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We present a theoretical formalism for scattering of twisted neutrons by nuclei in a kinematic regime where
interference between the Coulomb interaction and the strong interaction is essential. Twisted neutrons have
definite quantized values of an angular momentum projection along the direction of propagation, and we show
that this results in novel observable effects for the scattering cross section, spin asymmetries, and polarization
of the scattered neutrons. We demonstrate that additional capabilities provided by a beam’s orbital angular
momentum enable new techniques for measuring both real and imaginary parts of the scattering amplitude.
Several possible observables are considered, for which the targets may be either well localized with respect to
the spatial beam profile or the scattering occurs incoherently on nuclei in a bulk target. The developed approach
can be applied to other nuclear reactions with strongly interacting twisted particles.
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I. INTRODUCTION

Neutron scattering and interferometry provide fundamental
probes of electromagnetic, strong, and weak interactions and
gravity [1,2]. State-of-the-art reactor or spallation neutron
facilities are currently operational around the world [3], and
new facilities will come online [4] or are under construction
[5]. Recently [6], a new important capability for fundamen-
tal neutron science was added: namely, thermal (0.27 nm)
neutron beams were formed with a nonzero projection of the
orbital angular momentum—referred to as twisted neutrons
[7]—using a method of spiral phase plates. Other novel ap-
proaches for generating the beams of twisted neutrons [8–10]
can also be applied to ultracold neutrons with submicron wave
lengths.

Preparation of beams of light and matter in a prede-
fined quantum state of angular momentum projection on
the beams’ direction was previously achieved for photons
and electrons [11–14]. These beams open new directions
for controlling quantum states of matter, for optical and
electron microscopy, quantum information, quantum com-
munications, and quantum computing. In the analysis of
quantum amplitudes, twisted-electron scattering allows one
to access a Coulomb phase [15,16]. Photoexcitation of atoms
by the twisted photons provides approaches for separation of
the transition amplitudes into different multipoles [17,18]. In
the domain of elementary particle physics, new effects in the
collisions of twisted beams were pointed out in Refs. [19,20].
Nuclear reactions caused by twisted gamma rays and twisted
neutrons were studied theoretically in Ref. [21]. The use
of twisted neutrons can become a part of multimode-

entangled neutron interferometry, discussed in Ref. [22], that
would identify quantum-entangled degrees of freedom in
matter.

In this paper, we analyze what novel information about the
scattering amplitude can be learned from the twisted neutrons’
being elastically scattered on a zero-spin atomic nucleus. A
special case of the Schwinger scattering is considered [23,24],
for which the interference of electromagnetic and strong in-
teraction results in a characteristic spin asymmetry. Since a
twisted neutron beam represents a (partially) coherent wave
packet, different scattering scenarios lead to different observ-
able effects. After a brief review of the scattering formalism
for standard, plane-wave neutron beams (Sec. II), we develop
a formalism of twisted-neutron scattering for macroscopic
targets (Sec. III), for which the cross section is an incoherent
sum of cross sections for individual nuclei. We find that the
angular dependence of the cross section is altered for the
twisted particles, while the absorptive part of the amplitude is
responsible for transverse spin asymmetry, as in a nontwisted
case. Twisted neutron beams may be prepared in states of su-
perposition of several angular momenta; we show that in this
case scattering off macroscopic targets develops dependence
on the longitudinal component of neutron spin. This is in stark
contrast with conventional, nontwisted neutron scattering, for
which such a spin asymmetry is forbidden by parity conser-
vation. Further we consider scattering on a single nucleus
with a fixed transverse position with respect to a beam’s axis
(Sec. IV) and demonstrate that under this condition the
scattering spin asymmetry is due to both longitudinal and
transverse spin and, in addition, spin asymmetries have con-
tributions from both real and absorptive parts of the nuclear
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amplitude. These features of the spin asymmetries still hold
for mesoscopic targets, as we show in Sec. V.

In summary, the magnitude of the predicted new effects
depends on the parameters of the twisted neutron beams and
experimental approaches: for well-localized targets and/or
high angular resolution setup we demonstrate possible spin
asymmetries in tens of percent, while for bulk targets, after the
averaging over the nuclei positions, the effects may reduce to
10−6 levels. It should be noted that existing experimental pro-
grams studying parity-violation effects aim to measure even
smaller asymmetries of 10−8 [25,26], therefore we believe that
measurements of the predicted spin effects from the twisted
neutrons are feasible and even necessary for separation of
parity-conserving and parity-violating mechanisms of strong
interactions.

This paper is a substantially expanded version of a Rapid
Communication [27].

II. THE STANDARD CASE OF PLANE-WAVE NEUTRONS

Here, we briefly review the formalism of neutron scattering
on a spin-zero nucleus in the Schwinger regime [23], i.e.,
when both Coulomb interaction and the strong interaction
are essential. Let the initial neutron, prior to approaching the
target, be in a plane-wave state with a momentum p and a
wave function w eipr/h̄, where the spinor w = w(λ)(n) with
a helicity λ is normalized as w†w = 1. The final neutron’s
wave function is w′ eip′r/h̄. We neglect the target recoil, so that
p = p′, and introduce the unit vectors n = p/p and n′ = p′/p
with the spherical angles θ, ϕ and θ ′, ϕ′. The corresponding
scattering amplitude is (see, for example, Ref. [28], Sec. 42)

fλλ′ (n, n′) = w′†
λ′ (a + iBσ)wλ, B = β

n × n′

(n − n′)2 ,

β = μnZe2

mpc2 = −Z × 2.94 × 10−16 cm, (1)

were σ are the Pauli matrices describing the neutron
spin ŝ = 1

2 σ, μn = −1.91 (in nuclear magnetons), and
mp is the proton mass. Here, a is the nuclear ampli-
tude while iBσ relates to the electromagnetic interaction
of the neutron’s anomalous magnetic moment with a nu-
cleus. Interference of these amplitudes in the cross section
allows for important measurements of a phase of the nu-
clear amplitude. For thermal neutrons with the energies
near 25 meV and an 197

79 Au nuclear target (a = 7.63 fm
[29]), the relevant parameters are

ε ≡ |β/a| ≈ 0.03, |(Im a)/a| ≈ 2 × 10−4. (2)

The standard cross section summed over spin states of final
neutrons has the form

dσ (st)(n, n′, ζ)

d�′ =
∑
λ′

| fλλ′ (n, n′)|2 = |a|2 + |B|2

+ 2(Bζ) Im a, (3)

where ζ = (ζ⊥, ζz ) is the polarization of the initial neutron
beam, |ζ| � 1. Assuming that the vector n is directed along

the z axis [i.e., that n = ez = (0, 0, 1)], we find

dσ (st)(ez, n′, ζ)

d�′ = |a|2 + 1

4
[β cot(θ ′/2)]2

−β ζ⊥ (Im a) cot(θ ′/2) sin(ϕ′ − ϕζ ).

(4)

The interference term depends on the transverse polarization
of the initial neutron ζ⊥ = ζ⊥(cos ϕζ , sin ϕζ , 0), but not on the
longitudinal spin polarization ζz or the helicity λ. For small
scattering angles, θ ′ → 0, the second term on the right-hand
side has a singularity of (1/θ ′)2, while the third term has a
singularity 1/θ ′.

Due to time-reversal invariance, this single-spin correlation
in Eq. (4) is the same for either initial or final neutron polariza-
tion, and the spin correlation averages to zero after integration
with respect to the final neutron’s azimuthal angle ϕ′.

The standard differential cross section of this process aver-
aged over spin states of initial neutrons has a form

dσ (st)(n, n′, ζ′)
d�′ = 1

2

∑
λ

| fλλ′ (n, n′)|2

= 1

2
[|a|2 + |B|2 + 2 (Bζ( f ) ) Im a], (5)

where ζ′ is the detected polarization of the final neutron. The
polarization of the final neutron resulting from the scattering
process itself [23] is expressed in terms of strong and electro-
magnetic amplitudes as

ζ( f ) = 2 Im a

|a|2 + |B|2 B. (6)

III. SCATTERING OF TWISTED NEUTRONS
BY A MACROSCOPIC TARGET

A. Twisted neutrons with a defined Jz = m

Next, we proceed to the case of twisted neutrons and use
an approach developed in Ref. [30] for the twisted spinor par-
ticles. We assume that the incident twisted neutrons propagate
along the quantization (z) axis and have well-defined values of
(i) a longitudinal linear momentum pz, (ii) an absolute value
of a transverse momentum |p⊥| ≡ h̄κ, and (iii) a projection
of a total angular momentum Jz = m, where m is a half-
integer. Such a Bessel state has, moreover, a definite energy
E = (h̄2

κ
2 + p2

z )/(2mn), with mn being the neutron mass, and
the helicity λ. The wave function is

ψκmpzλ(r) =
∫

d2p⊥
(2π )2

aκm(p⊥) iλw(λ)(n) eipr/h̄. (7)

Clearly, the function ψκmpzλ(r) can be considered as a coher-
ent superposition of the plane waves w(λ)(n) eipr/h̄, weighted
with the amplitude

aκm(p⊥) = i−m eimϕ 2π

p⊥
δ(p⊥ − h̄κ). (8)

The momenta of these plane-wave components,

p = (p⊥, pz ) = (h̄κ cos ϕ, h̄κ sin ϕ, pz ),
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form a surface of a cone with an opening angle
θ = arctan(h̄κ/pz ).

Spinor states of the initial and final neutron with helicities
λ and λ′ can be expressed as

w(λ)(n) =
∑

σ=±1/2

e−iσϕ d 1/2
σλ (θ ) w(σ )(ez ),

w(λ′ )(n′) =
∑

σ ′=±1/2

e−iσ ′ϕ′
d 1/2

σ ′λ′ (θ ′) w(σ ′ )(ez ), (9)

where d 1/2
σλ (θ ) = δσλ cos (θ/2) − 2σδσ,−λ sin (θ/2) are the

small Wigner d functions and

w(1/2)(ez ) =
(

1
0

)
, w(−1/2)(ez ) =

(
0
1

)
. (10)

Using Eq. (9) and the well-known relation∫ 2π

0

dφ

2π
ei(nφ+z cos φ) = in Jn(z), (11)

where Jn(z) is the Bessel function of the first kind, we obtain
the evident expressions for the wave-function (7) and the
corresponding flux jz and density ρ of the incoming neutrons
(in the cylinder coordinates r⊥, ϕr, z):

ψκmpzλ(r) = eipzz/h̄
∑

σ

iλ−σ Jm−σ (κr⊥)

× ei(m−σ )ϕr d 1/2
σλ (θ ) w(σ )(ez ), (12)

j (mλ)
z (r⊥) = pz

mn
ρ (mλ)(r⊥) = pz

mn

∑
σ

J2
m−σ (κr⊥)

[
d 1/2

σλ (θ )
]2

.

(13)

Let us consider the limit of these functions at θ → 0 and the
fixed energy E (in this case κ → 0, pz → p = √

2mnE ):

ψκmpz (r)|θ→0 = δmλ w(λ)(ez ) eipz/h̄,

j (m,λ)
z (r⊥)|θ→0 = δmλ

pz

mn
. (14)

In other words, in this limit and at m = λ we obtain the
standard expressions for the plane-wave neutron flying along
the z axis with helicity λ.

Let us consider scattering on a conventional thin-foil tar-
get, which we describe as an ensemble of atoms uniformly
distributed over the large (compared to the beam’s width)
transverse extent; we call it a macroscopic target. If the tar-
get is thin, so that one can neglect the neutrons’ multiple
scattering and attenuation, the scattering cross section can be
obtained by the averaging over the atoms’ positions in the
target with respect to the beam axis. Such an averaged cross
section represents an incoherent superposition of the standard
ones (see Sec. B3 in [30]),

d σ̄ (θ, θ ′, ϕ′, ζ)

d�′ = 1

cos θ

∫ 2π

0

dσ (st)(n, n′, ζ)

d�′
dϕ

2π
. (15)

To perform the integration in Eq. (15), it is useful to expand
the vector B in terms of the unit vectors

e′
1 = (cos ϕ′, sin ϕ′, 0), e′

2 = (− sin ϕ′, cos ϕ′, 0),

e′
3 = (0, 0, 1), e′

ie
′
k = δik (16)

as follows:

B = β

2(1 − nn′)
{(sc′e′

1 − cs′e′
3) sin(ϕ − ϕ′)

+ [cs′ − sc′ cos(ϕ − ϕ′)]e′
2}, (17)

where s ≡ sin θ , c ≡ cos θ , s′ ≡ sin θ ′, and c′ ≡ cos θ ′, and
we use the relation

B2 = β2

[
1

2(1 − nn′)
− 1

4

]
(18)

with

(n − n′)2 = 2(1 − nn′) = 2[1 − cc′ − ss′ cos(ϕ − ϕ′)].
(19)

Using these relations, we obtain
∫ 2π

0

(
B(ϕ)

β

)2 dϕ

2π
= 1

2| cos θ − cos θ ′| − 1

4
= G(θ, θ ′),

∫ 2π

0

B(ϕ)

β

dϕ

2π
= 1

2
g(θ, θ ′) e′

2,

g(θ, θ ′) =
{

cot(θ ′/2) at θ ′ > θ,

− tan(θ ′/2) at θ ′ < θ.

Note that the function G(θ, θ ′) is singular:

G(θ, θ ′) → 1

2|θ ′ − θ | sin θ
at θ ′ → θ. (20)

As a result, we get [cf. Eq. (4)]

d σ̄ (θ, θ ′, ϕ′, ζ)

d�′

= |a|2
cos θ

[
1 + Rem − Im a

|a| Rint ζ⊥ sin(ϕ′ − ϕζ )

]
, (21)

where

Rem = ε2G(θ, θ ′), Rint = εg(θ, θ ′). (22)

This cross section is still independent of ζz and it coincides
with Eq. (4) in the standard limit θ → 0. Such a behavior is
expected since in this limit G(θ, θ ′) → (1/4) cot2(θ ′/2) and
g(θ, θ ′) → cot(θ ′/2).

In Fig. 1 we present the function Rem(θ ′) which cor-
responds to a relative contribution of the electromagnetic
interaction. Unlike the Schwinger cross section (4), this func-
tion has an angular singularity of 1/|θ ′ − θ | at θ ′ → θ . This
shift to the nonvanishing scattering angles is potentially use-
ful for experimental analysis of the small-angle scattering.
Indeed, thanks to this property, the singular region is shifted
from the small angles θ ′ → 0, which may be difficult to access
experimentally, to the larger values θ ′ → θ , which can be
controlled by the opening angle θ of the incoming twisted
neutrons. Practically, this method would depend on experi-
ment’s ability to reach sufficiently large values of the opening
angle θ . Note that the angular distribution of the scattered
neutrons is concentrated in a vicinity of the angle θ ′ ≈ θ due
to incoherent summation of the cross sections in Eq. (15),
which is a common feature for a large class of the scattering
processes off the macroscopic targets, not only for neutrons
but also for the relativistic charged particles (cf. Ref. [30]).
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FIG. 1. The function Rem (blue solid line) from Eq. (22) and its
plane-wave limit (black dashed line) plotted vs the neutron scattering
angle θ ′ for the opening angle θ = 0.06 rad and parameter ε = 0.03.

This feature can change when the target is spatially localized
(mesoscopic); see Sec. V below.

In Fig. 2 we present the function Rint (θ ′) which describes
interference of the electromagnetic amplitude and the nuclear
one as well as the corresponding function for the standard
case. In the region θ ′ � θ , the function Rint (θ ′) coincides
with its standard limit, but this function experiences a steplike
drop for the angles θ ′ � θ that potentially can be observed in
experiments.

B. Twisted neutrons in a superposition of two vortex states

Let us take now a coherent superposition of two Bessel
states with the different projections m1 and m2, but with the
same helicity λ and the same values of pz and κ. Such a
superposition can be generated experimentally [6,8], and it is
described by the following wave function:

ψ (2 tw)(r) = c1ψκm1 pzλ(r) + c2ψκm2 pzλ(r),

cn = |cn|eiαn , |c1|2 + |c2|2 = 1. (23)

FIG. 2. The function Rint (blue solid line) from Eq. (22) and its
plane-wave limit (black dashed line) plotted vs the neutron scattering
angle θ ′ for θ = 0.06 rad and ε = 0.03.

With the help of this expression, we find the averaged
differential cross section in the form

d σ̄ (θ, θ ′, ϕ′, ζ)

d�′

= 1

cos θ

∫ 2π

0

dσ (pl)(n, n′, ζ)

d�′ �(ϕ,�m,�α)
dϕ

2π
, (24)

where the function � is defined as

�(ϕ,�m,�α) = 1 + 2|c1c2| cos [(ϕ − π/2) �m + �α)].
(25)

As a result, we obtain

d σ̄ (θ, θ ′, ϕ′, ζ)

d�′

= 1

cos θ
{A + |c1c2|[β2 B + 2(Im a) β (ζC)]},

A = |a|2 + β2G(θ, θ ′) + (Im a) β (ζe2) g(θ, θ ′),

B = cos γ

|c − c′| [T (θ, θ ′)]|�m|,

C =
[

�m

|�m|
(

−c′

s′ e′
1 + e′

3

)
sin γ + c − c′

|c − c′| e′
2 cos γ

]

×[T (θ, θ ′)]|�m|, (26)

where

γ = (ϕ′ − π/2) �m + �α,

T (θ, θ ′) =
(

tan(θ/2)

tan(θ ′/2)

)±1

for θ ′ ≷ θ.

In contrast to Eq. (21), derived for a single-m incident beam,
this cross section depends on the differences of the total
angular momenta, �m = m2 − m1 �= 0, and of the states’
phases, �α = α2 − α1. This �m and �α dependence trans-
lates directly into the angular and polarization properties of
the scattered neutrons. In particular,

(i) The cross section (26) depends not only on the neutron’s
transverse polarization ζ⊥, but also on the longitudinal one ζz.
It leads to the following longitudinal spin asymmetry:

Aζz = d σ̄ (ζz = +1) − d σ̄ (ζz = −1)

d σ̄ (ζz = +1) + d σ̄ (ζz = −1)

= 2|c1c2| (Ima) β (Ce′
3)

|a|2 + β2[G(θ, θ ′) + |c1c2|B]
. (27)

Figures 3 and 4 show this asymmetry for different values
of the parameters. For thermal neutrons and a gold target [see
Eq. (2)], the predicted asymmetry amounts to a few ppm,
which is in a range currently accessible for experiments on
the hadronic parity violation [26], for which the above asym-
metry may be a source of unwanted systematics, provided
that the neutron beam becomes twisted due to uncontrolled
interactions. However, as we show below, averaging over the
azimuthal scattering angle ϕ′ eliminates the dependence on ζz,
which provides an approach to correct for this kind of system-
atics. Azimuthal angular coverage for the neutron-scattering
detectors would be essential to deal with this systematic effect
in parity-violation measurements.
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FIG. 3. A longitudinal spin asymmetry (27) plotted vs the neu-
tron scattering azimuthal angle ϕ′ for ε = 0.03, 2c1c2 = 1, �m = 1,
and for θ ′ = 0.005 rad (blue solid line), θ ′ = 0.025 rad (green dashed
line), θ ′ = 0.045 rad (red dotted line).

Analogously to Eq. (27), one can define a quantity Aζx ,
which we call the transverse spin asymmetry. We show this
asymmetry in Fig. 5 for a sample set of parameters.

(ii) Let us discuss the properties of the differential cross
section (26) averaged over the azimuthal angle ϕ′ of the final
neutron. For this aim, we introduce the following notation:

〈F 〉 =
∫ 2π

0
F

dϕ′

2π
. (28)

The averaged cross section reads

〈
d σ̄ (θ, θ ′, ϕ′, ζ)

d�′

〉
= 1

cos θ
(|a|2 + β2G(θ, θ ′)

+ 2|c1c2| (Im a) β ζ〈C〉), (29)

FIG. 4. The longitudinal spin asymmetry (27) plotted vs the
neutron scattering azimuthal angle ϕ′ for ε = 0.03, 2c1c2 = 1, θ ′ =
0.045, and for �m = 1 (blue solid line), �m = 2 (green dashed line),
�m = 3 (red dotted line).

FIG. 5. A transverse spin asymmetry plotted vs the neutron scat-
tering angle θ ′ for ε = 0.03, 2c1c2 = 1, �m = 1, and for θ = 0.01
(blue solid line), θ = 0.02 (green dashed line), θ = 0.03 (red dotted
line).

where

〈C〉 = 1

2

(
c′

s′ − c − c′

|c − c′|
)

T (θ, θ ′) (cos �α, ∓ sin �α, 0)

(30)
for �m = ±1, and 〈C〉 = 0 otherwise. The fact that this spin
observable is nonzero can be understood as due to an effect
of superposition between two vortex states that define a new
plane with an orientation fixed by a phase difference �α. Then
the transverse spin with respect to this plane contributes to the
scattering asymmetry, while the neutron scattering plane—
the only plane available for nontwisted neutrons—becomes
redundant. It is seen that this cross section depends on ζ⊥ and
on Im a at �m = ±1, but it is independent of the longitudinal
polarization.

If the initial neutron is unpolarized, then its polarization
after the scattering is

〈ζ( f )〉 = − Im a

|a| S (cos �α, ∓ sin �α, 0), (31)

where

S = |c1c2|ε
1 + ε2G(θ, θ ′)

(
c′

s′ − c − c′

|c − c′|
)

T (θ, θ ′) (32)

for �m = ±1, and S = 0 otherwise. In Fig. 6 one can see that
|〈ζ( f )〉| ∼ 0.1 | Im a|

|a| for θ ∼ ε, i.e., the predicted effect is of the
order of tens of ppm for the thermal neutrons and the gold
target [see Eq. (2)].

IV. SCATTERING OF TWISTED NEUTRONS
BY A SINGLE NUCLEUS

Let the single-m neutrons be scattered by a nucleus located
in the transverse (xy) plane at a definite impact parameter b =
(bx, by, 0) = b (cos ϕb, sin ϕb, 0). Using the neutron’s wave
function (7), and Eq. (1), we find the following scattering
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FIG. 6. The function S [defined in Eq. (32)] plotted vs the neu-
tron scattering angle θ ′ for ε = 0.03, 2|c1c2| = 1, �m = 1, and for
θ = 0.03 rad (blue solid line), θ = 0.06 rad (black dashed line).

amplitude:

F (m)
λλ′ (θ, θ ′, ϕ′, b) = iλ−me−ip′

⊥b/h̄

×
∫ 2π

0

dϕ

2π
eimϕ+ip⊥b/h̄ fλλ′ (n, n′), (33)

where the factor exp(ip⊥b/h̄) specifies the lateral position of
the nucleus with respect to the beam.

Using Eqs. (9) and (17) and introducing quantities

A(σ )(m, κ, b) =
∫ 2π

0

dϕ

2π
ei[(m−σ )ϕ+κb cos(ϕ−ϕb)]

a = a ei(m−σ )(ϕb+π/2) Jm−σ (κb), (34)

B(σ )(m, κ, b) =
∫ 2π

0

dϕ

2π
ei[(m−σ )ϕ+κb cos(ϕ−ϕb)] B(ϕ), (35)

we rewrite the above equation in the form

F (m)
λλ′ (θ, θ ′, ϕ′, b)

= iλ−me−ip′
⊥b

∑
σ=±1/2

d 1/2
σλ (θ ) w(λ′ )†(n′)[A(σ ) + iB(σ )σ]

×w(σ )(ez ). (36)

This amplitude coincides (up to the inessential factor e−ip′
⊥b)

with the standard one (1) in the limit θ → 0 since in this limit
n → ez, d 1/2

σλ (θ ) → δσλ, A(σ ) → a δmσ , and B(σ ) → B δmσ .
The angular distributions of the scattered neutrons can

be obtained by squaring this amplitude. Such a distribution
summed over helicities of final neutrons

W (m)
λ (θ, θ ′, ϕ′, b) =

∑
λ′

∣∣F (m)
λλ′ (θ, θ ′, ϕ′, b)

∣∣2
(37)

is considered in detail in Appendix A and the specific case
b = 0 in Appendix B. Here we only discuss this distribution
averaged over the azimuthal angle of the final neutrons using
the notation (28)

W (m)
λ (θ, θ ′, b) =

∑
λ′

〈|F (m)
λλ′ (θ, θ ′, ϕ′, b)|2〉

= 1

2
�(m) + λ �(m), �(m) = |a|2(J2

m−1/2(κb) + J2
m+1/2(κb)

) +
∑

σ

〈(B(σ )∗B(σ ) ) − 2σ Im(B(σ )∗ × B(σ ) )z〉,

�(m) = [|a|2 cos θ − (Re a) β h(θ, θ ′)]
(
J2

m−1/2(κb) − J2
m+1/2(κb)

) + cos θ
∑

σ

〈2σ (B(σ )∗B(σ ) ) − Im(B(σ )∗ × B(σ ) )z〉

− sin θ 〈Im(B(1/2)∗ × B(−1/2))x − Re(B(1/2)∗ × B(−1/2))y〉, (38)

where

h(θ, θ ′) = g(θ ′, θ ) sin θ =
{−2 sin2(θ/2) at θ ′ > θ

2 cos2(θ/2) at θ ′ < θ

}

= ∓(1 ∓ cos θ ) for θ ′ ≷ θ. (39)

As a result, we obtain a nonvanishing helicity asymmetry,

Aλ = W (m)
λ=1/2 − W (m)

λ=−1/2

W (m)
λ=1/2 + W (m)

λ=−1/2

= �(m)

�(m) . (40)

In contrast to Eq. (4), the interference term in (38) depends
on the initial neutron’s helicity and on the real part of the nu-
clear amplitude (and, therefore, on its phase Arg a), even after
the azimuthal averaging; see (38). The angular distributions
(38) are plotted in Fig. 7 for an 197

79 Au nucleus as a function of
its position b. The scattering angle is chosen as θ ′ = 0.03 rad
for which the electromagnetic and strong amplitudes equally
contribute to the cross section for the plane-wave neutrons.

One can see that the former contribution dominates in the
beam center (b → 0), where the interference between two
amplitudes is most pronounced.

The asymmetry Aλ is a periodic function of b and of the
amplitude’s phase Arg a; it can reach tens of percent for a wide
range of parameters, as shown in Ref. [27]. Note that outside
the cone opening angle, at θ ′ > θ , the sensitivity to the phase
practically vanishes, so that in order to probe both the real
and the imaginary parts of the amplitude one needs to perform
measurements at the small angles θ ′ < θ , which is feasible.

V. SCATTERING OF TWISTED NEUTRONS
BY A MESOSCOPIC NUCLEAR TARGET

Until now we have discussed the scattering for two extreme
cases of either a single-nucleus or a macroscopic (infinitely
wide) target. In a more realistic experimental scenario, a
neutron beam collides with a well-localized mesoscopic
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FIG. 7. The distribution (38) in units |a|2 as a function of the 197
79 Au nucleus position b for θ ′ = 0.04 rad, θ = 0.07 rad, and ε = 0.03. The

case Im a > 0 is shown by blue solid lines, while the case Im a < 0 is shown by green dashed lines.

atomic target. In order to account for geometrical effects in
such a scenario, we describe a target as an incoherent en-
semble of potential centers. The density of the scatterers in
the transverse (xy) plane is characterized by a distribution
function n(b), which is normalized as follows:∫

n(b) d2b = 1. (41)

For the numerical analysis below we take n(b) to be a Gaus-
sian function:

n(b − bt ) = 1

2πσ 2
t

e−(b−bt )2/(2σ 2
t ). (42)

This distribution is sharply peaked at the impact parameter
b = bt (the center of the target) if its dispersion σt is small.

There are two limiting cases: (i) when the target is much
wider than the incident beam, σt � 1/κ, and (ii) when it is
narrower, σt � 1/κ. When averaging over the impact parame-
ters b, the above features of the single-nucleus regime survive
when the target is subwavelength sized or even if its width
does not exceed that of the beam, whereas for the macroscopic
target the above spin asymmetries vanish; see Eq. (21). For an
intermediate case of a mesoscopic target, the spin asymmetry
survives but its values decrease as σtκ grows. In order to
give quantitative estimates, we take a realistic example of
a Gaussian target with σt ∼ (1/κ)–(10/κ) and the angles
θ ′ < θ ≈ 1◦–10◦. The helicity asymmetry reaches the values
of

|Aλ| ≈ 10−3–10−1 (43)

for a wide range of parameters, as we show in Figs. 8 and
9. Note that the asymmetries even some 2 or 3 orders of
magnitude smaller can in principle be measured, as the current
experiments aim at much lower values than (43), down to 10−8

[25,26].
Thus, scattering off the well-localized targets—say, of σt �

10 nm – 1 μm in width for the neutron wave packets with
the wavelength of 0.1–100 nm and the transverse coherence
length of 1/κ � 1 nm – 10 μm [8]—reveals dependence on
the neutron’s helicity and allows one to probe the nuclear
amplitude’s real part already in the Born approximation,
whereas with a single beam of the delocalized plane-wave
neutrons such a dependence arises beyond the tree level only.
This method for high-precision measurements of the complex
amplitude for nonvanishing scattering angles is alternative

and complementary to the neutron interferometry and to the
neutron gravity reflectometry.

Conventional Schwinger asymmetry can be enhanced for
thermal neutrons due to presence of the nuclear resonances, as
was shown experimentally [31]. Extension of our formalism
to the nuclear resonance region is straightforward, in which
case we have to use an appropriate parametrization for the
nuclear amplitude a, and use a partial-wave expansion and
angular integration in Eq. (33) in order to account for the
non-S-wave resonances.

Importantly, in the current analysis we assume that the final
neutrons are post-selected to the ordinary plane-wave states
with a definite momentum. So we do not study if the neutron’s
vorticity is conserved during the scattering or not. Drawing
analogy to the scattering of twisted photons or electrons, one
can expect that the angular momentum of the neutron itself,
irrespectively of the detector, is conserved when the neutron is
elastically scattered off a single nucleus at a vanishing impact
parameter or when the target is mesoscopic and its width is
smaller than the neutron’s transverse coherence length. In the
opposite case of a macroscopic target from Sec. III, the neu-
tron’s vorticity is not conserved due to incoherent summation
of the cross sections in Eq. (15) and the final neutron itself is
in a plane-wave state scattered at an angle θ ′ ≈ θ .

FIG. 8. The helicity asymmetry as a function of κσt where σt is
a width of the 197

79 Au mesoscopic target for m = 1/2, θ ′ = 0.03 rad,
θ = 0.06 rad, and ε = 0.03, bt = ϕt = 0. The case Im a > 0 is
shown by the black solid line, while the case Im a < 0 is shown by
the green dashed line.
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FIG. 9. The helicity asymmetry as a function of κσt where σt is
a width of the 197

79 Au mesoscopic target for m = 5/2, θ ′ = 0.04 rad,
θ = 0.07 rad, and ε = 0.03, bt = ϕt = 0. The case Im a > 0 is
shown by the black solid line, while the case Im a < 0 is shown by
the green dashed line.

VI. CONCLUSION

We have presented a theoretical formalism for elastic scat-
tering of the twisted neutrons by a nucleus and nuclear targets
and predict new effects for the cross section and spin asym-
metries. Our approach is based on expansion of the twisted
beam’s wave function in terms of the plane waves and it leads
to representation of the twisted-scattering amplitude in a form
of a superposition of the plane-wave amplitudes. The results
are presented for the kinematics of the Schwinger scattering
[23] characterized by a spin asymmetry due to interference
between the strong and electromagnetic scattering amplitudes.

The following observable effects are predicted that are
unique for the twisted-neutron scattering on nuclei:

(a) For the macroscopic targets, the scattering cross sec-
tion has a different angular dependence, which is
peaked at nonzero scattering angles, as opposed to the
nontwisted case.

(b) For the macroscopic targets and a beam that is a super-
position of angular momentum states differing by one
unit of h̄, the cross section develops a spin asymmetry
that depends on the azimuthal scattering angle and a
longitudinal component of neutron’s spin. This observ-
able is forbidden for nontwisted neutrons by parity
conservation.

(c) For scattering on a single nucleus, provided that the
target’s location is resolved with respect to the twisted
neutron’s wavefront, the scattering spin asymmetry is
due to both the longitudinal and transverse spin and,
in addition, the spin asymmetries have contributions
from both the real and absorptive parts of the nuclear
amplitude. These features of the spin asymmetries still
hold for the realistic mesoscopic targets.

The predicted spin asymmetries range from 10−6 to 10−1

for relevant parameters and are detectable in experimental
conditions similar to those used for parity-violating measure-
ments [25,26]. Whereas generation of the twisted neutrons
was experimentally demonstrated for lower fluxes [6,8,9], it

will be desirable to use the high-flux sources of twisted neu-
trons in order to achieve sufficient statistical accuracy of the
future measurements.

In summary, we have demonstrated that twisted neutrons
can be used as a new tool to probe nuclear scattering am-
plitudes at low energies and to access observables that are
otherwise forbidden by the symmetry for nontwisted beams.
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APPENDIX A: ANGULAR DISTRIBUTIONS
OF THE SCATTERED NEUTRONS

The distribution defined in Eq. (37) reads

W (m)
λ (θ, θ ′, ϕ′, b)

=
∑
λ′

∣∣F (m)
λλ′ (θ, θ ′, ϕ′, b)

∣∣2

= 1

2
[D(1/2) + D(−1/2)] + λ[D(1/2) − D(−1/2)] cos θ

− 2λ
[
ImC(1/2,−1/2)

x − ReC(1/2,−1/2)
y

]
sin θ. (A1)

Here we use the quantities

C(σ̃ σ ) = B(σ̃ )∗ × B(σ ) + I(σ̃ σ ),

I(σ̃ σ ) = A(σ̃ )∗ B(σ ) − B(σ̃ )∗ A(σ ), (A2)

D(σ ) = |A(σ )|2 + B(σ )∗B(σ ) − 2σ ImC(σσ )
z (A3)

with the properties

C(σσ )
z = i ImC(σσ )

z , C(σ,−σ )
⊥ = −(C(−σ,σ )

⊥ )∗. (A4)

Let us define contributions from the nuclear and electro-
magnetic interactions and their interference as

W (m)
λ (θ, θ ′, ϕ′, b) = W (m,nucl)

λ + W (m,em)
λ + W (m,int)

λ ,

where

W (m,nucl)
λ =

∑
σ

(
1

2
+ 2σ λ cos θ

)
|A(σ )|2, (A5)

W (m,em)
λ =

∑
σ

[(
1

2
+ 2σλ cos θ

)
|B(σ )|2

− (σ + λ cos θ ) Im(B(σ )∗ × B(σ ) )z

]

− 2λ sin θ [Im(B(1/2)∗ × B(−1/2))x

− Re(B(1/2)∗ × B(−1/2))y], (A6)

W (m, int)
λ = −

∑
σ

(σ + λ cos θ ) ImIσσ
z

− 2λ sin θ
[
ImI (1/2,−1/2)

x − ReI (1/2,−1/2)
y

]
. (A7)
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FIG. 10. The functions ρ(b) from Eq. (A9) for m = 1/2 (solid
black line), m = 3/2 , and m = 5/2 (blue dashed line).

Note the following features:

(1) This angular distribution contains the evident depen-
dence on helicity λ of the initial neutron.

(2) The pure nuclear contribution is directly proportional
to the density of incoming neutrons [see Eq. (13)]:

W (m, nucl)
λ = |a|2ρ (mλ)(b)

= |a|2ρ(b) + λ |a|2 cos θ

× [
J2

m−1/2(κb) − J2
m+1/2(κb)

]
, (A8)

where ρ(b) is the density of neutrons averaged over
their helicities:

ρ(b) = 1

2

∑
λ

ρ (mλ)(b)

= 1

2

[
J2

m−1/2(κb) + J2
m+1/2(κb)

]
(A9)

This function is shown in Fig. 10 for different values
of m.

(3) The interference of nuclear and electromagnetic inter-
actions of neutrons is described by the terms I(σ̃ σ ) only.

APPENDIX B: THE LIMIT b = 0

In the limit of zero impact parameter b → 0, the expres-
sions (34) and (35) for A(σ ) and B(σ ) are simplified. Indeed,
using the formulas (27)–(28) from [30],

∫ 2π

0

dϕ

2π

einϕ

1−cc′−ss′ cos ϕ
= 1

|c−c′|
(

ss′

1 − cc′ + |c − c′|
)|n|

,

(B1)
we get

A(σ ) = a δσ m,

B(σ ) = Bm−σ

(
±ic′,

c − c′

|c − c′| , ∓is′
)

for m − σ ≷ 0, (B2)

B(σ ) = B0

(
0,

c − c′

|c − c′| , 0

)
for m − σ = 0,

where

Bm−σ = β

2s′

(
ss′

1 − cc′ + |c − c′|
)|m−σ |

. (B3)

Sometimes it is useful to employ the identity

1 − cc′ + |c − c′| = (1 ± c)(1 ∓ c′) for θ ′ ≷ θ (B4)

and transform the above equation to the form

Bm−σ = β

2s′

(
tan(θ/2)

tan(θ ′/2)

)±|m−σ |
for θ ′ ≷ θ. (B5)

a. The case m �= ±1/2

In this case the flux of neutrons (13) at b = 0 disappears
and only the contribution of the long-range electromagnetic
interaction survives:

W (m)
λ (θ, θ ′, ϕ′, b = 0)

= 2
1 ± c′

1 ± c
(1 ± �)

(
β

2s′
tan(θ/2)

tan θ ′/2)

)2|m|−1

for θ ′ ≷ θ

(B6)

with the notation

� = 2λ sgn(m). (B7)

This situation can be called the scattering in the dark in
analogy with the excitation in the dark, which was observed
in the experiment [32] with twisted photons.

The helicity asymmetry in this limit has a simple analytical
expression:

Aλ(θ, θ ′, ϕ′, b = 0)

= W (m)
λ=1/2(θ, θ ′, ϕ′, b = 0) − W (m)

λ=−1/2(θ, θ ′, ϕ′, b = 0)

W (m)
λ=1/2(θ, θ ′, ϕ′, b = 0) + W (m)

λ=−1/2(θ, θ ′, ϕ′, b = 0)

= c − c′

|c − c′| sgn(m). (B8)

In is interesting to note that another asymmetry defined as

!Am(θ, θ ′, b = 0)

= W (m)
λ=1/2(θ, θ ′, ϕ′, b = 0) − W (m−1)

λ=−1/2(θ, θ ′, ϕ′, b = 0)

W (m)
λ=1/2(θ, θ ′, ϕ′, b = 0) + W (m−1)

λ=−1/2(θ, θ ′, ϕ′, b = 0)

(B9)

has the same behavior for the case m �= ±1/2 and m − 1 �=
±1/2.

This asymmetry is relevant to specific experimental con-
ditions, since it corresponds to a difference in the scattering
rates between the neutrons of opposite spins λ, but with a
fixed value of orbital angular momentum projection (=m − λ

in a paraxial approximation). Thus, it can be measured by
only manipulating the spin degree of freedom λ for the given
twisted-neutron beam.
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b. The case m = ±1/2

In this case the flux of neutrons (13) does not disappear at b = 0 and all contributions do survive:

W (m)
λ (θ, θ ′, ϕ′, b = 0) = 1

2 (� + ��), (B10)

where

� = |a|2 +
(

β

2s′

)2

[1 + 2H (θ, θ ′)], H (θ, θ ′) = (1 ∓ c)(1 ± c′)
1 ± c

, (B11)

� = |a|2c ± β Re(a) (1 ∓ c) +
(

β

2s′

)2

[c ± 2H (θ, θ ′)] (B12)

Here, the upper (lower) sign corresponds to θ ′ > θ (θ ′ < θ ).
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