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Shear viscosity and electric conductivity of a hot and dense QGP with a chiral phase transition
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We calculate two transport coefficients—the shear viscosity over entropy ratio η/s and the ratio of the
electric conductivity to the temperature, σ0/T —of strongly interacting quark matter within the extended Nf = 3
Polyakov Nambu-Jona-Lasinio (PNJL) model along the crossover transition line for moderate values of baryon
chemical potential 0 � μB � 0.9 GeV as well as in the vicinity of the critical endpoint (CEP) and at large
baryon chemical potential μB = 1.2 GeV, where the first-order phase transition takes place. The evaluation of
the transport coefficients is performed on the basis of the effective Boltzmann equation in the relaxation time
approximation. We employ two different methods for the calculation of the quark relaxation times: (i) using
the averaged transition rate defined via thermal averaged quark-quark and quark-antiquark PNJL cross sections
and (ii) using the “weighted” thermal averaged quark-quark and quark-antiquark PNJL cross sections. The η/s
and σ0/T transport coefficients have similar temperature and chemical potential behaviors when approaching
the chiral phase transition for both methods for the quark relaxation time; however, the differences grow with
increasing temperature. We demonstrate the effect of the first-order phase transition and of the CEP on the
transport coefficients in the deconfined QCD medium.
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I. INTRODUCTION

Understanding the nature of a possible phase transition and
the properties of the quark-gluon plasma (QGP) produced in
relativistic heavy-ion collisions [1–3] is presently one of the
most challenging questions in the physics of strong interac-
tions. State-of-the-art lattice QCD (lQCD) calculations allow
for the evaluation of the thermal properties of the QGP at
vanishing baryon chemical potential (μB). For finite baryon
chemical potential one has to rely on phenomenological mod-
els. Moreover, for the calculation of transport coefficients one
has to advance to transport theories which describe the expan-
sion of the QGP. The experimental exploration of the finite μB

region of the QCD phase diagram is one of the primary goals
of the Beam Energy Scan programs of the Relativistic Heavy
Ion Collider (RHIC) at BNL [4] as well as of the planned
experimental program of FAIR (Facility for Antiproton and
Ion Research) [5] at GSI and of NICA (Nuclotron-based Ion
Collider fAcility) at JINR [6].

In a hot and dense environment it is notoriously difficult to
calculate microscopic properties of the QGP from first princi-
ples [7]. The expansion and dilution of the quark medium,
produced in nuclear collisions, is usually described by rel-
ativistic viscous hydrodynamics, which contains transport
coefficients in the dissipative part. Although the hydrody-
namic equations provide a macroscopic description of a
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relativistic fluid behavior, transport coefficients are sensitive
to the underlying microscopic theory. They provide infor-
mation about the interactions inside the medium. The most
frequently studied transport coefficient is the shear viscosity,
which is used in viscous hydrodynamic simulations [8]. It has
been shown that also the bulk viscosity plays an important role
for the time evolution of the QGP [9].

A growing number of studies have examined transport
coefficients of the QGP on the basis of effective models at
zero or small values of the chemical potential [10–17] where
lQCD calculations can serve as a guideline. In order to extend
the study of transport coefficients to the part of the phase
diagram where the phase transition is possibly changing from
a crossover to a first-order one, it is necessary to resort to
effective models which describe the chiral phase transition.

The goal of this study is to calculate two transport coeffi-
cients of the QGP—the shear viscosity over entropy ratio η/s
and the ratio of the electric conductivity to the temperature,
σ0/T —at finite temperature and chemical potential within the
framework of an effective relativistic Boltzmann equation in
the relaxation-time approximation, where properties of the
QGP matter such as the equation-of-state (EoS), the interac-
tion cross sections, and constituent quark masses are described
by the extended Polyakov Nambu-Jona-Lasinio (PNJL) model
with a critical endpoint (CEP) located at (T CEP, μCEP

q ) =
(0.11, 0.32) GeV [18]. Our study is based on the advances
of a previous work [19] where the transport coefficients were
calculated within the NJL model at μB = 0. However, now
we use an advanced Polyakov extension of the NJL model in
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which the PNJL EoS equals the lQCD EoS at vanishing μB;
cf. [18]. Moreover, the framework of the PNJL model allows
us to calculate the transport properties near the chiral phase
transition at moderate and high μB. Here we denote the quark
chemical potential as (for the light quarks) μq = μl = μB/3
while for the strange quarks we take μs = 0.

We compare the PNJL transport coefficients with those
from Ref. [20,21], where they were calculated within the
dynamical quasiparticle model (DQPM) [22,23] at moder-
ate values of the baryon chemical potential, μB � 0.5 GeV.
Both models are based on rather different ideas: The DQPM
is an effective model for the description of nonperturbative
(strongly interacting) QCD based on the lQCD EoS. The
phase transition there is a crossover for zero as well as for
finite μB. The degrees of freedom of the DQPM are strongly
interacting dynamical quasiparticles—quarks and gluons—
with broad spectral functions, whose “thermal” masses and
widths increase with growing temperature, while the degrees
of freedom of the PNJL are quarks whose masses approach
the bare mass when the temperature increases and the chiral
condensate disappears. Moreover, in the PNJL the mesonsex-
ist above the Mott transition temperature as resonances. Thus,
in the EoS the energy density is shared between the quarks,
mesons, and the Polyakov loop potential. We explore how the
nature of the degrees of freedom affects the transport proper-
ties of the QGP. Moreover, we study the possible influence
of the presence of a CEP and of a first-order phase tran-
sition at high baryon chemical potential. For the evaluation
of the relaxation time we use two different methods: (a) the
“averaged transition rate” defined via the thermal averaged
quark-quark and quark-antiquark PNJL cross sections and
(b) the “weighted” thermal averaged quark-quark and quark-
antiquark PNJL cross sections [here by “thermal averaged”
cross section we mean the averaging of the interaction cross
section over the thermal (anti)quark distribution function]. We
discuss the uncertainties related to the theoretical methods
based on the relaxation time approximation (RTA).

The paper is organized as follows: In Sec. II we give a brief
review of the basic ingredients of the PNJL model, detail the
description of the evaluation of the total quark cross sections
for different channels, and show the temperature and chemical
potential dependence of the total cross sections. In Sec. III
we discuss the computation of the specific shear viscosity
and the electric conductivity based on the relaxation time
approximation of the Boltzmann equation. We consider two
methods for the evaluation of the quark relaxation times and
discuss differences between them. We compare furthermore
our results at μB = 0 to calculations from lQCD for Nf = 0
for the specific shear viscosity and to lQCD results for Nf = 2
and Nf = 2 + 1 for the electric conductivity and to predic-
tions of the DQPM for both transport coefficients. In addition,
we show the ratio of dimensionless transport coefficients for
the full range of chemical potentials. We finalize our study
with conclusions in Sec. IV.

II. PNJL QUARK-QUARK CROSS SECTIONS

We start with the calculation of the quark-quark elastic
cross sections at finite temperature and chemical potential

TABLE I. Table of the parameters of the PNJL model used in this
paper.

mu (GeV) ms (Gev) G K � (GeV)

0.005 0.134 2.3
�2

11.0
�5 0.569

using scalar and pseudoscalar mesons as exchanged boson
within the PNJL model of Ref. [18]. This model is an
improved version of the standard Polyakov extended Nambu-
Jona-Lasinio model where the pressure is calculated next to
leading order in Nc and the effective potential is phenomeno-
logically reparametrized to describe a medium in which also
quarks are present. Correspondingly, the masses of the quarks
and the mesonic propagators are evaluated using this up-
graded PNJL model [18]. We note that the cross sections for
quark-meson or quark-diquark channels can also be found in
Ref. [24]. They are not used in this study.

A. PNJL model

The PNJL [25–30] model is an extension of the NJL model
including thermal gluons on the level of a mean field. The
quark-quark interaction remains local, the gluons being only
present as an effective potential surrounding the quarks. It can
be associated to the 1

4 F a
μνF aμν term in the QCD Lagrangian.

The Lagrangian of the PNJL model [26–30] for (color neutral)
pseudoscalar and scalar interactions (neglecting the vector and
axial-vector vertices for simplicity) is

LPNJL =
∑

i

ψ̄i(i /D − m0i + μiγ0)ψi

+ G
∑

a

∑
i jkl

[(
ψ̄i iγ5τ

a
i jψ j

) (
ψ̄k iγ5τ

a
klψl

)
+ (

ψ̄iτ
a
i jψ j

) (
ψ̄kτ

a
klψl

)]
− K det

i j
[ψ̄i (I − γ5)ψ j] − K det

i j
[ψ̄i (I + γ5)ψ j]

− U (T ; 	, 	̄). (1)

Here i, j, k, l = 1, 2, 3 are the flavor indices and τ a (a =
1, . . . , 8) are the Nf = 3 flavor generators with the normal-
ization

tr f (τ aτ b) = 2δab, (2)

with tr f denoting the trace in the flavor space. m0i stands for
the bare quark masses and μi for their chemical potential. The
covariant derivative in the Polyakov gauge reads Dμ = ∂μ −
iδμ0A0, with A0 = −iA4 being the temporal component of the
gluon field in Euclidean space (we denote Aμ = gsAμ

a Ta). The
coupling constant for the scalar and pseudoscalar interaction
G is taken as a free parameter (fixed, e.g., by the pion mass in
vacuum). The values of the free parameters of the PNJL are
displayed in Table I.

The third term of Eq. (1) is the so-called ’t Hooft La-
grangian which makes the mass splitting between the η and
the η′ mesons known as the axial U(1) anomaly. K is a
coupling constant (fixed by the value of mη′ − mη) and I is
the identity matrix in Dirac space.
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TABLE II. Table of the parameters of the effective potential
U (φ, φ̄, T ) used in this paper.

a0 a1 a2 a3 b3 b4 a b c d e

6.75 −1.95 2.625 −7.44 0.75 7.5 0.082 0.36 0.72 −1.6 −0.0002

Finally, U (T,	, 	̄) is the so-called Polyakov-loop ef-
fective potential used to account for the static gluonic
contributions to the pressure. The Polyakov line and the
Polyakov loop are, respectively, defined as

L(x) = P exp

(
i
∫ 1/T

0
dτA4(τ, x)

)
(3)

and

	(x) = 1

Nc
trcL(x), (4)

where P is the path-integral ordering operator, and the trace
trc is taken in the color space.

The value of the potential for the expectation values
〈	〉(T ), 〈	̄〉(T ), U (T, 〈	〉(T ), 〈	̄〉(T )), gives up to a minus
sign the pressure of the gluons in Yang-Mills (YM) theory,
corresponding to QCD for infinitely heavy quarks. The com-
parison with lattice gauge calculations for pure YM serves
therefore as a guideline for the parametrization of the effective
potential U (T ):

−P(T ) = U (T, 〈	〉(T ), 〈	̄〉(T )). (5)

The effective potential U (T, φ = 〈	〉(T ), φ̄ = 〈	̄〉(T )) is
parametrized following Ref. [18]:

U (φ, φ̄, T )

T 4
= −b2(T )

2
φ̄φ − b3

6
(φ̄3 + φ3) + b4

4
(φ̄φ)2 (6)

with the parameters

b2(T ) = a0 + a1

1 + τ
+ a2

(1 + τ )2
+ a3

(1 + τ )3
, (7)

where

tphen = 0.57
T − Tphen(T )

Tphen(T )
(8)

and

Tphen(T ) = a + bT + cT 2 + dT 3 + e
1

T
. (9)

All the coefficients of the parametrization are listed in Table II.

B. Quarks and mesons in the PNJL

In order to calculate cross sections, the masses of the
quarks and the propagators of the exchanged mesons have to
be known. The mass of the quarks is determined by solving the
traditional gap equations [29] together with a minimisation of
the grand potential PNJL with respect to the Polyakov loop
expectation value φ and φ̄:

∂PNJL

∂φ
= 0,

∂PNJL

∂φ̄
= 0,

mq = mq0 − 4G〈ψ̄qψq〉 + 2K〈ψ̄qψq〉〈ψ̄sψs〉,
ms = ms0 − 4G〈ψ̄sψs〉 + 2K〈ψ̄qψq〉〈ψ̄qψq〉, (10)

where

PNJL(T, μi,	, 	̄)

= 2G
∑

i

〈ψ̄iψi〉2 − 4K
∏

i

〈ψ̄iψi〉 − 2Nc

∑
i

∫
d3k

(2π )3
Ei

− 2T Nc

∑
i

∫
d3k

(2π )3

(
1

NC
log[1 + 3(	 + 	̄

× e−(Ei−μi )/T )e−(Ei−μi )/T ] + 1

NC
log[1 + 3(	̄

+ 	e−(Ei+μi )/T )e−(Ei+μi )/T ]

)
+ UPNJL, (11)

with Ei =
√

k2 + m2
i .

Figure 1 shows the masses of the u and s quarks as a
function of the chemical potential μq and the temperature.
One can see that a smooth crossover occurs for small chemical
potentials. The chiral condensate 〈ψ̄ψ〉 goes from its maximal
value in the hadronic phase down to zero in the QGP phase.
At low temperature, this transition is discontinuous and a first-
order phase transition occurs that ends with a critical endpoint
(CEP) at μq = 0.320 GeV, T = 0.110 GeV.

The propagators of the mesons are build by re-
summation of the quark-antiquark loops, leading to the
amplitude [31]

D = 2igm

1 − 2gm�±
f f ′ (k0, �k),

(12)

where gm is the coupling constant [32] and �±
f f ′ (k0, �k) is the

polarization function given by

�±
f f ′ (k0, �k) = − Nc

4π2
[A0(m f , μ f , T,�)+A0(m f ′ , μ f ′ , T,�)

+ [(m f ± m f ′ )2 − (k0 + μ f − μ f ′ )2 + �k2]

× B0(�k, m, μ, m′, μ′, k0, T,�)], (13)

where “+” stands for the scalar and “−” for the pseudoscalar
mesons.

The one-fermion loop A0 is separated into a vacuum part
and a thermal part, the latter being integrated up to infinity:

A0(m f , μ f , T,�)

= −4

( ∫ ∞

0
d p

p2

E f
[− f f (E f , T, μ f ) − f f (E f , T, μ f )]

+
∫ �

0

p2d p

E f

)
, (14)

where E f =
√

p2 + m2
f and the Fermi-Dirac distribution func-

tions f f ( f̄ )(E f , T, μ f ) are defined as

f f ( f̄ )(E f , T, μ f ) = 1

e(E f ±μ f )/T + 1
. (15)
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FIG. 1. The masses of light (left) and strange (right) quarks as a function of temperature T and quark chemical potential μq calculated
within the PNJL model.

The two-Fermion loop B0 is defined as [33]

B0( �p, m f , μ f , m f ′ , μ f ′ , iνm, T,�)

= 16π2T
∑

n

exp(iωnη)
∫

|q|<�

d3q

(2π )3

× 1[
(iωn + μ f )2 − E2

f

] 1[
(iωn − iνm + μ′

f )2 − E2
f ′
] ,

(16)

with E f =
√

�q2 + m2
f , E f ′ =

√
(�q − �p)2 + m f ′ . The details of

the calculations of B0 can be found in Ref. [33].
We have g±

m = G ± 1
2 KSs for the pion (+) and its

scalar partner (−) and g±
m = G ± 1

2 KSu for the kaon (+)
and its scalar partner (−). For the η mesons, the prop-
agators are more complicated because of the mixing
terms [31,34]:

D = 2
det K

M00M88 − M2
08

(
M00 M08

M80 M88

)
, (17)

D = 4

3

det K

M00M88 − M2
08

(M00ψ̄λ0ψ · ψ̄ ′λ0ψ
′

+M08ψ̄λ0ψ · ψ̄ ′λ8ψ
′ + M80ψ̄λ8ψ · ψ̄ ′λ0ψ

′

+M88ψ̄λ8ψ · ψ̄ ′λ8ψ
′) (18)

with

M00 = K+
0 − 4

3 det K (�uū + 2�ss̄), (19)

M08 = K+
08 − 4

3

√
2 det K (�uū − �ss̄), (20)

M88 = K+
8 − 4

3 det K (2�uū + �ss̄), (21)

det K = K+
0 K+

8 − K2
08, (22)

and

K±
0 = G ∓ 1

3 K (2Gu + Gs), (23)

K±
08 = ± 1

6

√
2K (Gu − Gs), (24)

K±
8 = G ± 1

6 K (4Gu − Gs), (25)

where Gi is the spinor trace of the propagator Si(x, x):

Gi = NCi Tr[Si(x, x)] = − NC

4π2
miA0(mi, μi, T,�). (26)

The masses of the pseudoscalar mesons (pion, eta, kaon) at
μq = 0 are presented in Fig. 2. The doubled quark masses 2mq

and mq + ms are shown for comparison, too. While in PNJL

0.0

0.5

1.0

1.5

2.0

M
e
so

n
M

a
ss

e
s

[G
e
V

]

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T [GeV]

Pion at μq = 0
eta at μq = 0
Kaon at μq = 0
mq + ms at μq = 0
2mq at μq = 0

FIG. 2. The PNJL results for the temperature dependence of the
meson masses (pion, eta, kaon) as well as double quark masses 2mq

and ms + mq for μq = 0. The dotted lines indicate the mpole ± �,
where the � is the imaginary part of the complex pole of the meson
propagators and mpole is its real part, indicated by solid lines.
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the quark masses drop with increasing temperature to their
bare values due to the disappearance of the chiral condensate
in the vicinity of the phase transition, the meson masses in-
crease with temperature. In PNJL mesons become unstable
above the Mott temperature, T > TMπ , where the total mass
of the constituent quarks equals the meson mass. Above TMπ

the mesons can decay into a qq̄ pair. Therefore the pole of the
meson propagator becomes complex above TMπ . The dotted
lines in Fig. 2 indicate mpole ± �, where � is the imaginary
part of the complex pole of the meson propagator (which
could be associated to the decay width) and mpole is its real
part, indicated by solid lines. In contrast to mesons, the quarks
in the PNJL stay on shell.

C. The PNJL equation of state

The equation of state is needed to evaluate the entropy
density, necessary to determine the shear viscosity to entropy
ratio. Here we present the equation of state of the improved
PNJL model advanced in [18] which matches the lattice re-
sults of Ref. [35]. The improved PNJL model differs from the
standard PNJL model in two aspects:

(i) The grand potential includes next to leading order con-
tributions in Nc and contains therefore contributions
from mesons.

(ii) There is a temperature dependent rescaling of the
T0 parameters of the standard Polyakov effective
potential—see Eq. (11) and Table II—in order to
phenomenologically reproduce the quark gluon inter-
actions in the medium.

In next-to-leading order the grand potential contains an
additional term, M , caused by the diagrams of the order
O(Nc = 1) in the Nc expansion. This term is given by [18,36]

M = − gM

8π3

∫
d pp2

∫
ds√

s + �k2

×
[

1

exp[(
√

s + �k2 − μ)/T − 1]

+ 1

exp[(
√

s + �k2 + μ)/T − 1]

]
δ(

√
s, T, μM ). (27)

Here gM is the degeneracy of the meson and δ(
√

s, T, μM ) is
the phase shift defined by

δ(
√

s, T, μM ) = − Arg[1 − 2K�(ω − μM + iε, �k)], (28)

where � is the polarization function of the meson. M rep-
resents a mesonic pressure that dominates at low temperature
and is non-negligible around TC , as seen Fig. 3. As Fig. 4
shows, this equation of state reproduces the lattice results
of Ref. [35] for vanishing chemical potential. Also for large
chemical potentials and low temperatures, a region which is
accessible for pQCD calculations, we reproduce the pQCD
calculations of [37] as shown in Fig. 5.

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
[G

e
V

]

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T [GeV]

Mesons
Gluons
Quarks
Overall

FIG. 3. Meson, gluon, and quark contributions to the total pres-
sure as well as the total pressure (solid black line) at μq = 0 as a
function of the temperature.

D. Quark-quark scattering in the PNJL

There are two possible Feynman diagrams for quark-quark
scattering: the t and u channels as indicated in Fig. 6. The
associated squares of the matrix elements for the t and u
channels and their interference term are defined as

1

4N2
C

∑
s,c

|Mu|2 = ∣∣DS
u

∣∣2
u+

14u+
23 + ∣∣DP

u

∣∣2
u−

14u−
23, (29)

1

4N2
C

∑
s,c

|Mut | = 1

4NC

[
DS

t DS∗
u (t+

13t+
24 − s+

12s+
34 + u+

14u+
23)

−DS
t DP∗

u (t+
13t+

24 − s−
12s−

34 + u−
14u−

23)

−DP
t DS∗

u (t−
13t−

24 − s−
12s−

34 + u+
14u+

23)

+DP
t DP∗

u (t−
13t−

24 − s+
12s+

34 + u−
14u−

23)
]
, (30)

1

4N2
C

∑
s,c

|Mt |2 = ∣∣DS
t

∣∣2
t+
13t+

24 + ∣∣DP
t

∣∣2
t−
13t−

24. (31)

0

2

4

6

8

10

12

14

16

18

20

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

T [GeV ]

P/T 4

S/T 3

E/T 4

I/T 4

PNJL

FIG. 4. Pressure, entropy density, energy density, and interaction
measure calculated within the PNJL using the sum of Eqs. (11) and
(27) for μq = 0 (colored lines described in the legend) in comparison
to the lattice QCD results [35], indicated as colored bands.
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P
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S
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pQCD
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FIG. 5. The quark pressure divided by the pressure in the Stefan-
Boltzmann limit as a function of μB for a temperature of T =
0.001 GeV. We compare pQCD calculations [37] (orange area) with
the result of our PNJL approach (blue line).

Here

t±
i j = t − (mi ± mj )

2, (32)

u±
i j = u − (mi ± mj )

2, (33)

s±
i j = s − (mi ± mj )

2. (34)

DS and DP are the propagators of the exchanged scalar and
pseudoscalar meson, respectively;, see Eq. (12).

Table III lists the mesons which can be exchanged in the
t and u channels in the different quark-quark cross sections
[32].

E. Quark-antiquark scattering in the PNJL

For quark-antiquark scattering only s and t channels are
possible. The corresponding diagrams are shown in Fig. 7.

The corresponding squares of the matrix elements for the s
and t channels and their interference term are given by

1

4N2
C

∑
s,c

|Ms|2 = ∣∣DS
s

∣∣2
s+

12s+
34 + ∣∣DP

s

∣∣2
s−

12s−
34, (35)

1

4N2
C

∑
s,c

|Mst | = 1

4NC

[
DS

s DS∗
t (s+

12s+
34 − u+

14u+
23 + t+

13t+
24)

−DS
s DP∗

t (s+
12s+

34 − u−
14u−

24 + t−
13t−

24)

−DP
s DS∗

t (s−
12s−

34 − u−
14u−

23 + t+
13t+

24)

+DP
s DP∗

t (s−
12s−

34 − u+
14u+

23 + t−
13t−

24)
]
, (36)

FIG. 6. The Feynman diagrams for the t and u channels which
contribute to the quark-quark cross sections.

TABLE III. Mesons which can be exchanged in the t and u
channels in the different quark-quark cross sections.

Exchanged mesons Exchanged mesons
Process in u channel in t channel

ud → ud π , σπ π , η, η′, σπ , σ , σ ′

uu → uu π , η, η′, σπ , σ , σ ′ π , η, η′, σπ , σ , σ ′

us → us K , σK η, η′, σ , σ ′

ss → ss η, η′, σ , σ ′ η, η′, σ , σ ′

1

4N2
C

∑
s,c

|Mt |2 = ∣∣DS
t

∣∣2
t+
13t+

24 + ∣∣DP
t

∣∣2
t−
13t−

24. (37)

Table IV presents the mesons which can be exchanged in
the s and t channels in the different quark-(anti)quark cross
sections [32].

F. Integration boundaries and the total cross sections

The differential cross sections for the quark-quark and
quark-antiquark scattering for t , u channels and t , s channels,
respectively, are given by the following expressions:

dσ

dt
= 1

16πs+
12s−

12

1

4N2
C

∑
s,c

|Ms/u − Mt |2. (38)

The total cross section in a thermal medium is obtained by
integration over t :

σ =
∫ t+

t−
dt

dσ

dt
[1 − fF (E3, T, μ)][1 − fF (E4, T, μ)], (39)

where 1 − fF is the Pauli blocking factor for the fermions due
to the fact that some of the final states are already occupied
by other quarks (antiquarks). The limits of the integrations are
defined as

t± = m2
1 + m2

3 − 1

2s

(
s + m2

1 − m2
2

)(
s + m2

3 − m2
4

)

± 2

√(
s + m2

1 − m2
2

)2

4s
− m2

1

√(
s + m2

3 − m2
4

)2

4s
− m2

3.

(40)

where m1 and m2 are the masses of the particles in the entrance
channel and m3 and m4 of those in the exit channel.

FIG. 7. The Feynman diagrams for the t and s channels which
contribute to the quark-antiquark cross sections.
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TABLE IV. Mesons which can be exchanged in the s and t
channels in the different quark-antiquark cross sections.

Exchanged mesons Exchanged mesons
Process in s channel in t channel

ud̄ → ud̄ π , σπ π , η, η′, σπ , σ , σ ′

uū → uū π , η, η′, σπ , σ , σ ′ π , η, η′, σπ , σ , σ ′

uū → dd̄ π , η, η′, σπ , σ , σ ′ π , σπ

us̄ → us̄ K , σK η, η′, σ , σ ′

uū → ss̄ η, η′, σ , σ ′ K , σK

ss̄ → uū η, η′, σ , σ ′ K , σK

ss̄ → ss̄ η, η′, σ , σ ′ η, η′, σ , σ ′

G. Results for elastic cross section

In Fig. 8 we present the quark-quark cross sections for
ud → ud elastic scattering versus

√
s at T = 190 MeV for

different μq = 0, 0.1, 0.2 GeV (upper plot) and at μq = 0 for
different T = 190, 220, and 300 MeV (lower plot). As follows
from Fig. 8 these cross sections are rather small and show
a smooth behavior versus the center of mass (c.m.) energy.
They are decreasing with increasing temperature and chemical
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FIG. 8. The cross section σud versus
√

s at T = 190 MeV for
μq = 0, 0.1, 0.2 GeV (upper) and at μq = 0 for T = 190, 220, and
300 MeV (lower).
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FIG. 9. The resonance behavior of the uū → uū, ud̄ → ud̄ ,
uū → dd̄ , and us̄ → us̄ cross sections versus

√
s at T = 220 GeV

and μ = 0 (upper) and at μq = 0 for T = 190, 220, 250 and
300 MeV.

potential, as expected because the mass of the exchanged
meson and its decay width increase with temperature. At low
temperature and chemical potential the masses of the quarks
are large and tend to vanish at large T and μq. Consequently,
the threshold, given by

√
sthr = Max(ma

in + mb
in, ma

out + mb
out ),

is high at low μq and low T , as one can see from Fig. 8 as well.
The more interesting processes are quark-antiquark colli-

sions. In this case the s channel allows for a resonance of the
exchanged meson with the incoming quarks which leads to a
large peak in the cross sections.

Figure 9 (upper part) displays the cross section at different
channels showing a resonance behavior. The us̄ → us̄ res-
onance is lower than the others because the strange quark
is heavier than the u and quarks at μq = 0 and T = 200
MeV. The other resonances differ only by their flavor factors
[38]. The ud̄ → ud̄ channel has the largest factor; uū → uū
has a lower factor than uū → dd̄ but allows for a η meson
exchange, which is not the case for the uū → dd̄ channel.

The behavior of the ud̄ → ud̄ cross section for differ-
ent temperatures is displayed in Fig. 9 (lower part). One
can see that the resonance is shifted to the right when the
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FIG. 10. The resonant ud̄ cross section versus
√

s at T =
220 MeV for μq = 0, 200, 300, and 400 MeV (upper) and for
different combinations of T, μq (lower).

temperature increases. Since the mass of the mesons increases
with temperature, the cross section with the pion in the s
channel becomes resonant at the corresponding

√
s. The peak

becomes lower with increasing temperature and disappears
finally at large temperatures since the decay width of the pion
becomes larger with increasing temperature; see Fig. 2. The
kinematic threshold forbids any resonance state below the
Mott temperature. This explains the flatness of the ud̄ → ud̄
cross section at T = 190 MeV.

Figure 10 shows the behavior of the resonance peak with
increasing chemical potential. For a given temperature, the
mass of the pion becomes larger with increasing chemical
potential and the peak is shifted to a smaller value of the
temperature. Beyond the critical endpoint μCEP = 0.32 GeV,
the cross section is flat and no resonance behavior shows up
anymore.

The calculation of the two cross sections ss̄ → uū and
uū → ss̄ can be double checked since they obey detailed
balance:

σcd→i j (s) = p2 cm
i j (s)

p2 cm
cd (s)

σi j→cd (s). (41)

0

5
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25

σ
ss̄
→

ū
u

[m
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]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4√
s [GeV]

DB, T = 150 MeV, μq = 0

DB, T = 200 MeV, μq = 0

DB, T = 250 MeV, μq = 0

FIG. 11. The cross section for the ss̄ → uū channel calculated
by detailed balance (solid lines, DB) for T = 150, 200, 250 MeV
at μq = 0 as compared to the direct numerical calculation (dashed
lines).

Figure 11 shows the cross section for the ss̄ → uū channel
at μq = 0 and T = 150, 200, 250 MeV calculated directly
(dashed lines) and by detailed balance (41) (solid lines). One
can see that the two calculations show a good agreement with
each other.

III. TRANSPORT COEFFICIENTS IN THE PNJL MODEL

A. Transport coefficients in the relaxation time approximation

In the relativistic kinetic theory one can determine the
transport coefficients with the help of the relaxation time ap-
proximation of the Boltzmann equation for the quasiparticles
with dynamical masses Mi(T, μq ) [39–42]:

kμ
i ∂μ fi + 1

2
∂μM2

i ∂(ki,μ ) fi =
Nspecies∑

j=1

Ci j (x, k), (42)

where Ci j (x, k) is the two-body collision term which contains
only quasielastic 2 ↔ 2 scatterings, while the second term
contains Fμ

i = ∂μMi and is an external force attributed to the
residual mean field interaction due to the medium dependent
effective masses Mi(T, μq ).

In order to evaluate transport coefficients we consider a
small departure from equilibrium, where the distribution func-
tion can be expressed as

fi(x, k, t ) = f (0)
i (x, k, t ) + f (1)

i (x, k, t )

= f (0)
i (x, k, t )[1 + δ fi(x, k, t )]. (43)

f (0)
i (x, k, t ) is the local equilibrium distribution function and

f (1)
i (x, k, t ) contains δ fi(x, k, t ), which is the nonequilibrium

part to first order in gradients. Quark systems in equilibrium
can be described by the Fermi-Dirac distribution function:

f (0)
i (Ei, T, μq ) = 1

e(Ei±μq )/T + 1
, (44)

where Ei =
√

p2
i + m2

i is the on-shell quark energy, T is the
temperature, and μq = μB/3 for the light quarks, μs = 0 for
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the strange quark. The (anti)quark density is defined as

ni(T, μq ) = dq

∫
d3 p

(2π )3
f (0)
i , (45)

where i = u, d, s, ū, d̄, s̄ and dq = 2 × Nc is degeneracy fac-
tor for (anti)quarks.

In order to take into account the Polyakov loop contribu-
tions we use the modified Fermi-Dirac distribution:

f φ
i = φe−(Ei∓μ)/T + 2φe−2(Ei∓μ)/T + e−3(Ei∓μ)/T

1 + 3φe−(Ei∓μ)/T + 3φe−2(Ei∓μ)/T + e−3(Ei∓μ)/T
,

(46)

where i = q, q. The minus sign refers to quarks (i = q), while
the plus sign refers to antiquarks (i = q). For antiquarks we
have to exchange φ and φ̄.

In the QGP phase the modified distributions approach the
standard Fermi-Dirac distributions for φ → 1, while in the
hadronic phase, for φ → 0, we get distributions with three
times the quark energy in the exponent, which can be inter-
preted as a Fermi-Dirac distribution function of a particle with
three times the quark mass.

In the relaxation time approximation to first order in the
deviation from equilibrium the collision term is given by [43]

Nspecies∑
j=1

C (1)
i j [ fi] = −Ei

τi

(
fi − f (0)

i

) = −Ei

τi
f (1)
i + O(Kn2), (47)

where τi is the relaxation time in the heat bath rest system
for the particle species i, Kn ∼ lmicro/Lmacro is the Knud-
sen number which denotes the ratio between the relevant

microscopic/transport length scales. lmicro is in our case the
mean free path λ, and the macroscopic scale Lmacro is the
characteristic length of the system.

B. Quark relaxation time

The RTA is often use in the framework of effective models
for the estimation of transport coefficients in the QGP phase.
It is worth noting that the results of transport calculations
depend not only on the EoS, which can be fitted to the
lQCD results, but also (if no local equilibrium is assumed)
on transport coefficients and therefore on the method of how
to evaluate quark and gluon relaxation times.

In this section we apply two different approaches for the
calculation of the quark relaxation time, which are commonly
used in the literature: (1) the so-called “averaged transition
rate” defined via the thermal averaged quark-quark and quark-
antiquark PNJL cross sections and (2) the “weighted” thermal
averaged quark-quark and quark-antiquark PNJL cross sec-
tions. As will be demonstrated later, the differences between
the two method are quite essential and influence substantially
the final results for the transport coefficients.

1. Method 1 for the quark relaxation time

We start with the estimation of the quark relaxation time
through the averaged interaction rate, related to the thermal
averaged quark-quark and quark-antiquark PNJL cross sec-
tions, advanced in [40,42,44,45]. The momentum dependent
relaxation time can be expressed through the on-shell interac-
tion rate in the medium rest system where the incoming quark
has a four-momentum Pi = (Ei, pi ):

τ−1
i (pi, T, μq ) = �i(pi, T, μq )

= 1

2Ei

∑
j=q,q̄

1

1 + δcd

∫
d3 p j

(2π )32Ej
dq f (0)

j (Ej, T, μq )
∫

d3 pc

(2π )32Ec

∫
d3 pd

(2π )32Ed
|M̄|2(pi, p j, pc, pd )

×(2π )4δ(4)(pi + p j − pc − pd )
(
1 − f (0)

c

)(
1 − f (0)

d

)
= 1

2Ei

∑
j=q,q̄

1

1 + δcd

∫
d3 p j

(2π )32Ej
dq f (0)

j (Ej, T, μq )
1

16π
√

s

1

pcm

∫
dt |M̄|2(s, t )

(
1 − f (0)

c

)(
1 − f (0)

d

)

=
∑
j=q,q̄

∫
d3 p j

(2π )3
dq f (0)

j (Ej, T, μq )vrelσi j→cd (s, T, μq ). (48)

The indices i and j refer to particles in the entrance channel,
c and d to those in the exit channel. f 0

i is the modified Fermi-
Dirac distribution function taking into account the Polyakov
loop [Eq. (46)]. |M̄|2 denotes the matrix element squared
averaged over the color and spin of the incoming partons,
and summed over those of the final partons.

√
s can be con-

veniently calculated from the four-vectors of the incoming
partons. The cross section without the Pauli blocking factors
is

σ (
√

s) =
∫

dt
1

64πsp2
cm

|M̄|2. (49)

The relative velocity in the c.m. frame is given by

vrel =
√

(pi · p j )2 − m2
i m2

j

EiE j
= pcm

√
s

EiE j
. (50)

pcm is the momenta of the initial (i, j) as well as of the final
quarks (c, d ) in the c.m. frame given by

pcm =
√

[s − (mi,c − mj,d )2][s − (mi,c + mj,d )2]

2
√

s
. (51)
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FIG. 12. Energy averaged transition rates w̄i j (T, μq ) for different
quark-quark(antiquark) scattering processes [ud → ud (red and or-
ange lines), us → us (green lines), uu → uu (blue, cyan, and violet
lines)] as a function of scaled temperature T/TMπ for μq = 0. The
solid lines corresponds to the actual results from Eq. (53). Green
and cyan dashed lines correspond to the results from Ref. [32].
Orange and violet dash-dotted lines correspond to the estimations
from Ref. [46].

The averaged relaxation time can be obtained from the
relaxation time of Eq. (48) by averaging over pi

τ−1
i (T, μq ) = 1

ni(T, μq)

∫
d3 pi

(2π )3
dq f (0)

i τ−1
i (pi, T, μq ).

(52)
The relaxation time can be expressed via the averaged

transition rate w̄i j defined as

w̄i j = 1

nin j

∫
d3 pi

(2π )3

∫
d3 p j

(2π )3
dq f (0)

i (Ei, T, μq )dq

× f (0)
j (Ej, T μq) · vrelσi j→cd (s, T, μq ). (53)

We note that, in spite of w̄i j being called in the literature
“averaged transition rate,” it has the dimension of a cross
section. Using w̄i j defined by Eq. (53), the average quark
relaxation time is given by [32]

τ−1
i (T, μq ) =

∑
j=q,q̄

n j (T, μq)w̄i j (54)

Figure 12 illustrates the results of the energy averaged tran-
sition rates w̄i j (T, μq ) for three scattering processes: ud →
ud (red and orange lines), us → us (green lines), uu → uu
(blue, cyan, and violet lines) as a function of scaled tempera-
ture T/TMπ (where TMπ is the Mott temperature) for μq = 0
from Eq. (53) in comparison to the previous NJL results taken
from Ref. [32] (green and cyan dashed lines, Nf = 3) and
Ref. [46] (orange and violet dash-dotted lines, Nf = 2). Our
results are in a good agreement with these NJL results; a small
difference arises due to different parameters of the models and
different quark masses. Momentum averaged transition rates
w̄i j (T, μq) for qq (solid lines) and qq (dashed lines) scattering
channels are presented in Fig. 13 as a function of scaled

(a)

(b)

FIG. 13. Energy averaged transition rates w̄i j (T, μq ) for different
quark-quark(antiquark) scattering processes as a function of scaled
temperature T/TMπ for (a) μq = 0 (upper) and (b) μq = 0.2 GeV
(lower). The solid and dashed lines correspond to the actual re-
sults from Eq. (53) for the quark-quark and the quark-antiquark
scatterings.

temperature T/TMπ for (a) μq = 0 and (b) μq = 0.2 GeV.
Near TMπ the rates w̄i j (T, μq) have a peak, which is followed
by a decrease with increasing temperature. While the values
of the qq rates w̄qq(T, μq ) are higher than those of the qq
channels, the antiquark densities are smaller than the quark
densities at nonzero μq (see Fig. 14).

2. Method 2 for the quark relaxation time

We continue the estimation of quark relaxation times with
an approach which was introduced by Zhuang [25] for the
calculation of the mean free path and then modified by Sasaki
[47] for the evaluation of the relaxation time. It is based
on the “weighted” thermal averaged quark-quark and quark-
antiquark PNJL cross sections. In the dilute gas approximation
the relaxation time for the species i is defined in [47] as

τ−1
i (T, μq ) =

∑
j=q,q̄

n j (T, μq )σ i j (T, μq ). (55)
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(a)

(b)

FIG. 14. Light and strange quarks (antiquarks) densities
ni(T, μq ) with f φ

i -modified Fermi distributions from Eq. (46) as a
function of temperature for (a) μq = 0 (upper) and (b) μq = 0.2 GeV
(lower). The solid orange and red lines correspond to the light quark
and antiquark densities, while the dashed blue and violet lines
correspond to the strange quark and antiquark densities.

σ i j (T, μq) is the “weighted” thermal averaged total PNJL
scattering cross section,

σ i j (T, μq) =
∫ smax

s0

ds σi j→cd (T, μq, s) P(T, μq, s),

P(T, μq, s) = C′
∫

d3 pid
3 p jdq f (0)

i (Ei, T, μq )dq

× f (0)
j (Ej, T, μq )δ[

√
s − (Ei + Ej )]

× δ3( �pi + �p j ) vrel. (56)

Here P(T, μq, s) is the probability of finding a quark-
antiquark or quark-quark pair with a center-of-mass energy√

s and a zero total momentum. P(T, μq, s) is normalized as∫ smax

s0

ds P(T, μq, s) = 1. (57)

(a)

(b)

FIG. 15. “Weighted” thermal averaged total PNJL cross sections
σ i j (T, μq ) from Eq. (56) as a function of the scaled temperature
T/TMπ for (a) μq = 0 (upper) and (b) μq = 0.2 GeV (lower).

and the relative velocity in the c.m. frame is given by
Eq. (50).

For the PNJL results we use also the modified Fermi-Dirac
distribution function defined by Eq. (46). Quark densities with
the modified Fermi-Dirac distribution functions are shown in
Fig. 14 as a function of the temperature for (a) μq = 0 and (b)
μq = 0.2 GeV.

The relaxation time for the light quarks is defined as

τ−1
u (T, μq ) = nu(σ uu−uu + σ ud−ud ) + nū(σ uū−uū + σ uū−dd̄

+ σ uū−ss̄ + σ ud̄−ud̄ ) + nsσ us−us + ns̄σ us̄−us̄.

(58)

The relaxation time for strange quarks is defined as

τ−1
s (T, μq) = 2nuσ us−us + 2nūσ us̄−us̄

+ nsσ ss−ss + ns̄(σ ss̄−ss̄ + 2σ ss̄−uū). (59)

Figure 15 shows the “weighted” thermal averaged PNJL
cross sections σ i j (T, μq ) for different scattering processes
as a function of the scaled temperature T/TMπ for (a) μq =
0 and (b) μq = 0.2 GeV. σ i j (T, μq ) shows a peak in the
vicinity of the pion Mott temperature TMπ , which is more
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pronounced for the quark-antiquark qq̄ scattering due to the
peak in the cross sections caused by the s-channel contribu-
tion (see the discussion in Sec. II F). Due to this increase of
the qq̄ cross sections the “weighted” thermal averaged cross
sections σ i j (T, μq) for the qq̄ channels dominate over the
qq channels. Approaching high temperatures, above TMπ , the
averaged cross sections σ i j (T, μq ) decrease with temperature
as expected from the behavior of the total PNJL cross sections
presented in the previous section. The shape of “weighted”
thermal averaged cross sections for μq = 0 is similar to the
NJL results presented in [19], while the absolute values of the
PNJL “weighted” thermal averaged cross section σ i j (T, 0) are
larger due to different model parameters and due to the larger
values of the effective quark masses.

Using Eqs. (53),(54) and (55),(56) one can compare the
underlying differences of the two presented methods to calcu-
late the quark relaxation time. The first approach is simply an
averaging of vrel · σ (

√
s) over the momentum of the partons in

the entrance channel. The second method requires in addition
that the sum of the quark momenta in the entrance channel
is zero and introduces an additional

√
s dependence by inte-

grating over s instead of over
√

s. The first approach does not
need any normalization whereas for the second method the
normalization covers some of the parameter dependence of
P(s, T, μq ).

Figure 16(a) gives an overview of the relaxation times of
light and strange quarks as a function of the scaled temper-
ature T/TMπ and for μq = 0. The solid gray and the dashed
orange lines correspond to the actual results from Eq. (55),
where the “weighted” thermal averaged cross sections σ̄i j are
used. The solid blue and the dashed red lines correspond to
the results from Eq. (54), where the averaged transition rates
w̄i j are used.

The difference between the two methods is most promi-
nently seen at high temperatures. Calculations of the quark
relaxation time using the averaged transition rates are more
straightforward since they rely on the relation between the
momentum depended relaxation time and the interaction rate.

In addition, we compare the quark relaxation time τi(σ̄i j )
for the PNJL model with the results for Nf = 3 NJL model
[19] (dashed magenta line). Our results are in a good agree-
ment with the NJL results except for the vicinity of TMπ .
The light quark relaxation time τi(σ̄i j ) in this case is about
0.7–0.5 fm/c in the region TMπ � T � 1.8TMπ .

The μq dependence of the quark relaxation time τi(w̄i j )
is shown in Fig. 16(b) for three values of μq: 0, 0.2, and
0.3 GeV. The solid lines correspond to the results for light
quarks while the dashed lines correspond to the results for
strange quarks. The quark relaxation time is increasing with
the chemical potential μq in the region of T � 2TMπ . One can
see that in the vicinity of the TMπ the relaxation time for the
strange quark is larger than for the light quark. This difference
becomes more significant for finite μq due to the difference
between the effective masses of light and strange quarks.

C. Shear viscosity

The most desired transport coefficients are the shear and
bulk viscosities. They have been successfully used in the

(a)

(b)

FIG. 16. Relaxation time of light and strange quarks as a function
of the scaled temperature T/TMπ (μq ) for (a) μq = 0 (upper) and
(b) μq � 0 (lower). The solid and the dashed lines show the results
for the PNJL model using the averaged transition rates w̄i j (54) and
the “weighted” thermal averaged cross sections σ̄i j (55).

viscous relativistic hydrodynamic description of the QGP bulk
dynamics. In large systems the shear viscosity and the entropy
density scale as T 3. Therefore often the specific shear and bulk
viscosities are used: the dimensionless ratio of the viscosity to
the entropy density. The specific shear viscosity allows one to
compare the viscosity of liquids at various temperature scales.
The main contribution for the viscous description of the QGP
comes from the shear viscosity. For this purpose we show the
transport coefficients as a function of the scaled temperature
T/TC . For the PNJL calculations we use TC = TMπ whereas
for the other approaches TC is the temperature of the inflec-
tion point. Here we focus on the estimation of the transport
coefficients based on the RTA.

The shear viscosity for quarks with medium dependent
masses M(T, μq ) can be derived using the Boltzmann equa-
tion in the RTA [42] through the relaxation time:

η(T, μq) = 1

15T

∑
i=q,q̄

∫
d3 p

(2π )3

p4

E2
i

τi(T, μq) · dq f φ
i , (60)
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FIG. 17. Specific shear viscosity η/s as a function of scaled
temperature T/TC for μq = 0. The solid and the dashed red lines
show the results of the η/s for the PNJL model using the averaged
transition rates w̄i j (54) and the averaged cross sections σ̄i j (55) for
the evaluation of the relaxation time. We show the estimations from
various models: URQMD [48] (dotted green line), PHSD [49] (dotted
green line), SMASH [50] (dotted green line), the Nf = 2 linear sigma
model [51] (dashed-doted purple line), the Nf = 3 NJL model [19]
(dashed magenta line), and DQPM [21] (dotted green line). The
dashed gray line demonstrates the Kovtun-Son-Starinets bound [52]
(η/s)KSS = 1/(4π ). The symbols show lQCD data for pure SU(3)
gauge theory taken from Refs. [53] (squares and rhombus), [54]
(circle), and [55] (pentagons). The solid blue line shows the results
from a Bayesian analysis of experimental heavy-ion data [56].

where q(q̄) = u, d, s(ū, d̄, s̄), τi are the relaxation times, and
f φ
i are the modified distribution functions, which contain the

Polyakov loop contributions.
Figure 17 shows the scaled temperature dependence T/TC

of the specific shear viscosity η/s for μq = 0. The solid and
dashed red lines show the PNJL results from Eq. (60) using the
two different estimations of the quark relaxation time: with
the averaged transition rates w̄i j from Eq. (54) and with the
“weighted” thermal averaged cross sections σ̄i j from Eq. (55).
The dashed gray line demonstrates the Kovtun-Son-Starinets
bound [52] (η/s)KSS = 1/(4π ), and the symbols show lQCD
data for pure SU(3) gauge theory, taken from Refs. [53]
(squares and rhombus), [54] (circle), and [55] (pentagons).
The solid blue line presents an estimation of η/s from the
Bayesian analysis of the experimental heavy-ion data from
Ref. [56], which has a similar temperature dependence. The
result of η/s (using σ̄i j ) is twice smaller then η/s (using w̄i j )
due to the different values of the quarks’ relaxation times.

We compare the results as well with those for the Nf = 3
NJL model from [19], where the relaxation time is estimated
using Eq. (55) and with the DQPM prediction where the
relaxation time is estimated using the on-shell interaction rate
described by Eq. (48). As expected, η/s obtained within the
second method is close to the NJL estimation, and differs
only at high temperature due to small differences in the cross
sections, while the first method predicts a higher value of η/s,
which is remarkably close to the DQPM results and to the
pure SU(3) gauge calculations. For the hadronic phase we
show the estimations from various transport models: URQMD

(a)

(b)

FIG. 18. Specific shear viscosity η/s as a function of scaled
temperature T/TC for (a) (upper) a moderate value of the quark
chemical potential 0 � μq � 0.3 which corresponds to a crossover
phase transition and (b) (lower) the whole range of the quark chem-
ical potential 0 � μq � 0.4 GeV. The solid (dashed) red lines show
the PNJL results of η/s for the PNJL model using the averaged
transition rates w̄i j (54) [the averaged cross sections σ̄i j (55)] for
the evaluation of the relaxation time. The dotted green line and
dashed purple line correspond to the results from the DQPM [21]
for μq = 0 and μq = 0.17 GeV. The dashed gray line demonstrates
the Kovtun-Son-Starinets bound [52] (η/s)KSS = 1/(4π ).

[48] (dotted green line), PHSD [49] (dotted green line), and
SMASH [50] (dotted green line). The PNJL results for the
two methods show a similar temperature dependence in the
vicinity of the chiral phase transition. Approaching the phase
transition η/s has a dip, which is followed by an increase
in the high temperature region. Later we consider results for
nonzero chemical potential, where in the crossover region the
DQPM calculations show a very moderate dependence on
the chemical potential (for μu = μs = μB/3), while the PNJL
predictions have a more pronounced μq dependence. As we
can see later, for the whole range of the quark chemical poten-
tial the two methods result in a similar temperature behavior
when approaching the chiral phase transition.

Figure 18(a) depicts the specific shear viscosity for moder-
ate values of the quark chemical potential 0 � μq � 0.3 GeV
where the phase transition is a rapid crossover. We compare
our results with the estimations from the DQPM for μq = 0
(dotted green line) and μq = 0.17 GeV (dashed violet line).
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At moderate values of μq the specific shear viscosity shows
a dip after the phase transition, which vanishes at high values
of μq as can be seen in Fig. 18(b). For large μq, where the
crossover transition turns into the first-order phase transition
(1PT), the specific shear viscosity has a discontinuity near
the critical temperature. In the vicinity of the CEP, for μq =
0.32 GeV, there is a rather smooth change of η/s, which can
be seen for the crossover phase transition at μq = 0.3 GeV.
So if one considers only μq values below the CEP, the temper-
ature dependence of the specific shear viscosity cannot point
out the position of the CEP. The evolution of the specific shear
viscosity with μq is in qualitative agreement with previous
findings made for the Nf = 2 NJL model in Ref. [47]. The
numerical values differ due to the difference in the model pa-
rameters, distribution functions, and the NJL entropy density.

D. Electric conductivity

As QGP matter consists of charged constituents it is inter-
esting to estimate the response of the system to an external
stationary electric field. This is described by the electric con-
ductivity σ0. Electric conductivity influences the soft photons
spectra [57–59] and it is directly related to their emission rate
[60]. The electric conductivity can be used for estimation the
electromagnetic fields produced in heavy ion collisions [61].

The electric conductivity σ0 of quarks with the effective
masses M(T, μq ) can be evaluated by using the relaxation
time approximation (see Ref. [13]):

σ0(T, μq) = e2

3T

∑
i=q,q̄

q2
i

∫
d3 p

(2π )3

p2

E2
i

· τi(T, μq ) dq f φ
i ,

(61)

where e2 = 4παem, qi = +2/3(u),−1/3(d ),−1/3(s) are the
quark electric charges, dq = 2Nc = 6 is the degeneracy factor
for spin and color in case of quarks and antiquarks, τi are their
relaxation times, while f φ

i denote the modified distribution
functions for quark and antiquarks. In these formulas we deal
with quarks and antiquarks of Nf = 3 flavors. Each quark
has a contribution proportional to its charge squared. While
viscosities have in general a gluonic contribution, the electric
conductivity contains only a quark contribution.

The PNJL results for the dimensionless ratio of electric
conductivity to temperature σ0/T for μq = 0 are presented
in Fig. 19 for both methods of the calculation of the quark
relaxation time as solid and dashed red lines. We compare the
PNJL results to the various estimations from the literature:
lQCD data for Nf = 2 taken from Refs. [62–64] (red circles
with brown borders, yellow circles with green borders)
and for Nf = 2 + 1 taken from Refs. [65,66] (spheres) and
from Ref. [67] (blue stars), the kinetic partonic cascade
model BAMPS [68] (dark-green solid line with triangles), the
nonconformal holographic Einstein-Maxwell-dilaton (EMD)
model [11] (dashed black line), the DQPM [21] (dotted green
line); and below Tc = 0.158 GeV we show evaluations from
hadronic models: the hadron resonance gas (HRG) model
within the Chapman-Enskog expansion of the Boltzmann
equation [14,69] (dashed cyan line), the Nf = 2 linear sigma
model [51] (dashed-dotted purple line), and SMASH [70,71]

FIG. 19. Ratio of electric conductivity to temperature σ0/T from
Eq. (61) as a function of the scaled temperature T/TC for μq = 0. The
solid (dashed) red lines show the PNJL results of σ0/T for the PNJL
model using the averaged transition rates w̄i j (54) [the “weighted”
thermal averaged cross sections σ̄i j (55)] for the evaluation of the
relaxation time. The symbols display lQCD data for Nf = 2 taken
from Refs. [62–64] (red circles with brown borders, yellow circles
with green borders) and for Nf = 2 + 1 taken from Refs. [65,66]
(spheres) and from Ref. [67] (blue stars). We compare to predictions
from the various models: the kinetic partonic cascade model BAMPS

[68] (the dark-green solid line with triangles), the nonconformal
holographic EMD model [11] (dashed black line), the DQPM [21]
(dotted green line), and below Tc = 0.158 GeV we show evaluations
from hadronic models: the HRG model within the Chapman-Enskog
expansion of the BU [14,69] (dashed cyan line), the Nf = 2 linear
sigma model [51] (dashed-dotted purple line), and SMASH [70,71]
(solid grey line with squares).

(solid grey line with squares). The PNJL results for the
two methods of the estimation of quark relaxation time
have a similar increase with temperature, which is mainly
a consequence of the increase of the quark densities with
temperature. The temperature dependence is in agreement
with the predictions from the DQPM [21], despite the
differences in the effective masses.

The chemical potential dependence is shown in Fig. 20(a)
for moderate values of μq and 20(b) for the whole range of μq.
As the specific shear viscosity, also the electric conductivity
has a discontinuity at the first-order phase transition (and
hence for μq > 0.32). At lower chemical potentials, where the
transition is a crossover, σ0/T is a continuous function of the
temperature. Starting from μq = 0, with increasing μq, σ0/T
has first a dip approaching the phase transition temperature,
which, for a moderate value of μq = 0.2–0.3 GeV, turns into
a hump; at μq = 0.4 GeV, where the phase transition is of
first order, it shows a discontinuity. For low values of μq and
above the chiral phase transition, T � 2TC , σ0/T rises with
μq, which is in agreement with the DQPM estimations [21]
and predictions from the holographic calculations in Ref. [11].

It is interesting to compare the momentum diffusion,
described by the specific shear viscosity η/s, and the
charge diffusion, described by the scaled electric conductiv-
ity σ0/T = κQ/T 2 (κQ is the charge diffusion coefficient) by
calculating the ratio η/s

σ0/T . This ratio is less dependent on the
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(a)

(b)

FIG. 20. Ratio of the electric conductivity to the temperature
σ0/T as a function of the scaled temperature T/TC for (a) μq = 0
(upper) and (b) μq � 0 (lower). The solid (dashed) red lines show
the PNJL results of σ0/T for the PNJL model using the averaged
transition rates w̄i j (54) [the “weighted” thermal averaged cross
sections σ̄i j (55)] for the evaluation of the relaxation time. The dotted
green line and dashed purple line correspond to the results from the
DQPM [21] for μq = 0 and μq = 0.17 GeV.

approximations made for the evaluation of the quark cross
sections or quark relaxation times. The ratio η/s

σ0/T is presented
in Fig. 21 as a function of scaled temperature T/TC for a range
of quark chemical potential μq � 0.

For μq = 0 we compare our results with the predictions
from the anti–de Sitter/conformal field theory correspondence
(AdS/CFT, grey dotted line) [52,73], evaluations from the
Nf = 2 linear sigma model [51] (dashed-dotted purple line),
the DQPM predictions [21] (green dash-dotted line), and es-
timation made in the quasiparticle (QP) model (blue dashed
line) [72], where quarks and gluons are on-shell particles, and
the coupling constant has a one-loop pQCD ansatz, which
results in the higher parton masses compare to the DQPM
masses. Note that the QPM has a higher value of the electric
conductivity compared to the DQPM and lQCD results. For
the PNJL calculations we see for μq values, where the theory
shows a crossover, below TC a strong decrease of this ratio
with temperature, whereas above TC the ratio flattens out.
For μq values where a first-order phase transition is observed
we see also for this ratio the discontinuity which we already
observed for the viscosity and the electric conductivity.

FIG. 21. Ratio of specific shear viscosity η/s to the scaled elec-
tric conductivity σ0/T as a function of scaled temperature T/TC for
μq � 0. For μq = 0 we show the estimations from various models:
the QP model [72] (dashed grey line), the DQPM [21] (dotted red
line), the AdS-CFT [52,73] (dotted grey line), and the Nf = 2 linear
sigma model [51] (dashed-dotted purple line).

It has to be mentioned that the three-dimensional mean
field models are conceptually not accurate near the critical
point and the first-order phase transition [74]. They are built
on the anzatz that the fluctuations are small compared to
the average value, while approaching the critical point the
correlation length becomes large and diverges at the critical
point. The feature of the PNJL and NJL models regarding the
static critical exponents, the size of the critical region, and the
influence of the Polyakov loop have already been studied in
Refs. [75–77].

In the vicinity of the critical region one has to consider
additional critical contributions governed by the dynamics
of the fluctuations associated with the CEP. The dynamical
universality class of the QCD critical point is argued to be
that of the H model [78–80] according to the classification
of dynamical critical phenomena by Hohenberg and Halperin
[81]. Whereas in the vicinity of the CEP the shear viscosity
has a mild divergence in the critical region, the bulk viscosity
has a more pronounced divergence [80–83]: η ∼ ξ

Zη

T (Zη ≈
1/19), ζ ∼ ξ

Zζ

T (Zζ ≈ 3), and electric conductivity diverges
as σQ ∼ 1

ξT
, where ξT ∼ (T − TC )ν is the thermal correlation

length, with ν being the static critical exponent. The specific
bulk and shear viscosities were considered near the CEP and
the first-order phase transition for the Nf = 2 NJL model in
the previous study [47]. Therefore the presented results can
qualitatively describe η/s and σ/T above TC , and a further
development of the critical contribution to the transport co-
efficients in the critical region is needed. Recently a generic
extension of hydrodynamics by a parametrically slow mode
or modes (“Hydro+”) and a description of fluctuations out of
equilibrium were considered in Ref. [84].

IV. CONCLUSION

We have calculated the specific shear viscosity η/s and the
ratio of electric conductivity to temperature, σ0/T , of QGP
matter in the extended PNJL model for a wide range of quark
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chemical potentials using the framework of the Boltzmann
equation in the relaxation time approximation.

(i) We showed that both the specific shear viscosity
η/s and the ratio of the electric conductivity to the
temperature, σ0/T , depend strongly on the chemical
potential.

(ii) We demonstrated the dependence of the transport
coefficients on the quark relaxation times, which
were estimated with two methods: either by using the
averaged transition rates w̄i j or by the “weighted”
thermal averaged cross sections σ̄i j . The evaluation
made within the first method is considered to be
more realistic as it stems from the derivation of the
relaxation time through the interaction rate.

(iii) In the vicinity of the chiral phase transition the two
methods result in a similar temperature dependence
of the considered transport coefficients, which are,
for a vanishing quark chemical potential, in agree-
ment with various results from the literature. They
include the results for the specific shear viscosity
η/s and the ratio of the electric conductivity and the
temperature, σ0/T , obtained with the Nf = 3 NJL
model [19], lattice QCD predictions, the Nf = 2 lin-
ear sigma model [51], predictions from the transport
models such as URQMD, BAMPS, SMASH, PHSD, and
estimations from the dynamical quasiparticle model
[21]. In the vicinity of the pseudocritical temperature
our results are remarkably close to that of lQCD
calculations and to the results from the DQPM.

(iv) The key result of this paper is the quark chemical
potential μq dependence of transport coefficients. At
moderate values of μq (μq � 0.3 GeV), where the
phase transition is a rapid crossover, transport coeffi-
cients show a smooth temperature dependence while
approaching the (pseudo)critical temperature from
the high temperature region.

(v) At large values of μq the presence of a first-order
phase transition changes the temperature dependence

of the transport coefficients drastically and a discon-
tinuity can be seen when approaching the critical
temperature.

(vi) We found that the influence of the CEP on the
evaluated transport coefficients is rather small in
comparison to the modification due to a first-order
phase transition. For the specific shear viscosity a
similar behavior near the chiral phase transition has
been obtained in the Nf = 2 NJL model in Ref. [47].

(vii) We have considered furthermore the dimensionless
ratio of specific shear viscosity to the scaled electric
conductivity. It shows as well a discontinuity at TC if
the chiral transition is of first order but is otherwise
almost constant for T > 2TC .

To conclude, we have found a significant dependence of
the value of the considered transport coefficients on the quark
relaxation times evaluated by two different methods, which
can explain the difference in the previously known RTA re-
sults from other models. Nevertheless, in the vicinity of the
chiral phase transition the temperature and chemical potential
dependence of the transport coefficients is similar for the two
presented methods.

ACKNOWLEDGMENTS

The authors thank Wolfgang Cassing, Rudy Marty, Tae-
soo Song, and Juan Torres-Rincon for useful discussions.
O.S. acknowledge support from the “Helmholtz Graduate
School for Heavy Ion research.” O.S. and E.B. acknowledge
support by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) through the grant CRC-TR 211
“Strong-interaction matter under extreme conditions,” Project
No. 315477589-TRR 211. This work is supported by the
European Union’s Horizon 2020 research and innovation pro-
gram under Grant Agreement No. 824093 (STRONG-2020)
and by the COST Action CA15213 THOR.

[1] E. Shuryak, Prog. Part. Nucl. Phys. 62, 48 (2009).
[2] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123

(2013).
[3] A. Adronic and P. Braun-Munzinger, K. Redlich, and J. Stachel,

Nature (London) 561, 321 (2018).
[4] G. Odyniec (STAR Collaboration), PoS (CORFU2018), 151

(2019).
[5] P. Senger (CBM Collaboration), Phys. Scr. 95, 074003

(2020).
[6] D. Blaschke et al., Eur. Phys. J. A 52, 267 (2016).
[7] P. Arnold, G. D. Moore, and L. G. Yaffe, J. High Energy Phys.

05 (2003) 051.
[8] E. Shuryak, Rev. Mod. Phys. 89, 035001 (2017).
[9] S. Ryu, J.-F. Paquet, C. Shen, G. S. Denicol, B. Schenke, S.

Jeon, and C. Gale, Phys. Rev. Lett. 115, 132301 (2015).
[10] M. Attems, J. Casalderrey-Solana, D. Mateos, I. Papadimitriou,

D. Santos-Oliván, C. F. Sopuerta, M. Triana, and M. Zilhão, J.
High Energy Phys. 10 (2016) 155.

[11] R. Rougemont, R. Critelli, J. Noronha-Hostler, J. Noronha, and
C. Ratti, Phys. Rev. D 96, 014032 (2017).

[12] G. Jackson and A. Peshier, J. Phys. G 45, 095001 (2018).
[13] L. Thakur, P. K. Srivastava, G. P. Kadam, M. George, and H.

Mishra, Phys. Rev. D 95, 096009 (2017).
[14] M. Greif, J. A. Fotakis, G. S. Denicol, and C. Greiner, Phys.

Rev. Lett. 120, 242301 (2018).
[15] V. Mykhaylova, M. Bluhm, K. Redlich, and C. Sasaki, Phys.

Rev. D 100, 034002 (2019).
[16] Y. P. Zhao, Phys. Rev. D 101, 096006 (2020).
[17] A. Abhishek, A. Das, D. Kumar, and H. Mishra,

arXiv:2007.14757.
[18] D. Fuseau, T. Steinert, and J. Aichelin, Phys. Rev. C 101,

065203 (2020).
[19] R. Marty, E. Bratkovskaya, W. Cassing, J. Aichelin, H.

Berrehrah, Phys. Rev. C 88, 045204 (2013).
[20] P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, and E.

Bratkovskaya, Phys. Rev. C 100, 014911 (2019).

054901-16

https://doi.org/10.1016/j.ppnp.2008.09.001
https://doi.org/10.1146/annurev-nucl-102212-170540
https://doi.org/10.1038/s41586-018-0491-6
https://doi.org/10.22323/1.347.0151
https://doi.org/10.1088/1402-4896/ab8c14
https://doi.org/10.1140/epja/i2016-16267-x
https://doi.org/10.1088/1126-6708/2003/05/051
https://doi.org/10.1103/RevModPhys.89.035001
https://doi.org/10.1103/PhysRevLett.115.132301
https://doi.org/10.1007/JHEP10(2016)155
https://doi.org/10.1103/PhysRevD.96.014032
https://doi.org/10.1088/1361-6471/aad374
https://doi.org/10.1103/PhysRevD.95.096009
https://doi.org/10.1103/PhysRevLett.120.242301
https://doi.org/10.1103/PhysRevD.100.034002
https://doi.org/10.1103/PhysRevD.101.096006
http://arxiv.org/abs/arXiv:2007.14757
https://doi.org/10.1103/PhysRevC.101.065203
https://doi.org/10.1103/PhysRevC.88.045204
https://doi.org/10.1103/PhysRevC.100.014911


SHEAR VISCOSITY AND ELECTRIC CONDUCTIVITY OF … PHYSICAL REVIEW C 103, 054901 (2021)

[21] O. Soloveva, P. Moreau, and E. Bratkovskaya, Phys. Rev. C 101,
045203 (2020).

[22] A. Peshier and W. Cassing, Phys. Rev. Lett. 94, 172301 (2005).
[23] W. Cassing, Nucl. Phys. A 795, 70 (2007); 791, 365 (2007).
[24] A. V. Friesen, Y. V. Kalinovsky, and V. D. Toneev, Nucl. Phys.

A 923, 1 (2014).
[25] P. Zhuang, J. Hufner, S. P. Klevansky, and L. Neise, Phys. Rev.

D 51, 3728 (1995).
[26] K. Fukushima, Phys. Lett. B 591, 277 (2004).
[27] E. Megias, E. R. Arriola, and L. L. Salcedo, Phys. Rev. D 74,

065005 (2006).
[28] C. Ratti, M. A. Thaler, and W. Weise, Phys. Rev. D 73, 014019

(2006).
[29] H. Hansen, W. M. Alberico, A. Beraudo, A. Molinari, M. Nardi,

and C. Ratti, Phys. Rev. D 75, 065004 (2007).
[30] J. M. Torres-Rincon, B. Sintes, and J. Aichelin, Phys. Rev. C

91, 065206 (2015).
[31] S. P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).
[32] P. Rehberg, S. P. Klevansky, and J. Hufner, Nucl. Phys. A 608,

356 (1996).
[33] P. Rehberg and S. P. Klevansky, Ann. Phys. (NY) 252, 422

(1996).
[34] P. Rehberg, S. P. Klevansky, and J. Hufner, Phys. Rev. C 53,

410 (1996).
[35] A. Bazavov et al. (HotQCD Collaboration), Phys. Rev. D 90,

094503 (2014).
[36] J. M. Torres-Rincon and J. Aichelin, Phys. Rev. C 96, 045205

(2017).
[37] A. Kurkela and A. Vuorinen, Phys. Rev. Lett. 117, 042501

(2016).
[38] E. Blanquier, Le modèle de Polyakov, Nambu et Jona-Lasinio

et ses applications pour décrire les particules sub-nucléaires,
Report No. tel-01099258, 2013TOU30159 (Toulouse III U.,
2013).

[39] P. Romatschke, Phys. Rev. D 85, 065012 (2012).
[40] P. Chakraborty and J. I. Kapusta, Phys. Rev. C 83, 014906

(2011).
[41] M. Alqahtani, M. Nopoush, and M. Strickland, Phys. Rev. C 92,

054910 (2015).
[42] M. Albright and J. I. Kapusta, Phys. Rev. C 93, 014903 (2016).
[43] J. L. Anderson and H. R. Witting, Physica 74, 466 (1974).
[44] A. Hosoya and K. Kajantie, Nucl. Phys. B 250, 666 (1985).
[45] H. Berrehrah, P. B. Gossiaux, J. Aichelin, W. Cassing, and E.

Bratkovskaya, Phys. Rev. C 90, 064906 (2014).
[46] P. Deb, G. P. Kadam, and H. Mishra, Phys. Rev. D 94, 094002

(2016).
[47] C. Sasaki and K. Redlich, Nucl. Phys. A 832, 62 (2010).
[48] N. Demir and S. A. Bass, Phys. Rev. Lett. 102, 172302 (2009).
[49] V. Ozvenchuk, O. Linnyk, M. I. Gorenstein, E. L. Bratkovskaya,

and W. Cassing, Phys. Rev. C 87, 064903 (2013).
[50] J. B. Rose, J. M. Torres-Rincon, A. Schäfer, D. R.

Oliinychenko, and H. Petersen, Phys. Rev. C 97, 055204 (2018).
[51] M. Heffernan, S. Jeon, and C. Gale, Phys. Rev. C 102, 034906

(2020).
[52] P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.

94, 111601 (2005).
[53] A. Nakamura and S. Sakai, Phys. Rev. Lett. 94, 072305 (2005).

[54] S. Sakai and A. Nakamura, PoS (LATTICE2007), 221 (2007).
[55] N. Astrakhantsev, V. Braguta, and A. Kotov, J. High Energy

Phys. 04 (2017) 101.
[56] J. E. Bernhard, J. S. Moreland, and S. A. Bass, Nat. Phys. 15,

1113 (2019).
[57] S. Turbide, R. Rapp, and C. Gale, Phys. Rev. C 69, 014903

(2004).
[58] Y. Akamatsu, H. Hamagaki, T. Hatsuda, and T. Hirano, J. Phys.

G 38, 124184 (2011).
[59] O. Linnyk, W. Cassing, and E. L. Bratkovskaya, Phys. Rev. C

89, 034908 (2014).
[60] Y. Yin, Phys. Rev. C 90, 044903 (2014).
[61] L. Oliva, Eur. Phys. J. A 56, 255 (2020).
[62] B. B. Brandt, A. Francis, H. B. Meyer, and H. Wittig, J. High

Energy Phys. 03 (2013) 100.
[63] A. Francis, B. Brandt, H. Meyer, and H. Wittig, PoS (Confine-

ment X), 186 (2013).
[64] B. B. Brandt, A. Francis, B. Jäger, and H. B. Meyer, Phys. Rev.

D 93, 054510 (2016).
[65] A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands, and J. I.

Skullerud, Phys. Rev. Lett. 111, 172001 (2013).
[66] G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands, and J. I.

Skullerud, J. High Energy Phys. 02 (2015) 186.
[67] N. Y. Astrakhantsev, V. V. Braguta, M. D’Elia, A. Y. Kotov,

A. A. Nikolaev, and F. Sanfilippo, Phys. Rev. D 102, 054516
(2020).

[68] M. Greif, I. Bouras, C. Greiner, and Z. Xu, Phys. Rev. D 90,
094014 (2014).

[69] J. A. Fotakis, M. Greif, C. Greiner, G. S. Denicol, and H. Niemi,
Phys. Rev. D 101, 076007 (2020).

[70] J. Hammelmann, J. M. Torres-Rincon, J. B. Rose, M. Greif, and
H. Elfner, Phys. Rev. D 99, 076015 (2019).

[71] J. B. Rose, M. Greif, J. Hammelmann, J. A. Fotakis, G. S.
Denicol, H. Elfner, and C. Greiner, Phys. Rev. D 101, 114028
(2020).

[72] A. Puglisi, S. Plumari, and V. Greco, Phys. Lett. B 751, 326
(2015).

[73] S. Caron-Huot, P. Kovtun, G. D. Moore, A. Starinets, and L. G.
Yaffe, J. High Energy Phys. 12 (2006) 015.

[74] N. Goldenfeld, Lectures on Phase Transitions and the Renormal-
ization Group, Frontiers in Physics Vol. 85 (Westview, Boulder,
CO, 1992).

[75] P. Costa, C. A. de Sousa, M. C. Ruivo, and Y. L. Kalinovsky,
Phys. Lett. B 647, 431 (2007).

[76] P. Costa, C. A. de Sousa, M. C. Ruivo, and H. Hansen,
Europhys. Lett. 86, 31001 (2009).

[77] B. J. Schaefer and M. Wagner, Phys. Rev. D 85, 034027 (2012).
[78] H. Fujii, Phys. Rev. D 67, 094018 (2003).
[79] H. Fujii and M. Ohtani, Phys. Rev. D 70, 014016 (2004).
[80] D. T. Son and M. A. Stephanov, Phys. Rev. D 70, 056001

(2004).
[81] P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys. 49, 435

(1977).
[82] L. P. Kadanoff and J. Swift, Phys. Rev. 166, 89 (1968).
[83] A. Onuki, Phase Transition Dynamics (Cambridge University

Press, Cambridge, 2002).
[84] M. Stephanov and Y. Yin, Phys. Rev. D 98, 036006 (2018).

054901-17

https://doi.org/10.1103/PhysRevC.101.045203
https://doi.org/10.1103/PhysRevLett.94.172301
https://doi.org/10.1016/j.nuclphysa.2007.08.010
https://doi.org/10.1016/j.nuclphysa.2007.04.015
https://doi.org/10.1016/j.nuclphysa.2014.01.002
https://doi.org/10.1103/PhysRevD.51.3728
https://doi.org/10.1016/j.physletb.2004.04.027
https://doi.org/10.1103/PhysRevD.74.065005
https://doi.org/10.1103/PhysRevD.73.014019
https://doi.org/10.1103/PhysRevD.75.065004
https://doi.org/10.1103/PhysRevC.91.065206
https://doi.org/10.1103/RevModPhys.64.649
https://doi.org/10.1016/0375-9474(96)00247-3
https://doi.org/10.1006/aphy.1996.0140
https://doi.org/10.1103/PhysRevC.53.410
https://doi.org/10.1103/PhysRevD.90.094503
https://doi.org/10.1103/PhysRevC.96.045205
https://doi.org/10.1103/PhysRevLett.117.042501
https://doi.org/10.1103/PhysRevD.85.065012
https://doi.org/10.1103/PhysRevC.83.014906
https://doi.org/10.1103/PhysRevC.92.054910
https://doi.org/10.1103/PhysRevC.93.014903
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1016/0550-3213(85)90499-7
https://doi.org/10.1103/PhysRevC.90.064906
https://doi.org/10.1103/PhysRevD.94.094002
https://doi.org/10.1016/j.nuclphysa.2009.11.005
https://doi.org/10.1103/PhysRevLett.102.172302
https://doi.org/10.1103/PhysRevC.87.064903
https://doi.org/10.1103/PhysRevC.97.055204
https://doi.org/10.1103/PhysRevC.102.034906
https://doi.org/10.1103/PhysRevLett.94.111601
https://doi.org/10.1103/PhysRevLett.94.072305
https://doi.org/10.1007/JHEP04(2017)101
https://doi.org/10.1038/s41567-019-0611-8
https://doi.org/10.1103/PhysRevC.69.014903
https://doi.org/10.1088/0954-3899/38/12/124184
https://doi.org/10.1103/PhysRevC.89.034908
https://doi.org/10.1103/PhysRevC.90.044903
https://doi.org/10.1140/epja/s10050-020-00260-3
https://doi.org/10.1007/JHEP03(2013)100
https://doi.org/10.22323/1.171.0186
https://doi.org/10.1103/PhysRevD.93.054510
https://doi.org/10.1103/PhysRevLett.111.172001
https://doi.org/10.1007/JHEP02(2015)186
https://doi.org/10.1103/PhysRevD.102.054516
https://doi.org/10.1103/PhysRevD.90.094014
https://doi.org/10.1103/PhysRevD.101.076007
https://doi.org/10.1103/PhysRevD.99.076015
https://doi.org/10.1103/PhysRevD.101.114028
https://doi.org/10.1016/j.physletb.2015.10.070
https://doi.org/10.1088/1126-6708/2006/12/015
https://doi.org/10.1016/j.physletb.2007.02.045
https://doi.org/10.1209/0295-5075/86/31001
https://doi.org/10.1103/PhysRevD.85.034027
https://doi.org/10.1103/PhysRevD.67.094018
https://doi.org/10.1103/PhysRevD.70.014016
https://doi.org/10.1103/PhysRevD.70.056001
https://doi.org/10.1103/RevModPhys.49.435
https://doi.org/10.1103/PhysRev.166.89
https://doi.org/10.1103/PhysRevD.98.036006

