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Energy loss of heavy quarkonia in hot QCD plasmas
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We compute the energy loss of heavy quarkonia in high-temperature QCD plasmas and investigate the energy-
loss effects on quarkonium suppression. Based on the effective vertex derived from the Bethe-Salpeter amplitude
for quarkonium, the collisional and radiative energy loss are determined by quarkonium-gluon elastic scattering
and the associated gluon-bremsstrahlung, respectively. In the energy regime E < m2

ϒ/T the collisional energy
loss is dominant over the radiative one, and the total energy loss increases with the plasma temperature and
the initial energy of quarkonium. Our numerical analysis indicates that the medium-induced energy loss of the
ϒ(1S) results in stronger suppression at higher momentum, although the energy-loss effects are found to be small
compared with the previous estimates of quarkonium dissociation in heavy-ion collisions.
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I. INTRODUCTION

The depletion of high-momentum particle production with
respect to pp collisions signals the formation of a quark-gluon
plasma (QGP) in heavy-ion collisions. Especially, heavy
quarks and quarkonia which are mostly formed from the initial
fusion of partons at an early stage are important probes to
investigate the transport and thermal properties of the high-
temperature and -density matter. While quarkonia suppression
can be influenced by various mechanisms including disso-
ciation and energy loss, the energy loss of heavy quarkonia
has not been computed and is not described by the heavy
quark-antiquark potential.

Energetic particles traversing QCD plasmas suffer energy
loss by elastic scattering or gluon-bremsstrahlung: drag and
diffusion cause particles to lose their energies, and incoming
high-energy particles can be radiatively deprived of fractions
of their energies. There have been many studies about the
energy loss of partons. The diffusion processes are dominated
by t-channel gluon exchange with soft momentum transfer
which requires hard-thermal-loop resummation [1,2]. In the
presence of multiple scatterings, destructive interference oc-
curs when the formation time is large compared with the
mean-free path [3–6]. The radiative energy loss is naively
of order g2 higher than the collisional one, but there can
be enhancement in the limit of soft and collinear emission:
both radiative and collisional processes of heavy quarks can
be of the same order in the coupling constant, − dE

dx ∼ g4T 2

neglecting logarithmic corrections [2,7]. The radiative energy
loss is dominant over the collisional one for ultrarelativistic
partons, whereas the collisional energy loss is not negligible
for heavy quarks [8–10].
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We are interested in the energy loss of a color singlet
quarkonium in QCD media such as QGPs or large nuclei.
After production at an early stage of heavy-ion collisions,
quarkonia undergo not only dissociation (and regeneration)
but also energy loss. A quarkonium state loses its energy by
elastic scattering (g + ϒ → g + ϒ) which can induce gluon
radiation. Quarkonium diffusion and energy loss have been
discussed with potential nonrelativistic QCD (pNRQCD) in
the regime Eb � T [11]. In this work, we will use a formalism
developed in our previous work [12]: for quarkonium disso-
ciation through the color-dipole interaction [13], an effective
vertex based on the Bethe-Salpeter amplitude has been in-
troduced to calculate the next-to-leading order cross sections
which agree with the results of pNRQCD in the regime T �
Eb [14]. In the current kinematic range up to qT ∼ 30 GeV
[15], heavy quarkonia are not ultrarelativistic (E < m2

ϒ/T )
and thus the collisional energy loss can be considerable.

We will discuss how the energy loss of heavy quarkonia
can be calculated using our formalism of the effective vertex,
and estimate the energy-loss effects on quarkonium spectrum
in heavy-ion collisions. In Sec. II, we calculate the momentum
diffusion coefficient and the collisional energy loss of weakly
bound quarkonia at high temperature. In Sec. III, we discuss
the radiative energy loss by gluon-bremsstrahlung associated
with quarkonium-gluon elastic scattering. Shifting the trans-
verse momentum spectra of the ϒ(1S) by its mean energy loss,
we estimate the energy-loss effects on the nuclear modifica-
tion factor in Sec. IV. Finally, a summary is given in Sec. V.

II. COLLISIONAL ENERGY LOSS

We are interested in diffusion and energy loss of weakly
bound quarkonia in a high-temperature regime where the
binding energy is smaller than the temperature scale. Due
to the high melting temperature Tmelt ≈ 600 MeV [16], the
ground state of bottomonium survives as a color singlet and
undergoes diffusion in QGP below Tmelt.
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FIG. 1. Elastic scattering (g + ϒ → g + ϒ) contributing to quarkonium diffusion and energy loss.

To determine the momentum diffusion coefficient of heavy
quarkonia, we consider quarkonium-gluon elastic scattering.
In Figs. 1(a) and 1(b), the dipole interaction of color charge
with gluon can be described by the following effective vertex
derived from the Bethe-Salpeter amplitude [17]:

V μν (K ) = −g

√
mϒ

Nc

[
k · ∂ψ (p)

∂ p
δμ0 + k0

∂ψ (p)

∂ pi
δμi

]

× δν j 1 + γ 0

2
γ j 1 − γ 0

2
T a, (1)

where p = (p1 − p2)/2 is the relative momentum between
heavy quark and antiquark. With two effective vertices and
heavy quark propagators �(P), the quarkonium-gluon elastic
scattering in Fig. 1(a) has the following amplitude [11]:

Mμνρσ (a)
el =

∫
d4P

(2π )4
�(P1)V μν (K1)�(P2)V ρσ∗(K2),

= i
g2mϒ

2Nc
δabk10k20

∫
d3 p

(2π )3

∂ψ (p)

∂ pi
δμi ∂ψ (p)

∂ pk
δρk

× δν jδσ l Tr[γ jγ l ]

2
(
k10 − Eb − p2

m

) , (2)

and similarly for Fig. 1(b) except the denominator has
2(−k20 − Eb − p2

m ). For k10, k20 � Eb, the total matrix ele-
ment squared (averaged over the quarkonium polarization) is

|Mel|2 = 32

81
g4m2

ϒ

(
1 + cos2 θk1k2

)

×
[∫

d3 p
(2π )3

(
p2

m
+ Eb

)
|∇ψ |2

]2

, (3)

where θk1k2 is the angle between k1 and k2.
The momentum diffusion coefficient is defined by the

mean-squared momentum transfer per unit time [8],

3κ = 1

2q10

∫
d3q2

(2π )32q20

∫
d3k1

(2π )32k10

∫
d3k2

(2π )32k20

× n(k1)[1 + n(k2)](2π )4δ4(K1 + Q1

− K2 − Q2)|Mel|2(k1 − k2)2, (4)

where n(k) = 1/(ek/T − 1) is a thermal distribution of
gluon. Using a Coulombic bound state, |∇ψ1S (p)|2 =
210πa7

0 p2/[(a0 p)2 + 1]6, with a2
0 = 1/(mEb) which is satis-

fied for the Coulombic binding energy, we have

κ = 128πg4T 5

1215m2
. (5)

The diffusion coefficient of quarkonium is suppressed by
T 2/m2 compared with the heavy quark diffusion κHQ ∼ g4T 3

[8]. In the QGP temperature region, Eq. (5) is of the same
order of magnitude as the results in Ref. [11] but is much
smaller than the momentum broadening rate for tightly bound
quarkonia in Ref. [18].

In the energy regime E < m2
ϒ/T , the collisional energy

loss per unit length is obtained by the interaction rate of
quarkonium weighted by (k2 − k1)/v (v is the quarkonium
velocity) [1,2]

−dE

dx
= 1

2q10

∫
d3q2

(2π )32q20

∫
d3k1

(2π )32k10

×
∫

d3k2

(2π )32k20
n(k1)[1 + n(k2)](2π )4

× δ4(K1 + Q1 − K2 − Q2)|Mel|2 (k2 − k1)

v
, (6)

where cos θk1k2 in Eq. (3) is rewritten in a covariant form,

cos θk1k2 = 1 − (K1 · K2)m2
ϒ

(K1 · Q1)(K2 · Q1)
. (7)

The q2 integration is done by the three-dimensional δ

function, and the remaining phase-space integral is over
k1, k2, θq1k1 , θq1k2 , and φq1;k1k2 , where θq1k1 (θq1k2 ) is the
polar angle between q1 and k1 (k2) and φq1;k1k2 is the
azimuthal angle between the q1-k1 and q1-k2 planes. We in-
troduce a dummy variable,

∫
dω δ(ω − k1 + vk1 cos θq1k1 ) =

1 [8] and integrate over the polar angles using the re-
maining δ functions. From Q2

2 = (Q1 − L)2 with the mo-
mentum transfer L, we obtain Q1 · L = L2

2 . Then k1 − k2 =
vk1 cos θq1k1 − vk2 cos θq1k2 − L2

2q10
and the energy conserva-

tion yields δ(k2 − ω − vk2 cos θq1k2 − L2

2q10
), where the last

term − L2

2q10
is negligible in comparison with the other terms

of order T . Thus, with k1 · k2 = k1k2(cos θq1k1 cos θq1k2 +
sin θq1k1 sin θq1k2 cos φq1;k1k2 ), the energy loss is

−dE

dx
= 1

16E (2π )4v3

∫
dω

∫ ω
1−v

ω
1+v

dk1

∫ ω
1−v

ω
1+v

dk2

×
∫

dφq1;k1k2 n(k1)[1 + n(k2)]

× (k2 − k1)

q20
|Mel|2

∣∣∣∣
cos θq1k1 = k1−ω

k1v
, cos θq1k2 = k2−ω

k2v

, (8)
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FIG. 2. The collisional and radiative energy loss of the ϒ(1S)
in a plasma with temperature T , as a function of its initial energy.
αs = 0.3 is used.

which can be performed numerically by using the binding
energy computed in lattice QCD [19].

The effective vertex of Eq. (1) is based on the dipole
interaction of color charge with gluon which is valid when the
quarkonium size is smaller than the inverse energy transfer of
the gluon. Hence, we consider the quarkonium energy loss
at a kinematic regime where the temperature and binding
energy scales are smaller than 1

a0
≈ 1–1.5 GeV. In principle,

there can be energy loss of the virtual heavy quarks in Fig. 1
[11] and energy loss coming from the color octet state prior
to quarkonium formation. Assuming that the lifetime of the
virtual heavy quarks (in the large-Nc limit) and the color octet
state is proportional to the formation time of the quarkonium
which is related to the inverse of the binding energy, the square
of the momentum transfer of the virtual heavy quarks and the
initial color octet state is roughly of order κHQ

Eb
∼ g4T 3

Eb
. In the

regime 1
r ∼ mg2 > T , Eb ∼ mg4 > g2T , and the momentum

transfer is smaller than the gT scale. Since the momentum
scale of the heavy quarks is at least of order T , we ignore the
energy loss by the initial color octet state as well as the virtual
heavy quark diffusion in this work.

Figure 2 shows our numerical results of the ϒ(1S) energy
loss with m = 4.8 GeV, mϒ = 9.46 GeV, and αs = 0.3. The
collisional energy loss of the ϒ(1S) increases with its energy
and the plasma temperature, and it is less than about half of
the bottom quark energy loss [2,7,10].

III. RADIATIVE ENERGY LOSS

Quarkonia undergoing quarkonium-gluon elastic scattering
induce gluon radiation, and the amount of the emitted gluon
energy is the radiative energy loss. In terms of the elastic
scattering defined on the left-hand side of Fig. 1, the lowest-
order contribution to the energy loss is from the processes in
Fig. 3. Gluon emission from heavy quark lines is ignored in

(a)
K1 K2

Q1 Q2

R

(b)
K1 K2

Q1 Q2

R

FIG. 3. Gluon-bremsstrahlung associated with quarkonium-
gluon elastic scattering (Fig. 1).

the following light-cone coordinates [20]:

K1 =
[√

s − m2
ϒ√
s
, 0, 0

]
,

R =
⎡
⎣z

(√
s − m2

ϒ√
s

)
,

r2
T

z
(√

s − m2
ϒ√
s

) , rT

⎤
⎦, (9)

Q1 =
[

m2
ϒ√
s
,
√

s, 0
]
, L = [l+, l−, lT ],

where z is the momentum fraction of the emitted gluon rel-
ative to the maximum available, and the components of the
momentum transfer L are determined by the on-shell condi-
tions, K2

2 = (K1 + L − R)2 = 0 and Q2
2 = (Q1 − L)2 = m2

ϒ .
In the gauge A+ = 0, the polarization of the radiated gluon
is specified by ε · R = 0 and ε+ = 0,

ε =
⎡
⎣0,

2εT · rT

z
(√

s − m2
ϒ√
s

) , εT

⎤
⎦. (10)

For soft gluon emission, the radiation processes are factorized
into elastic scattering and gluon emission whose amplitude
is the emitted gluon field multiplied by an additional gluon
propagator. In the limit rT � lT , the leading contribution is as
follows:

Mrad = 2gCz
εT · rT

r2
T

Mel, (11)

where C is the color factor associated with Fig. 3 divided by
the factor in the absence of radiation (C2 = 3). The energy of
the emitted gluon is small compared with that of the parent
gluon for soft radiation, but it is still assumed to be larger than
its transverse momentum.

The radiative energy loss associated with quarkonium-
gluon elastic scattering can be determined by the emitted
gluon spectrum,

∫
dng =

∫
d4R

(2π )4
2πδ(R2)

∣∣∣∣Mrad

Mel

∣∣∣∣
2

=
∫

dz

z

∫
d2rT

(2π )3
6g2 z2

r2
T

. (12)

The mean energy loss is the average of the probability of
emitting a gluon times the gluon energy,

δE =
∫

dng r0 = g2

4π2

(√
s − m2

ϒ√
s

)
ln

⎡
⎣

√
s − m2

ϒ√
s

2mD

⎤
⎦, (13)
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where r0 is the energy of the emitted gluon. In Eq. (12),
the maximum transverse momentum of the gluon is given by

zk1 = z(
√

s − m2
ϒ√
s
)/2, and the Debye screening mass mD ∼

gT has been chosen for the minimum: our results and the
following discussion are not very sensitive to variation in
the limits. For an estimate, we use s 	 m2

ϒ + 2Ek1 with a
mean thermal energy k1 ∼ 3T . The average radiative energy
loss per unit length is estimated by −dE/dx ≈ δE/λ with
the wavelength λ = 1/(σel ρ), where σel is the cross section
of quarkonium-gluon elastic scattering in Fig. 1 and ρ =
16

∫
d3k

(2π )3 n(k) = 16ζ (3)T 3

π2 is the gluon density.
We present the ϒ(1S) radiative energy loss in Fig. 2, com-

paring with the collisional energy loss. The ϒ(1S) radiatively
loses more energy in a hotter medium, but the effect is much
smaller than the collisional energy loss, which grows more
rapidly at high energy. In comparison with the radiative energy
loss of a bottom quark [21], the energy loss of the ϒ(1S) is
approximately an order of magnitude smaller at least.

IV. NUCLEAR MODIFICATION FACTOR

In the previous two sections, we have computed the col-
lisional and radiative energy loss of the ϒ(1S). Since the
energy loss depends on the medium temperature, it changes
with time as the plasma expands and cools down in heavy-ion
collisions. In this section, we use the medium-induced energy
loss to calculate the total energy loss during evolution, and
then investigate the energy-loss effects on nuclear modifica-
tion factors in the central rapidity region.

Quarkonium production has not been fully understood and
the theoretical prediction involves large uncertainties even
in the absence of a nuclear medium. For these reasons,
we exploit quarkonium momentum spectra measured in pp
collisions and then estimate the energy loss effects in AA
collisions. The transverse momentum spectrum of the ϒ(1S)
in pp collisions can be parametrized as

dσpp

d2qT
∝ 1

[(qT /�)2 + 1]α

(� = 6.05 GeV and α = 2.44) from the data in Ref. [15].
Using the momentum spectrum as an initial unquenched one,
the energy-loss effects can be realized approximately by a
shift of the momentum spectrum by the ϒ(1S) energy loss. For
an expanding plasma undergoing a Bjorken expansion [22],
T (t ) = T0 ( t0

t )1/3, the total energy loss during the evolution is
�E = − ∫ t f

t0
dt v dE

dx , where t0 ∼ 0.3 fm/c and t f ∼ 7 fm/c at
the phase transition (as assumed in Ref. [23]). If the energy
loss is small (�E

E � 1, see Fig. 4), the effects on normalized
transverse momentum spectra can be approximated as [24]

dσAA(E )

d2qT
= dσpp(E + �E )

d2qT
. (14)

Then we estimate the nuclear modification factor by the
energy-loss effects,

RAA(qT ) =
dσAA(E )

d2qT

dσpp(E )
d2qT

. (15)
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FIG. 4. The fractional energy loss �E
E of the ϒ(1S) for a Bjorken

expansion with the initial temperature T0 = 525–550 MeV, the
higher temperature being the upper boundary.

In Ref. [23] we have computed the nuclear modification
factor of the ϒ(1S) by dissociation and regeneration in PbPb
collisions at

√
sNN = 2.76, 5.02 TeV and found that the nu-

merical results depend on initial conditions with significant
uncertainties at an early stage when quarkonia formation is
in progress. The quarkonium energy loss can also affect the
initial spectrum at the initial time QGP is formed (as well
as during a Bjorken expansion): the energy-loss effects at the
early stage might be important. Using the same initial con-
ditions as Ref. [23] without the energy loss at the beginning,
Fig. 5 shows the ϒ(1S) RAA factor determined by its energy
loss during time evolution. Because the collisional energy
loss increases with momentum as seen in Fig. 2, the ϒ(1S)
is more suppressed at larger momentum. For higher initial
temperature, we obtain stronger suppression.

The hot-medium effects can be obtained by including
both quarkonium energy loss and dissociation-regeneration.
In an effective-field theory framework, dissociation and

R
A

A

qT (GeV)

Y(1S) energy loss
0.0
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FIG. 5. The energy-loss effects on the ϒ(1S) RAA factor in
an expanding plasma with the initial temperature T0 = 525–550
MeV (as assumed in Ref. [23]) for heavy-ion collisions at

√
sNN =

2.76, 5.02 TeV.
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recombination have been systematically studied in
Refs. [25–28]. Noting that the enhancement by regeneration
tends to grow with momentum in Ref. [23], the energy
loss as in Fig. 5 can weaken the enhancement influence
at high momentum to be more consistent with the data.
As the regeneration effects are more pronounced with
softer initial distributions of quarkonia and heavy quarks,
the energy-loss effects become more significant when
the ϒ(1S) spectrum is softer. Although the energy loss
makes a little contribution compared with the almost
momentum-independent suppression RAA ≈ 0.4 measured
at the LHC [15,29], the ϒ(1S) energy loss can affect the
high-momentum spectra up to ≈15% at qT ≈ 30 GeV,
and thus the diffusion and energy loss of heavy quarkonia,
together with dissociation and regeneration, need to be taken
into account to analyze the experimental data.

For feed-down, we can apply the calculation of quarko-
nium energy loss to the excited states of bottomonia
as well. Using a Coulombic bound state, |∇ψ2S (p)|2 =
27πa7

0 p2[(a0 p)2 − 1
2 ]2/[(a0 p)2 + 1

4 ]8, with a quarter of the
binding energy of the ground state, the energy loss of the
ϒ(2S) is more than six times as large as the ϒ(1S) energy
loss. Larger energy loss as well as thermal width of excited
states might lead to sequential suppression of bottomonia.

V. SUMMARY

We have presented an estimate of quarkonium energy
loss in hot QCD plasmas using an effective vertex between
quarkonium and gluon. Based on our formalism derived from
the Bethe-Salpeter amplitude, we have investigated the lead-
ing effects on the transverse momentum spectra of ϒ(1S).
The collisional energy loss is obtained by convoluting the

interaction rate of quarkonium-gluon elastic scattering and the
energy transfer. The radiative energy loss is realized through
gluon-bremsstrahlung associated with the elastic scattering
and is estimated by a convolution of the probability of emit-
ting a gluon and its energy. Our numerical analysis indicates
that the collisional energy loss is dominant over the radiative
one in the energy regime E < m2

ϒ/T and increases with the
quarkonium energy and the plasma temperature. In compari-
son with the bottom quark energy loss, the energy loss of the
ϒ(1S) is smaller by a factor of two at least.

The energy loss of heavy quarkonia affects their transverse
momentum spectra and is reflected on the nuclear modifi-
cation factors, resulting in quarkonia suppression. Adopting
a simple shift of the momentum spectra by the energy loss
for a Bjorken expansion, we have estimated the energy-loss
effects on the ϒ(1S) RAA factor. The energy loss is found to
provide a small effect on the ϒ(1S) suppression compared
with quarkonium dissociation, but it is necessary to con-
sider the hot-medium effects and to analyze the experimental
data in heavy-ion collisions. Furthermore, the energy loss of
heavy quarkonia might be partially responsible for sequential
suppression even in small systems. As the medium-induced
energy loss is sensitive to many factors including path length
and geometrical effects in nuclear collisions, the mean energy
loss is not sufficient and more systematic studies need to be
undertaken.
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