observed
for Yp = 0.1 and 0.05. The model with L = 40 MeV predicts
relatively large E and late transition to uniform matter com-
pared to that with L = 113 MeV. This is because Esym in the
model with L = 40 MeV is larger than that with L = 113 MeV
at low densities (see Fig. 2). It is seen that the transition from
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FIG. 7. Density distributions of protons, neutrons, and electrons
along a line passing through the center of the droplets. The results
obtained with L = 40 MeV (solid lines) are compared to those with
L = 113 MeV (dashed lines).

pasta phase to uniform matter occurs at lower densities for
smaller values of Yp, and some pasta shapes like the bubble
configuration could not appear before the transition to uniform
matter in the case of Yp = 0.05.

B. Inner crust of neutron stars

To describe nonuniform matter in the inner crust of neutron
stars, we perform fully three-dimensional calculations in a
cubic box with periodic boundary conditions, where the con-
ditions of β equilibrium and charge neutrality are satisfied.
We carry out the calculations using the models with L = 40
and 113 MeV, so as to examine the influence of the symme-
try energy slop L. The matter in neutron-star crusts contains
protons, neutrons, and electrons, where the proton fraction Yp

is determined by the β equilibrium condition and its value is

FIG. 8. Energy per nucleon E as a function of the baryon den-
sity ρB for Yp = 0.5, 0.3, 0.1, and 0.05 using the models with L =
40 MeV (left panels) and L = 113 MeV (right panels). For compari-
son, the results of uniform matter are also displayed by dashed lines.

sensitive to the behavior of the symmetry energy. In Fig. 9,
we display the proton fraction Yp of nonuniform matter in
neutron-star crusts as a function of the baryon density ρB using
the models with L = 40 and 113 MeV, where the results of
uniform matter are also shown for comparison. It is found
that both models predict somewhat small values of Yp in the
density region of 0.02 < ρB < 0.12 fm−3, where nonspheri-
cal pasta structures are expected to appear. However, only
spherical droplets are observed in our calculations before the
crust-core transition, which occurs at ρB � 0.072 fm−3 with
L = 40 MeV and at ρB � 0.057 fm−3 with L = 113 MeV. Be-
cause of smaller values of Yp obtained in β equilibrium, it is
unlikely to form nonspherical pasta in neutron-star crusts, and
meanwhile the transition to uniform matter occurs at lower
densities. This is in contrast to the results with a fixed Yp

shown in the previous subsection. One can see that at low den-
sities, Yp of nonuniform matter is significantly larger than that
of uniform matter. This is because the formation of nuclear
clusters can largely reduce the chemical potential of protons,
which leads to an enhancement of Yp in nonuniform matter.
Comparing the results between L = 40 and 113 MeV, we see
that a smaller L corresponds to a larger Yp in both nonuniform

055802-8



NUCLEAR PASTA AND SYMMETRY ENERGY … PHYSICAL REVIEW C 103, 055802 (2021)

FIG. 9. Proton fractions as a function of the baryon density in
neutron-star matter with nonuniform and uniform distributions.

and uniform cases. This correlation can be understood from
the density dependence of the symmetry energy Esym shown
in Fig. 2. At low densities (ρB < 0.12 fm−3), the model with
L = 40 MeV has larger Esym than that with L = 113 MeV, and
as a result, it favors containing more protons in the system.

In Fig. 10, we plot the density distributions of protons,
neutrons, and electrons in β equilibrium along a line pass-
ing through the center of the droplets. At a low density of
ρB = 0.01 fm−3 (top panel), nuclear clusters are formed in a
dripped neutron gas with large space between the clusters.
At ρB = 0.041 fm−3 (bottom panel), the distance between
droplets becomes relatively small and the dripped neutrons
are significantly enhanced. One can see that there are clear
differences between the results of L = 40 and 113 MeV. The
model with L = 40 MeV yields larger neutron and proton
densities at the center of droplets compared to those with
L = 113 MeV, and the difference is more pronounced for neu-
trons. This effect is caused by different density dependence of
the symmetry energy Esym (see Fig. 2), where a smaller Esym

at ρB > 0.12 fm−3 with L = 40 MeV leads to larger neutron
densities inside nuclear clusters. In Fig. 11, we display the
energy per nucleon E as a function of the baryon density ρB

for neutron-star matter in β equilibrium. Compared to the case
with fixed Yp in Fig. 8, the reduction of E in nonuniform
matter is less pronounced. This is because Yp in β equilib-
rium is somewhat small (see Fig. 9), that is, only a small
fraction of nucleons can form clusters, which does not affect
the total energy very much. It is shown that E obtained with
L = 40 MeV is higher than that with L = 113 MeV, because
the model with L = 40 MeV has larger symmetry energy Esym

at low densities.
To study the correlation between the symmetry energy

slope L and the crust-core transition, we perform calcula-
tions for nonuniform matter in β equilibrium by employing
the set of generated models given in Table II. We display
in Fig. 12 the crust-core transition density ρB,t and proton
fraction at the transition point Yp,t as a function of L using
the generated models based on the PC-PK1 parametrization.
It is shown that both ρB,t and Yp,t decrease with increasing

FIG. 10. Density distributions of protons, neutrons, and electrons
in β equilibrium along a line passing through the center of the
droplets. The results obtained with L = 40 MeV are compared to
those of L = 113 MeV.

L. These correlations are consistent with those reported in
Refs. [12,25,44,48–50]. In the present work, we obtain ρB,t =
0.072 fm−3 for L = 40 MeV, and it decreases to 0.057 fm−3

for L = 113 MeV. The correlation between ρB,t and L can be
understood from an analysis in the liquid-drop model [44],
where the energy-density curvature of pure neutron matter
at saturation density is approximately proportional to L. The
crust-core transition occurs when the energy-density curvature
becomes negative, i.e., spinodal instability. This implies that
a larger L requires a lower ρB,t for reaching the negative
curvature region. On the other hand, the decrease of Yp,t is
related to the density dependence of Esym. The model with a
larger L has a smaller Esym at ρB < 0.12 fm−3, so it results in
a smaller Yp,t at the transition point. It is noteworthy that the
crust-core transition depends on both nuclear interaction and
description of nonuniform matter.

C. Properties of neutron stars

The properties of neutron stars, such as mass-radius re-
lations and tidal deformabilities, can be obtained by solving
the Tolman-Oppenheimer-Volkoff (TOV) equation using the
EOS over a wide range of densities. Generally, the EOS
is composed of three segments: the outer crust, the inner
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FIG. 11. Energy per nucleon E as a function of the baryon density ρB using the models with L = 40 MeV (a) and L = 113 MeV (b). For
comparison, the results of uniform matter are also displayed by dashed lines.

crust, and the liquid core. In the present work, we focus on
nonuniform structure of the inner crust. It is interesting to
explore the possible influence from the inner crust on vari-
ous properties of neutron stars. In practical calculations, we
adopt the Baym-Pethick-Sutherland (BPS) EOS [97] for the
outer crust below the neutron drip density, while the EOS
obtained from our three-dimensional calculations is adopted
for the inner crust. It is known that the mass-radius rela-
tions of neutron stars are dominantly determined by the core
EOS at high densities, where large uncertainties exist among
different models. Considering observational constraints on
neutron-star masses and radii, we employ several core EOSs,
namely PC-PK1 [95], TM1e [98], and BigApple [99], which
are matched to the inner crust segments around the transi-
tion density. The PC-PK1 parametrization of the RMF-PC
model used in our calculations of nonuniform matter has a
large symmetry energy slope L = 113 MeV, which predicts
somewhat large radii and tidal deformabilities of neutron stars

as reported in Ref. [95]. Furthermore, the contribution from
γV relevant term in Eq. (1) may result in negative pressures
at high densities, which leads to the difficulty of reaching
the maximum mass of neutron stars. The TM1e and BigAp-
ple parametrizations in the RMF approach have a relatively
small slope parameter L � 40 MeV, which is more consistent
with current constraints from astrophysical observations. The
TM1e parametrization was successfully used to construct the
EOS for numerical simulations of core-collapse supernovae
[98]. The BigApple parametrization was proposed to account
for a 2.6M� compact object observed in GW190814 [99]. We
note that all of the models can provide satisfactory descrip-
tions of finite nuclei, and meanwhile they can satisfy the 2M�
constraint for neutron stars.

To examine the influence of the inner crust, we adopt the
EOS of nonuniform matter based on the RMF-PC models with
L = 40 and 113 MeV, as described in the previous section.
In Fig. 13, we display the resulting mass-radius relations of

FIG. 12. Crust-core transition density ρB,t (a) and proton fraction at the transition point Yp,t (b) as a function of the symmetry energy slope
L using the generated models based on the PC-PK1 parametrization.
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FIG. 13. Mass-radius relations of neutron stars by using different
combinations of the core and crust segments. The results using the
inner crust EOS with L = 40 and 113 MeV are shown by thick and
thin lines, respectively. The colored horizontal bars indicate the mass
measurements of PSR J1614–2230 [100–102], PSR J0348+0432
[103], and PSR J0740+6620 [104], while the mass constraint from
GW190814 [67] is shown in pink color. The constraints from NICER
[69] and GW170817 [59] are also indicated.

neutron stars by using different combinations of the core and
crust segments. The results using the inner crust EOS with
L = 40 and 113 MeV are shown by thick and thin lines, re-
spectively. It is found that massive neutron stars are insensitive
to the inner crust EOS, while visible differences are observed
in low-mass neutron stars. For the same core EOS, the radii
of neutron stars obtained using the inner crust EOS with
L = 40 MeV are slightly larger than that with L = 113 MeV.
On the other hand, the differences caused by the core EOS
are much more pronounced. In the case with the PC-PK1 core
EOS, its large symmetry energy slope L = 113 MeV results in
the radius of a canonical 1.4M� neutron star, R1.4 ∼ 14 km,
which is disfavored by the constraints from NICER [69] and
GW170817 [59]. In contrast, the radii of a 1.4M� neutron
star obtained using the TM1e and BigApple core EOSs are
more consistent with current constraints, which are related to
their small slope parameters. One can see that the mass-radius
curves in the TM1e and BigApple cases go past the maxi-
mum mass star configuration, where the maximum masses
predicted by TM1e and BigApple are about 2.12M� and
2.60M�, respectively. It is shown that the maximum neutron-
star masses can be significantly affected by the core EOS at
high densities, while the influence of the inner crust EOS is
almost invisible. In all cases, the results are compatible with
the mass measurements of PSR J1614–2230 [100–102], PSR
J0348+0432 [103], and PSR J0740+6620 [104], but only
BigApple core EOS can support a 2.6M� neutron star.

The dimensionless tidal deformability of a neutron star is
calculated from

� = 2
3 k2(R/M )5, (11)

where k2 is the tidal Love number which is computed together
with the TOV equation [47]. In Fig. 14, we display the dimen-

FIG. 14. Dimensionless tidal deformability � as a function of the
neutron-star mass M. The vertical line represents the constraints on
�1.4 from the analysis of GW170817 [59].

sionless tidal deformability � as a function of the neutron-star
mass M. The results using the inner crust EOS with L = 40
and 113 MeV are shown by thick and thin lines, respectively.
The influence caused by different crust EOS is small, but the
core EOS can significantly alter the tidal deformability �.
The results of � using the PC-PK1 core EOS are much larger
than the constraints from GW170817 [59] because of its large
symmetry energy slope. The TM1e and BigApple core EOSs
predict relatively small tidal deformabilities which are more
consistent with the constraints from GW170817 [58,59,99].

V. CONCLUSIONS

In the present work, we have studied the properties of
nuclear pasta phases, which may occur not only in the in-
ner crust of neutron stars but also in stellar matter with
a relatively large proton fraction. We have performed fully
three-dimensional Thomas-Fermi calculations in a cubic box
with periodic boundary conditions. The calculations were
carried out for both cold stellar matter with a fixed proton
fraction and neutron-star matter in β equilibrium. For the
nuclear interaction, we have employed the RMF-PC approach
with the PC-PK1 parametrization, which could provide a
good description of ground-state properties for the nuclei
all over the nuclear chart. To examine the influence of nu-
clear symmetry energy and its slope parameter L, we have
generated a set of models with different L at saturation den-
sity based on the PC-PK1 parametrization by introducing
an additional coupling term between the isoscalar-vector and
isovector-vector interactions. All generated models have the
same isoscalar properties and fixed symmetry energy Esym

at ρB = 0.12 fm−3, which ensure providing similar binding
energies of finite nuclei with the experimental data, but they
have different density dependencies of Esym that may play
a crucial role in determining nonuniform structures in the
neutron-rich matter.

We have investigated the pasta structures in nuclear matter
with a fixed proton fraction Yp by using two limit models with
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L = 40 and 113 MeV. It was found that these two models pro-
vide similar features of pasta structures for 0.3 � Yp � 0.5,
but significant differences could be observed in the low Yp

region, where the symmetry energy is expected to play an
important role. Generally, the ground state of nonuniform
matter at low densities is a bcc lattice of droplets, while
nonspherical pasta phases may appear at the density ρB >

0.02 fm−3. The onset density of nonspherical shapes increases
as the proton fraction Yp decreases. In our three-dimensional
calculations, typical geometric shapes like droplets, rods,
slabs, tubes, and bubbles were observed before the transition
to uniform matter. In addition, some intermediate struc-
tures around the shape transition were also observed, which
would make the transition between different shapes more
smooth.

For neutron-star matter in β equilibrium, we found only
spherical droplets were formed before the transition to uni-
form matter using the models with L = 40 and 113 MeV.
The values of Yp obtained in β equilibrium are very small,
which lead to an early onset of uniform matter. The crust-core
transition occurs at ρB � 0.072 fm−3 with L = 40 MeV and at

ρB � 0.057 fm−3 with L = 113 MeV. We studied the correla-
tions between the symmetry energy slope L and the crust-core
transition by employing the set of generated models. It was
seen that both the baryon density and the proton fraction at the
crust-core transition decrease with increasing L. The resulting
EOSs of the inner crust using the models with L = 40 and 113
MeV were applied to study the properties of neutron stars. It
was shown that massive neutron stars are insensitive to the
inner crust EOS, while visible differences could be observed
in the radii of low-mass neutron stars. We emphasize that
although nonuniform structures in the inner crust have less
influence on the bulk properties of neutron stars, they may be
important for interpreting cooling observations. In addition,
the properties of pasta phases in supernova matter would
affect the neutrino signal, which need further investigation.
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