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New extraction of the Re+e− elastic scattering cross-section ratio based on a simplified
phenomenological hard two-photon-exchange correction approach
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In this work, we present a prediction of the positron-proton and electron-proton elastic scattering cross-
section ratio Re+e− based on a new phenomenological parametrization of the hard two-photon-exchange (TPE)
corrections to electron-proton elastic scattering cross section σR. The TPE parametrization proposed in this work
is rather simple, as it only requires the use of suitable global fits of both the Rosenbluth magnetic G̃M , and the
true magnetic GM form factors, or alternatively, the electric form factors G̃E and GE . We compare our results
to recent extractions, and world’s data on Re+e− with emphasis mainly on the kinematics range of the recent
direct measurements from the CLAS, VEPP-3, and OLYMPUS experiments. With the proper choice of G̃M and
GM parametrizations, and while our results are in generally good agreement with Re+e− measurements taken at
high ε points and for all Q2 range, they agree remarkably well, within the error bands of the predictions, with
Re+e− measurements taken at low-ε points for Q2 = 1.0 and 1.5 (GeV/c)2, where emphasis should be placed for
evidence of hard TPE correction. Finally, we believe that the assumption that hard TPE corrections could account
for the discrepancy on the proton’s form factors ratio μpGE/GM is still an open question as more measurements
of Re+e− are clearly needed for Q2 > 2.1 (GeV/c)2, in the region where the discrepancy is significant.

DOI: 10.1103/PhysRevC.103.055202

I. INTRODUCTION

Utilizing electron scattering, the proton’s form factor (FF)
ratio μpRp = μpGE (Q2)/GM (Q2) can be extracted using two
main techniques: the Rosenbluth separation technique [1] and
the polarization transfer (PT) or recoil polarization technique
[2]. Here, GE (Q2) and GM (Q2) are the electric and magnetic
FF of the proton, respectively, and μp is the proton’s mag-
netic moment. These FFs are functions of the four-momentum
transferred squared, Q2, of the virtual photon, with longitu-
dinal polarization parameter ε defined as ε−1 = [1 + 2(1 +
τ ) tan2( θe

2 )], with τ = Q2/4M2
p being a kinematics factor, θe

is the scattering angle of the electron, and Mp is the mass
of the proton. In the Rosenbluth separation technique, the
unpolarized electron-proton cross section is measured, and the
reduced cross section σR in the one-photon-exchange approx-
imation (OPE) or Born value is given by

σR(ε, Q2) = [G̃M (Q2)]2 + ε

τ
[G̃E (Q2)]2. (1)

In the PT technique, the spin-dependent cross section
is measured, where the transverse Pt and longitudinal Pl

polarization components of the recoil proton are measured
simultaneously, and the ratio Rp in the OPE approximation
[2–4] is determined as

Rp = GE

GM
= −Pt

Pl

(E + E ′)
2Mp

tan

(
θe

2

)
, (2)

where E and E ′ are the initial and final energies of the incident
electron, respectively.

The two techniques yield a significantly different value for
the ratio μpRp for Q2 > 1.0(GeV/c)2. They almost differ by
a factor of 3 at high Q2 [5–19] as the Rosenbluth separation
method predicts scaling of the ratio μpRp ≈ 1, while the PT
method predicts a linearly decreasing μpRp with increasing
Q2, and then flattening out for Q2 > 5.0 (GeV/c)2. Such a
discrepancy on the ratio μpRp was attributed to a missing
higher order radiative corrections to σR, and in particular
the inclusion of hard two-photon-exchange (TPE) correction
diagrams [20–24]. This is accomplished by adding the con-
tributions coming from the interference of the OPE and TPE
amplitudes, or the real function F (ε, Q2), to the Born reduced
cross section σBorn or σR(ε, Q2) = σBorn(ε, Q2) + F (ε, Q2),
and G(E ,M ) now represent the true FFs of the proton or

σR(ε, Q2) = [GM (Q2)]2 + ε

τ
[GE (Q2)]2 + F (ε, Q2). (3)

Several studies have attempted to study the impact of
TPE effects on electron-proton scattering observables the-
oretically [20,23–69], phenomenologically [17,70–95], and
experimentally [11–13,96]. See Refs. [23,24,90,97] for de-
tailed reviews. Experimentally, some studies focused mainly
on measuring and/or constraining the TPE contributions to
σR and the ratio μpRp [12,13,16,17]. Other studies exam-
ined the ε dependence and nonlinearity of σR [70–72] and
the ε dependence of the ratio μpRp [11,96] to observe any
possible deviation from the OPE prediction. However, the
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measured ratio showed essentially no ε dependence consistent
with the OPE predictions. Phenomenologically, on the other
hand, studies focused either on extracting the TPE contribu-
tions using combined elastic electron-proton cross section and
polarization measurements [17,20,72,75,78–80,82,87–90,92],
or extracting the TPE amplitudes by imposing some as-
sumptions and constraints [74,76,83,84,86,90]. However, the
most direct technique that can be used to measure TPE ef-
fect is by measuring the positron-proton to electron-proton
cross sections ratio Re+e− (ε, Q2) as the function F (ε, Q2)
will change sign depending on the charge of the lepton in-
volved. In addition, σR in the Born approximation is the
measured elastic electron-proton cross section after applying
radiative corrections which include photon radiation from the
charged particle δ± or simply σR = σelastic(1 + δ±), where δ±,
+(−) for positron(electron), includes vertex-type corrections
or charge-even terms δeven, and charge-odd terms δodd which
change sign depending on the sign of the lepton involved,
and include both hard-TPE (δ2γ ) and soft-TPE (δsoft) contri-
butions or δ± = δ2γ + δsoft + δeven. Therefore, the measured
ratio Rmeas

e+e− (ε, Q2) is now defined as

Rmeas
e+e− (ε, Q2) = σ (e+ p → e+ p)

σ (e− p → e− p)
= 1 + δeven − δodd

1 + δeven + δodd
,

(4)

and any deviation of Rmeas
e+e− from unity is a clear signature of

δodd contributions to σR. Finally, after correcting Rmeas
e+e− for both

δeven and δsoft, the ratio can be expressed as

Re+e− (ε, Q2) = 1 − δ2γ

1 + δ2γ

≈ 1 − 2δ2γ , (5)

where δ2γ is the fractional hard TPE correction to σR or δ2γ =
F (ε, Q2)/σBorn, and any deviation of Re+e− (ε, Q2) from unity
is a clear signature of hard-TPE effect.

II. PHENOMENOLOGICAL
TWO-PHOTON-EXCHANGE CONTRIBUTION

A. Linear hard TPE correction

In this section, we summarize several previous and re-
cent TPE phenomenological studies and parametrizations
used to extract the ratio Re+e− . In particular, focus will be
placed mainly on parametrizations which assumed linear
TPE corrections to σR which are relevant to this work. See
Refs. [78,79,83,84,86,90] for detailed review of other TPE
phenomenological studies.

Based on the framework of Ref. [20], Borisyuk and
Kobushkin [73] introduced the linear combination GE =
(F̃1 − τ F̃2 + ν

4M2
p
F̃3) and GM = (F̃1 + F̃2 + ε ν

4M2
p
F̃3) with F̃1,

F̃2, and F̃3 corresponding to G̃E , G̃M , and F̃3, respectively.
Expressing σR in terms of GE and GM , and dropping terms
of order α2 yields

σR = τG2
M + εG2

E + 2εGEδGE + 2τGMδGM . (6)

Because GM is a factor of μp larger than GE , the term
2εGEδGE is dropped in Eq. (6), and σR can now be

written as

σR = τG2
M + εG2

E + 2τGMδGM . (7)

Because of the linearity of the Rosenbluth plots based on
the analyses of Refs. [71,72], GM was parameterized linearly
in ε as δGM = [a(Q2) + εb(Q2)]GM (Q2), where a(Q2) and
b(Q2) are functions of Q2. Since a(Q2)G2

M � τG2
M , σR can

now be written as

σR = τG2
M + ε

(
G2

E + 2τbG2
M

)
, (8)

with the proton’s FFs ratio squared as extracted from the
Rosenbluth separation method, written as(

G̃E

G̃M

)2

= R2
LT =

(
GE

GM

)2

+ 2τb(Q2), (9)

and that extracted from the recoil-polarization method ex-
pressed as

GE

GM
= Rp = GE

GM

(
1 − ε(1 − ε)

1 + ε
Y2γ

)
. (10)

Because the term ε(1−ε)
1+ε

Y2γ � 1.0, Rp was approximated as

Rp = GE

GM
= GE

GM
. (11)

Solving for the TPE correction slope b(Q2) using Eqs. (9) and
(11) yields

b(Q2) = 1

2τ

(
R2

LT − R2
p

)
, (12)

where R2
LT and R2

p were parametrized as a third-order polyno-
mial in Q2 as

R2
LT = μ−2

p [1.0736 − 0.1864Q2 + 0.0358Q4 + 0.0007Q6]

(13)

and

R2
p = μ−2

p [1.1184 − 0.3256Q2 + 0.0323Q4 − 0.0014Q6],

(14)

with the coefficient b(Q2) given by

b(Q2) =
[−0.0101

Q2
+ 0.0314 + 0.0008Q2 + 0.0005Q4

]
.

(15)

In their later analysis [74], Borisyuk and Kobushkin ap-
plied the Regge limit where the TPE amplitude δGM vanishes
as ε → 1, yielding

δGM/GM = a(Q2)(1 − ε) (16)

and

σR = G2
M

[
τ + εR2

p + 2τa(Q2)(1 − ε)
]
. (17)

The reduced cross section σR as expressed in Eq. (17) yields
the following relations,

(G̃E )2 = G2
E − 2τa(Q2)G2

M, (18a)

(G̃M )2 = [1 + 2a(Q2)]G2
M, (18b)
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with a cross-section slope or R2
LT:

R2
LT = R2

p − 2τa(Q2)

[1 + 2a(Q2)]
, (19)

and a TPE coefficient a(Q2):

a(Q2) = R2
p − R2

LT

2
(
τ + R2

LT

) . (20)

Based on the theoretical framework of Ref. [74], Qattan
et al. [79] fitted the world data on σR for Q2 � 0.39 (GeV/c)2

to the form:

σR = G2
M

(
1 + ε

τ
R2

p

)
+ 2a(Q2)G2

M (1 − ε), (21)

with GM and the TPE coefficient a(Q2) being the parame-
ters of the fit. The ratio Rp was constrained to its value as
given by Gayou [7], and the TPE parameter a(Q2) was best
parametrized as

a(Q2) = [−0.0191
√

Q2 ± 0.0014
√

Q2 ± 0.003]. (22)

In later analysis, and following the same procedure of
Ref. [79], Qattan et al. [82] performed an improved extrac-
tion of the proton FFs and the TPE parameter a(Q2). They
included the data sets used in Ref. [80] and additional low-
Q2 data from Refs. [17,98]. They also used their improved
parametrization of μpRp given by

μpRp = 1

1 + 0.1430Q2 − 0.0086Q4 + 0.0072Q6
, (23)

with an absolute uncertainty in the fit δ2
Rp

(Q2) =
μ−2

p {(0.006)2 + [0.015ln(1 + Q2)]2}. The TPE parameter
a(Q2) was best parametrized as a(Q2) = [0.016 −
0.030

√
Q2], with Q2 in (GeV/c)2, and the ratio Re+e−

was extracted using the form

Re+e− (ε, Q2) = 1 − δ2γ

1 + δ2γ

≈ 1 − 4a(Q2)(1 − ε)(
1 + ε

τ
R2

p

) . (24)

Recently [92], Schmidt extracted the ratio Re+e− assuming
linear TPE correction to σR similar in form to that proposed in
Ref. [74], Eq. (21):

σR = G2
M + ε

τ
G2

E − δ(Q2)(1 − ε) = (G̃M )2 + ε

τ
(G̃E )2.

(25)

Note that δ = −2a(Q2)G2
M when compared to Eq. (21).

Comparing similar terms on both sides of Eq. (25), we
obtain

G2
E = (G̃E )2 − τδ, (26a)

G2
M = (G̃M )2 + δ. (26b)

Dividing both sides of Eq. (25), and solving for δ, we get

δ(Q2) = μ2
p(G̃E )2 − R2

FF (G̃M )2

R2
FF + μ2

pτ
, (27)

where RFF = μpRp. The ratio Re+e− is then constructed as

Re+e− = 1 − 2δ2γ = 1 + 2δ(1 − ε)

(G̃E )2 + ε
τ

(G̃M )2
, (28)

using the recoil polarization ratio RFF from Gayou [7],
and the G̃(E ,M ) parametrizations from Bernauer [17], Ar-
rington [22], and dipole parametrization GD(Q2) = (1 +
Q2/[0.71(GeV/c)2])−2 for comparison.

B. New simple phenomenological hard TPE parametrization

In this section, we discuss the procedure used to extract
the ratio Re+e− as a function of ε at fixed Q2 value based on a
new and simple phenomenological hard TPE parametrization.
The procedure, together with the constraints and assumptions
used, is outlined below:

(1) We relate the proton’s FFs as obtained using the
Rosenbluth separation (LT) method to the true FFs as

G̃E = GE + δGE , (29a)

G̃M = GM + δGM, (29b)

where δG(E ,M ) are small corrections and functions of
Q2 only.

(2) The reduced cross section σR, Eq. (1), can now be
written as

σR = G̃2
M + ε

τ
G̃2

E = (GM + δGM )2 + ε

τ
(GE + δGE )2.

(30)
(3) Expanding and collecting similar terms, we have

σR =
[

G2
M + ε

τ
G2

E

]
+ (δGM )2 + 2GMδGM

+ ε

τ
[(δGE )2 + 2GEδGE ], (31)

where now the TPE correction F (ε, Q2) = (δGM )2 +
2GMδGM + ε

τ
[(δGE )2 + 2GEδGE ].

(4) By imposing the Regge limit, where F (ε = 1, Q2) →
0, as ε → 1, we get the following constraint:

(δGM )2 + 2GMδGM = − 1

τ
[(δGE )2 + 2GEδGE ].

(32)
(5) Substituting the above constraint back in Eq. (31), we

get

σR =
[

G2
M + ε

τ
G2

E

]
+ [(δGM )2 + 2GMδGM](1 − ε).

(33)
(6) Completing the square by adding and subtracting G2

M
in the second term of Eq. (33) above, and using G̃M =
GM + δGM , we get

σR =
[

G2
M + ε

τ
G2

E

]
+ [

G̃2
M − G2

M

]
(1 − ε)

= σBorn + F (ε, Q2), (34)
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or alternatively

σR =
[

G2
M + ε

τ
G2

E

]
− 1

τ

[
G̃2

E − G2
E

]
(1 − ε)

= σBorn + F (ε, Q2). (35)

(7) Finally, we define the fractional hard TPE correction
to σR or δ2γ as

δ2γ = F (ε, Q2)

σBorn
=

[
G̃2

M − G2
M

]
(1 − ε)

σBorn
, (36)

and use it to construct the ratio Re+e− (ε, Q2) = 1 −
2δ2γ .

III. RESULTS AND DISCUSSION

In this section, we present our results of the ratio Re+e−

as extracted using our new parametrization of the TPE con-
tributions to electron-proton elastic scattering F (ε, Q2). Our
TPE parametrization is rather simple as it only requires the
use of suitable global fits of both the Rosenbluth magnetic
FF G̃M , and the true magnetic FF GM , Eq. (34), along with
their associated uncertainties, or alternatively, one can use
the electric FFs G̃E and GE as in Eq. (35). In addition,
we compare our results to the recent extraction of Schmidt
[92]. Our TPE parametrization is linear in ε, and vanishes
as ε → 1, similar to that used in Refs. [74,92]. However,
the Q2 dependence proposed in all three parametrizations is
different. The Q2 dependence proposed in Ref. [74] takes on
the form 2a(Q2)G2

M , Eq. (21), and in Ref. [92] it is given by
−δ(Q2), Eq. (27). In a typical analysis, the Q2 dependence
at a fixed Q2 point is usually extracted by fitting the exper-
imental electron-proton cross section to Eq. (3). Comparing
the three different parametrizations, we see that 2a(Q2)G2

M =
−δ(Q2) = [(G̃M/GM )2 − 1]G2

M .
It should be noted here that parametrizations where the

TPE correction applied is linear or roughly linear function
times G2

M will yield a ratio Re+e− that exhibits strong non-
linearity with ε at low ε and Q2. With increasing Q2, the
ratio increases slowly, becomes roughly linear, and changes
sign, above unity, where it behaves linearly with ε in good
qualitative agreement with many previous phenomenological
extractions, and TPE hadronic calculations [80,85,90]. In ad-
dition, the TPE contribution relative to G2

M is linear, but G2
E

dominates σR at very low Q2, except for ε → 0, strongly
suppressing TPE as a fractional contribution as one moves
away from ε = 0.

In this analysis, we will use Eq. (34). While there are sev-
eral unpolarized cross section global fits available for G̃M , we
will use, for consistency with the choice of parametrizations
used in Ref. [92], the Arrington fit [22] and the Bernauer fit
[17] (fit to the Mainz and World unpolarized cross-section
measurements including Feshbach-Coulomb correction and
using the Padé model), referred to throughout the text as “A”
and “B,” respectively, for comparison. The true magnetic FF
GM is usually extracted using parametrizations which account
for hard TPE corrections. In this work, we first extract GM

using an unbiased approach which does not include any TPE
corrections and then use GM parametrization of Bernauer

[17] (fit to the Mainz, World unpolarized cross section,
and polarized ratio measurements including both Feshbach-
Coulomb correction and phenomenological TPE model using
the Padé model), referred to as “B2γ ” for comparison. For
our extractions, we will use the recoil polarization ratio Rp

and its associated uncertainty from Eq. (23). Therefore, our
extraction of Re+e− involves four different versions where we
use the following: (i) our TPE parametrization along with
our GM and Bernauer G̃M “This Work + B,” (ii) our TPE
parametrization along with our GM and Arrington G̃M “This
Work + A,” (iii) our TPE parametrization along with Bernauer
G̃M and Bernauer GM “This Work + B + B2γ ,” and (iv) our
TPE parametrization along with Arrington G̃M and Bernauer
GM “This Work + A + B2γ .” In addition, we compare our
ratio Re+e− to that extracted based on the parametrization of
Schmidt, Eq. (28), where we use (i) Bernauer G̃(E ,M ) and
Gayou RFF “Schmidt + B” and (ii) Arrington G̃(E ,M ) and
Gayou RFF “Schmidt + A.”

We first start with our GM extraction and global fit. To
extract GM , we make use of the assumption that for ε → 1,
the TPE correction to σR vanishes (Regge limit) or σR(ε =
1, Q2) = [G2

M + G2
E/τ ]. In addition, because of the experi-

mentally observed linearity of the Rosenbluth plots where
σR data show a linear behavior in ε, suggesting the fit σR =
[c1(Q2) + εc2(Q2)]. Therefore, for a fixed Q2 value, we lin-
ear fit σR to ε and extract the constants c1(Q2) and c2(Q2).
Equating the two expressions for σR(ε = 1, Q2) yields

G2
M = c1(Q2) + c2(Q2)(

1 + R2
p

τ

) , (37)

where Rp is constrained to its value, along with its associated
uncertainty, as given by Eq. (23).

World data on unpolarized σR used in analysis of
Refs. [82,83], as well as new data from Refs. [12–15,17,98–
101] were used, and fitted to extract G2

M based on Eq. (37) for
a total of 142 Q2 points up to Q2 = 5.2 (GeV/c)2. For our GM

global fit, we fitted the extracted GM/μp values to a functional
form similar to that proposed by Kelly [102]:

GM

μp
= 1 + p1Q2

[1 + p2Q2 + p3Q4 + p4Q6]
, (38)

with pi(i = 1 − 4) being the parameters of the fit. The fitting
procedure was based on the Levenberg-Marquardt nonlinear
least squares fitting method with the reduced χ2 (χ2

ν = χ2/ν)
defined as

χ2
ν = 1

ν

np=142∑
i=1

[(GMi/μp)meas. − (GMi/μp)comp.]2/σ 2
i ,

(39)

where ν = (np − nparameters ) is the number of degrees of free-
dom. The χ2

ν value of the fit is reasonable and it equals
χ2

ν = 0.67. The results of our GM/μp fit are listed in Table I.
In an attempt to improve the χ2

ν value obtained, we fitted to the
functional form proposed by Arrington [22], which includes
more fitting parameters, but the χ2

ν value did not improve sig-
nificantly. We concluded that the obtained χ2

ν value is driven
mainly by the tension between the different data sets and the
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TABLE I. Fit parameters for GM (Q2)/μp using Eq. (38).

Quantity p1 p2 p3 p4 χ 2
ν

GM/μp (0.2912 ± 0.0223) (3.1970 ± 0.0256) (2.3394 ± 0.07322) (0.5881 ± 0.0414) 0.67

scatter of the data points, rather than a limitation of the fit
function used.

Figure 1 shows the values of Gp
M/μpGD extracted from

this work (open dark-green squares), and our new Gp
M/μpGD

global fit (solid black line) along with its error bands (long-
dashed black lines), as computed by using the covariance
matrix of the fit. In addition, we also compare our results
to the values as extracted based on hadronic calculations,
labeled “AMT-Hadronic” [104] and “VAMZ” [103], and fits
from previous phenomenological analyses labeled “Bernauer”
[17], “Arrington-Y2γ ” [75], and “Puckett” [10]. At low Q2,
our results as well as our new fit are significantly above most
previous fits. This clearly reflects the discrepancy between the
Mainz data, which yield GM values which are systematically
2–5% larger than previous world data [17]. At low Q2 values,
this corresponds to only a small difference in the cross sec-
tion at large scattering angle. However, at larger Q2 values
of the Mainz experiment, this corresponds to a significant
difference in the measured cross sections. Note that except for
the Bernauer result, most of the previous phenomenological

0.9

0.95

1

1.05

1.1

1.15

1.2

10
-2

10
-1

1 10
Q2 [(GeV/c)2]

G
Mp

 /μ
p
G

D

This Work
New Fit
VAMZ
AMT-Hadronic
Bernauer
Arrington-Y2γ
Puckett

FIG. 1. Gp
M/μpGD(Q2) as obtained by using Eq. (37) and the

parametrization of the ratio Rp from Eq. (23) (open dark-green
squares). Our global fit of Gp

M/μpGD(Q2) (New Fit) is shown as
a solid black line, along with its error bands (long-dashed black
line). In addition, we compare the results to the extractions from
several previous TPE calculations and phenomenological fits: VAMZ
[103] (solid magenta line), AMT [104] (dotted red line), Bernauer
[17] (long-dashed red line), Arrington Y2γ [75] (dash-dotted magenta
line), and Puckett [10] (large-dotted blue line).

extractions of the FFs and TPE contributions were mainly
focused on large Q2 values, and so they did not always worry
about how well the parametrizations of Rp reproduced low Q2

data.
As a quick check on the validity of using Bernauer’s GM

parametrization as an input for GM in our parametrization,
[(G̃M/GM )2 − 1]G2

M (1 − ε), and whether we are introducing
an additional TPE correction on the top of the correction we
are applying for the kinematics range considered in this work,
we compared the Q2 dependence term in our parametrization
to that of Ref. [74] or 2a(Q2)G2

M = [(G̃M/GM )2 − 1]G2
M , and

calculated the a(Q2) values using Bernauer’s G̃M and GM

parametrizations.
Our a(Q2) values obtained (“This Work”) and those pre-

dicted by Bernauer (“Bernauer”) are shown in Fig. 2. In
addition, we show curves representing a(Q2) as determined
in previous analyses from Refs. [26] “BMT,” [104] “AMT,”
[79] “QAA1,” and [82] “QAA2.” It should be noted here
that Bernauer [17] applied a linear TPE correction of the
form δ2γ = −c1ln(c2Q2 + 1)(1 − ε), on top of the low-Q2

-0.15

-0.1

-0.05

0

0.05

10
-2

10
-1

1 10

Q2[(GeV/c)2]

a(
Q

2 )

QAA1

QAA2

Bernauer

BMT Correction

AMT Correction

This Work

FIG. 2. The TPE coefficient a(Q2) as obtained using our
parametrization assuming G̃M and GM global fits from Ref. [17]
“This Work” (solid black line). Also shown are curves representing
a(Q2) as determined in previous analyses from Refs. [26] “BMT”
(dash-dotted magenta line), [104] “AMT” (dash-dotted blue line),
[79] “QAA1”(dotted red line), [82] “QAA2”(large-dashed blue line),
and [17] “Bernauer” (large-dashed magenta line). Note that we do
not show extractions of a(Q2) for the calculations or extraction of
Ref. [17] at very low Q2, as the ε dependence is quite different in our
parametrization when the cross sections are dominated by the charge
form factor. See text.
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Feshbach-Coulomb correction δFeshbach. Here c(1,2) are con-
stants. However, we do not show extractions of a(Q2) for the
calculations or extraction of Ref. [17] at very low Q2 as the ε

dependence is quite different in our parametrization compared
to that of Bernauer when the cross sections are dominated by
the charge form factor.

Our values are in very good agreement with those of
Bernauer, but with a small difference observed below Q2 =
0.60 (GeV/c)2, reaching a maximum value of 1.5% at Q2 =
0.10(GeV/c)2. This is clearly attributed to the additional low-
Q2 Feshbach-Coulomb correction applied by Bernauer. For
the maximum difference at Q2 = 0.10 (GeV/c)2, this sug-
gests a 1.5% (3.0% δ2γ ) reduction in our δ2γ (Re+e− ) compared
to that of Bernauer, which is very small. Therefore, any un-
certainty introduced in our Re+e− as a result of using Bernauer
GM global fit is very small and can easily be accounted for
within our quoted error bands on Re+e− .

Figure 3 shows the ratio Re+e− as a function of ε extracted
from this work, four different versions of the extraction, at
the Q2 values of the three new precise measurements by the
CLAS collaboration [105], VEPP-3 Collaboration [106], and
OLYMPUS Collaboration [107]. Note that for the experi-
mental data, the measurement and the Q2 value(s) are given
in (GeV/c)2. Also shown are the extractions based on the
Schmidt parametrization [92]. In addition, we show the error
bands on our “This Work + B + B2γ ” extraction, shown as
a dotted magenta line, as computed by propagating the errors
on δ2γ in Eq. (36) using the uncertainties on G̃M and GM from
Ref. [17], and the uncertainty on the recoil polarization ratio
δRp (very negligible) from Eq. (23).

For Re+e− extraction based on the Schmidt parametriza-
tion [92], Eq. (28), the ratio Re+e− behaves linearly with
ε, with small nonlinearity observed at low Q2 points as
expected. However, the “Schmidt + B” version predicts
a ratio below unity, which changes sign (above unity) at
Q2 = 0.2 (GeV/c)2, then starts to decrease slowly again, and
changes sign (below unity again) with increasing Q2. On
the other hand, Re+e− as predicted using the “Schmidt + A”
version is always above unity and increases with increasing
Q2.

For Re+e− extraction based on our parametrization, the ratio
Re+e− is always above unity as predicted by all versions of
the extraction, except for the “This Work + B” extraction
for Q2 � 1.0 (GeV/c)2. The ratio Re+e− is clearly sensitive to
input G̃M and GM parametrizations, with extractions using our
GM parametrization, “This Work + B” and “This Work + A,”
yielding larger ratio, with stronger nonlinearity at low ε for
Q2 � 0.30 (GeV/c)2, than those obtained using Bernauer GM ,
“This Work + B + B2γ ” and “This Work + A + B2γ .” In addi-
tion, and while most extractions predict a ratio that increases
with increasing Q2, the “This Work + B” extraction behaves
differently as Re+e− increases up to Q2 = 0.2 (GeV/c)2, and
then it starts to decrease with increasing Q2 value where it
changes sign (below unity) for Q2 � 1.0 (GeV/c)2.

We now compare our extractions of the ratio Re+e− along
with their associated error bands (calculated only for the
“This Work + B + B2γ ” extraction, and shown as dotted
magenta lines), to the world’s data with focus primarily on
the very recent direct and precise measurements from the
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FIG. 3. The ratio Re+e− as a function of ε as extracted from this
work (four different versions of the extraction) at the Q2 values listed
in the figure: “This Work + B” (solid black line), “This Work + A”
(dashed black line), “This Work + B + B2γ ” (solid magenta line),
and “This Work + A + B2γ ” (dashed magenta line). The error bands
on Re+e− as extracted from “This Work + B + B2γ ” are shown as
dotted magenta lines. Also shown is Re+e− as extracted based on the
parametrization of Ref. [92]: “Schmidt + B” (solid dark-green line),
and “Schmidt + A” (dash-dotted red line). See text for details. The
data points are direct measurements of Re+e− from Refs. [105–107].
For the world data, the measurement and the Q2 value(s) are given in
(GeV/c)2.

CLAS Collaboration [105], VEPP-3 Collaboration [106], and
OLYMPUS Collaboration [107] at the Q2 value listed in the
figure. Note, however, that all three measurements measured
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the ratio Re+e− for Q2 < 2.1 (GeV/c)2 which is still below
where the discrepancy on the ratio μpRp is significant. Both
CLAS and VEPP-3 data provided precise measurements of
Re+e− at Q2 ≈ 1.0 and 1.5 (GeV/c)2. The reported ratio Re+e−

is larger than unity and exhibits clear ε dependence consistent
with the FFs discrepancy at Q2 values of 1.0-1.6 (GeV/c)2.
The data provided evidence for a sizable TPE contribution
at larger Q2 values, with clear deviation and change of sign
from the exact calculations, high proton mass limit, at Q2 = 0
[108], and finite-Q2 calculations for a point-proton [23]. The
Re+e− ratio as reported by the VEPP-3 Collaboration, however,
exhibits a sharper Q2 dependence, which tends to disappear
when the results are compared to calculations that increase
with Q2 value. The OLYMPUS experiment measured the ratio
Re+e− at Q2 values of 0.165-2.038 (GeV/c)2. The ratio is
below unity at high ε, and then it changes sign (above unity)
and starts to increase gradually reaching 2% at ε = 0.46. In
conclusion, the results of these three recent measurements
are in good agreement with each other within statistical and
systematic uncertainties.

As we stated before, our parametrization is highly sensitive
to the choice of input FFs parametrizations used. All extrac-
tions of the ratio Re+e− based on our parametrization, with its
four different versions, and those of Schmidt, are in generally
good agreement with existing data at large ε and for all the Q2

points shown within the statistical and systematic uncertain-
ties of these measurements, with the exception of the high ε

measurement by CLAS at Q2 = 0.336 (GeV/c)2, and “some”
of the high ε measurements by OLYMPUS taken in the range
0.6 � Q2 � 2.038 (GeV/c)2, where these measurements are
below the predicted Re+e− by some versions of the extractions.
However, we believe that emphasis should only be placed
on measurements taken at low-ε points as an evidence for
hard TPE correction. Therefore, we see clearly that our TPE
parametrization which uses Bernauer GM and Bernauer G̃M as
an input FFs or “This Work + B + B2γ ,” agrees remarkably
well, within the error bands of the extraction shown as dotted
magenta lines, with direct measurements taken at low-ε points
for Q2 = 1.0 and 1.50 (GeV/c)2.

Finally, the size of hard-TPE correction predicted in this
work, and in several previous phenomenological extractions
and TPE hadronic calculations is largely driven by the differ-
ent assumptions used and constraints imposed in the analysis.
Therefore, calculating the size of hard TPE correction in a
model-independent way is very difficult, and the assumption
that hard TPE corrections could account for the discrepancy
on the ratio μpRp is still an open question, as more measure-
ments of the ratio Re+e− for Q2 > 2.1 (GeV/c)2 are clearly

needed in the region where the discrepancy on the ratio μpRp

is significant.

IV. CONCLUSIONS

In conclusion, we presented a new extraction of the
positron-proton and electron-proton elastic scattering cross-
section ratio Re+e− based on a new parametrization of the
TPE corrections to electron-proton elastic scattering cross
section. Our TPE parametrization, Eq. (35), is rather sim-
ple as it only requires the use of suitable global fits of
both the Rosenbluth magnetic FF G̃M , and the true magnetic
FF GM , Eq. (34), along with their associated uncertainties.
Alternatively, one can use the electric FFs G̃E and GE as
in Eq. (35). We compared our results to Re+e− extractions
from Ref. [92], and world’s data on Re+e− with emphasis
mainly on the recent and precise direct measurements from
Refs. [105–107].

In general, all extractions of the ratio Re+e− based on our
parametrization, and that of Ref. [92], are in generally good
agreement with existing world data at large ε and for all the Q2

points shown, within the statistical and systematic uncertain-
ties of these measurements, with the exception of the high-ε
measurement by CLAS at Q2 = 0.336 (GeV/c)2 and some of
the high-ε measurements by OLYMPUS taken in the range
0.6 � Q2 � 2.038 (GeV/c)2, where these measurements are
below the predicted Re+e− by some versions of the extractions.
With emphasis placed only on measurements taken at low-ε
points as an evidence for hard TPE correction, we find that our
TPE parametrization which uses Bernauer GM and G̃M [17]
as an input FFs, “This Work + B + B2γ ,” agrees remarkably
well, within the error bands of the extraction, with direct
measurements taken at low ε points for Q2 = 1.0 and 1.50
(GeV/c)2.

Finally, it should be emphasized here that calculating the
size of hard TPE correction in a model-independent way is
very difficult as the results are largely governed by the differ-
ent assumptions used and constraints imposed in the analysis
and calculations. Therefore, the assumption that hard TPE
corrections could account for the discrepancy on the ratio
μpRp is still an open question. Clearly, more measurements
of the ratio Re+e− for Q2 > 2.1 (GeV/c)2 are needed, in
the region where the discrepancy on the FFs ratio μpRp is
significant.
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