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Nuclear symmetry energy Esym(ρ ) at density ρ is normally expanded or simply parameterized as a function
of χ = (ρ − ρ0)/3ρ0 in the form of Esym(ρ ) ≈ S + Lχ + 2−1Ksymχ 2 + 6−1Jsymχ 3 + · · · using its magnitude S,
slope L, curvature Ksym, and skewness Jsym at the saturation density ρ0 of nuclear matter. Much progress has
been made in recent years in constraining especially the S and L parameters using various terrestrial experiments
and astrophysical observations. However, such expansions/parametrizations do not converge at suprasaturation
densities where χ is not small enough, hindering an accurate determination of high-density Esym(ρ ) even if its
characteristic parameters at ρ0 are all well determined by experiments/observations. By expanding the Esym(ρ )
in terms of a properly chosen auxiliary function �sym(χ,�sym) with a parameter �sym fixed accurately by an
experimental Esym(ρr ) value at a reference density ρr, we show that the shortcomings of the χ expansion can be
completely removed or significantly reduced in determining the high-density behavior of Esym(ρ ). In particular,
using two significantly different auxiliary functions, we show that the new approach effectively incorporates
higher χ -order contributions and converges to the same Esym(ρ ) much faster than the conventional χ expansion at
densities �3ρ0. Moreover, the still poorly constrained skewness Jsym plays a small role in determining the Esym(ρ )
at these densities in the auxiliary function approach. The new approach thus provides a nearly model-independent
constraint on the Esym(ρ ) at densities �3ρ0. Several quantitative demonstrations using Monte Carlo simulations
are given.
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I. INTRODUCTION

The density dependence of nuclear symmetry energy
Esym(ρ) is fundamental for addressing many important is-
sues in both astrophysics and nuclear physics [1–12]. While
much progress has been made in constraining the Esym(ρ)
around the saturation density ρ0 of symmetric nuclear matter
(SNM) over the last two decades, determining the Esym(ρ) at
suprasaturation densities remains a difficult problem. Conven-
tionally, the symmetry energy Esym(ρ) predicted by nuclear
many-body theories is often characterized by the first few
coefficients of its Taylor expansion around ρ0 in terms of
χ = (ρ − ρ0)/3ρ0, namely,

Esym(ρ) ≈ S + Lχ + 1
2 Ksymχ2 + 1

6 Jsymχ3 + · · · (1)

with the magnitude S ≡ Esym(ρ0), slope L =
[3ρ dEsym/dρ]ρ0 , curvature Ksym = [9ρ2d2Esym/dρ2]ρ0 ,
and skewness Jsym = [27ρ3d3Esym/dρ3]ρ0 . While, in solving
neutron star inverse-structure problems, the Esym(ρ) function
is not known a priori, it can be parametrized in the same form
as above. The S, L, Ksym, and Jsym are simply parameters to
be determined from inverting data. Such parametrizations
are widely used in metamodelings of the nuclear equation
of state (EOS); see, e.g., Refs. [13–23]. For example, these
coefficients can be inferred from observational data through
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Bayesian statistical analyses or direct inversion techniques.
Similar approaches have been used to constrain the SNM EOS
using various observables from both terrestrial experiments
and astrophysical observations.

Despite many fruitful applications of expansions and/or
parametrizations using forms similar to Eq. (1), the latter has
one serious shortcoming. Namely, the dimensionless quantity
χ becomes large as ρ increases, so the conventional expan-
sion (1) breaks down eventually at high densities. Thus, it is
inaccurate to predict the Esym(ρ) at suprasaturation densities
using Eq. (1) even if its first few characteristic parameters
at ρ0 are all well determined by experiments/observations.
In this work, we explore possible ways to remedy this situ-
ation. In particular, using a properly chosen auxiliary function
�sym(χ,�sym) with a parameter �sym fixed accurately by an
experimental Esym(ρr ) value at a reference density ρr, one
can expand the Esym(ρ) as a function of ν̃sym(χ,�sym) =
�sym(χ,�sym) − �sym(0,�sym). By performing Monte Carlo
simulations with two auxiliary functions, we show that the
auxiliary-function-based expansion can effectively incorpo-
rate higher χ -order contributions and converges much faster
than the conventional χ expansion at densities � 3ρ0, thus
largely removing the shortcoming of the χ expansion in de-
termining the high-density Esym(ρ).

The rest of this paper is organized as follows. In the next
section, we discuss in more detail the main problems of the
χ expansion and our strategy to solve them for the purpose
of determining Esym(ρ) up to about 3ρ0, above which other
degrees of freedom and/or phase transitions may have to be
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considered. In Sec. III, the general framework and formalism
of the auxiliary-function-based reconstruction of Esym(ρ) are
given. In Sec. IV, as a typical example, we show that the new
approach at order ν̃3

sym(χ,�sym) can successfully reconstruct
the symmetry energy predicted by the relativistic mean-field
(RMF) model with the FSUGold interaction up to about 5ρ0,
while the conventional expansion already breaks down near
2ρ0. In Sec. V, possible constraints on the high-density sym-
metry energy are given using two significantly different auxil-
iary functions by adopting three parameter sets that are differ-
ent in their truncation orders and characteristics for Esym(ρ) at
ρ0. A brief summary and outlook are given in Sec. VI.

II. THE MAIN ISSUES AND OUR STRATEGIES

During the last two decades, much progress has been made
in constraining especially the low-order parameters of nu-
clear symmetry energy, e.g., the magnitude S and the slope
L are relatively well constrained to the ranges of S ≈ 31.7 ±
3.2 MeV and L ≈ 58.7 ± 28.1 MeV [11,24] with few excep-
tions. Moreover, the curvature Ksym is found to be effectively
correlated with some neutron star properties [14,16,19,25,26],
and its value has been shown to be negative. For instance,
Bayesian analyses of the tidal deformation of canonical neu-
tron stars from GW170817 and the radius data from NICER
(Neutron Star Interior Explorer) found a value of Ksym =
−120+80

−100 at 68% confidence level [19]. In addition, a recent
Bayesian analysis of some theoretical calculations gave a
skewness Jsym ≈ 90 ± 334 MeV at 68% confidence level [27];
see also the constraint Jsym ≈ 296.8 ± 73.6 MeV by analyzing
the systematics of over 520 energy density functionals [28],
indicating that the skewness Jsym is probably positive.

Given the above information about the characteristics of
Esym(ρ) at ρ0, the expression (1) provides the simplest way
to predict the symmetry energy at suprasaturation densities.
However, to what accuracies and up to what densities it can
be used have been uncertain because the dimensionless quan-
tity χ becomes eventually large and then the χ expansion
diverges as ρ increases. Thus, despite of the progress made
in constraining the characteristics S, L, Ksym, and even Jsym,
there still remain some fundamental issues related to the ex-
pansion (1). Moreover, a few natural questions concerning the
structure and implications of the expansion (1) emerge:

(a) Are the characteristics (S, L, Ksym, Jsym, . . . ) enough
to describe the symmetry energy at suprasaturation
densities, such as ρ ≈ 2ρ0 or ρ ≈ 3ρ0? Are some of
them irrelevant for Esym(ρ) at densities up to 3ρ0? The
Esym(ρ) around (1–3)ρ0 is most important for the radii
and tidal deformations of canonical neutron stars but is
currently poorly determined [12]. Above this density
range, non-nucleonic degrees of freedom become im-
portant and various phase transitions may set in. The
answer to the last question is definitely “no” in the
conventional expansion (1) since χ = 2/3 at ρ = 3ρ0

and a small change of the skewness Jsym may easily
introduce sizable effects on Esym(3ρ0).

(b) Can we find other forms to reexpress the symmetry
energy to make the corresponding expansion based
on the same quantities (S, L, Ksym, Jsym, . . . ) quickly

converge and more accurately describe the symmetry
energy at suprasaturation densities? It does not mean
that exact functionals and/or theories for the high-
density asymmetric nuclear matter (ANM) EOS are
not needed. Our main purpose is to find, once the
characteristics like L and Ksym are well constrained,
if we can make some (near) model-independent pre-
dictions for the Esym(ρ) at densities �2ρ0 or 3ρ0

Intuitively, the answer is yes and one may try to use
well established nuclear many-body models. However,
different models often predict (very) different high-
density behaviors for Esym(ρ) even when they predict
very similar or the same characteristics for Esym(ρ)
at ρ0. For this reason, we would like to study if we
can “reconstruct” accurately the symmetry energy at
suprasaturation densities based on its known character-
istics at ρ0 constrained by experiments/observations
instead of calculating it based on any nuclear many-
body theory.

(c) In searching for new forms of f (ρ) to reconstruct
the symmetry energy Esym(ρ) = S + f (ρ), a natural
boundary condition is that the first several terms of
f (ρ) expanded around χ = 0 should be the same
as the ones given by the conventional expansion
(1). However, to go beyond the latter, certain higher
χ -order contributions should also be effectively en-
capsulated in f (ρ) using still only the first few
characteristics of Esym(ρ) at ρ0, i.e., L, Ksym, and Jsym.

The breakdown of the conventional expansion (1) is due
to the fact that the χ is not always small enough for small-
quantity expansions. Even if one rescales the χ to be χ̃ =
(ρ − ρ0)/ξρ0 with ξ � 3 a constant, the corresponding terms
in (1) still have their original forms, e.g., 2−1Ksymχ2 →
(ξ 2/18)Ksymχ̃2. The adjusted expansion shares the same
shortcomings as the original one. On the other hand, if we
adopt an effective auxiliary function of χ , i.e., �sym(χ,�sym)
with �sym a model parameter to be determined at a reference
density ρr where the Esym(ρr ) is well constrained by experi-
mental data, and then expand the symmetry energy around the
difference ν̃sym(χ,�sym) = �sym(χ,�sym) − �sym(0,�sym),

dnEsym

dρn
(ρ − ρ0)n → dnEsym

d�n
sym

ν̃n
sym(χ,�sym), (2)

some new possibilities emerge:

(a) If the function �sym(χ,�sym) is selected well, then
expanding it around χ ≈ 0 gives

�sym(χ,�sym) ≈ �sym(0,�sym) + �′
sym(0,�sym)χ

+�′′
sym(0,�sym)χ2/2

+�′′′
sym(0,�sym)χ3/6 + · · · , (3)

where the prime “ ′ ” denotes derivatives with respect
to χ (or equivalently with respect to the density ρ).
Although the symmetry energy is expanded, e.g., to
order χ3, the �sym(χ,�sym) can effectively generate
higher order terms in χ . If the factor ν̃sym(χ,�sym) is
small enough at suprasaturation densities, the auxiliary
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function expansion is naturally expected to converge
faster than the conventional expansion (1). Of course,
a reasonable auxiliary function �sym(χ,�sym) has to
be chosen to meet this goal.

(b) The question of model dependence related to choosing
the auxiliary function �sym(χ,�sym) and determin-
ing the associated �sym parameter emerges naturally
since the auxiliary function could take vastly dif-
ferent forms. Thus, one should compare results of
using very different auxiliary functions. Once a model
�sym(χ,�sym) is adopted/selected, the parameter
�sym can be determined by the symmetry energy
at a density where it is well determined, similar to
determining the low-energy coefficients in chiral ef-
fective field theories by some low-energy scattering
processes [29]. Nevertheless, logically one should self-
consistently determine the values of S, L, Ksym, . . .

and �sym using a certain selected auxiliary function
model simultaneously (via analyzing nuclear experi-
mental data and/or astrophysical observations) and see
how the symmetry energy depends on the form of the
auxiliary function (at suprasaturation densities). As the
first step in our exploratory study in this direction, here
we merely investigate whether one could reconstruct
the Esym(ρ) at suprasaturation densities �3ρ0 in an
effective manner once the lower-order characteristics
are known, without caring about how these charac-
teristics are constrained. Future works along this line
should consider more about the self-consistency of the
approach.

In the following, we use two significantly different auxil-
iary functions, namely an exponential and an algebraic model.
Interestingly, we find that the predicted symmetry energies at
suprasaturation densities ρ0 � ρ � 3ρ0 are almost the same
with the two models, indicating that the auxiliary-function-
based reconstruction is effective and has some essential
universality. Moreover, in our Monte Carlo simulations the
auxiliary-function-based expansion indeed converges faster
than the conventional χ expansion.

III. FRAMEWORK AND FORMALISM

Given the four characteristic parameters S, L, Ksym, and
Jsym of Esym(ρ) at ρ0, the symmetry energy Esym(ρ) can be
expanded around �sym(χ,�sym) = �sym(0,�sym) to order
ν3

sym(χ,�sym) as

Esym(ρ) ≈ S + Lνsym(χ,�sym) + 1
2 Ksym�ν2

sym(χ,�sym)

+ 1
6 Jsym	ν3

sym(χ,�sym), (4)

where

� = 1 + L

Ksym

(
1

3ρ

∂2ρ

∂�2
sym

)/(
1

3ρ

∂ρ

∂�sym

)2

χ=0

, (5)

	 = 1 + Ksym

Jsym

(
1

3ρ2

∂ρ

∂�sym

∂2ρ

∂�2
sym

)/(
1

3ρ

∂ρ

∂�sym

)3

χ=0

+ L

Jsym

(
1

3ρ

∂3ρ

∂�3
sym

)/(
1

3ρ

∂ρ

∂�sym

)3

χ=0

, (6)

and

νsym(χ,�sym) ≡
[

1

3ρ

∂ρ

∂�sym(χ,�sym)

]
χ=0

· ν̃sym(χ,�sym),

(7)
where ν̃sym(χ,�sym) = �sym(χ,�sym) − �sym(0,�sym). It
can be proved straightforwardly that the conventional ex-
pansion (1) corresponds to the special case of selecting
�sym(χ,�sym) ∝ χ . However, terms higher than χ3 are
effectively included in (4) even it is truncated at order
ν3

sym(χ,�sym), since the latter itself encapsulates the higher
order effects in χ . Moreover, the Ksym� and Jsym	 in (4) can
be treated as the effective curvature and skewness of the sym-
metry energy with respect to the expansion in νsym(χ,�sym).

While the expansion (4) is general, its applications depend
on the specific form of �sym(χ,�sym) to be adopted. In the
following, we consider two models, namely the exponential
model (abbreviated as “exp”) and the algebraic model (abbre-
viated as “alge”). Specifically,

(1) In the exponential model, �sym(χ,�sym) =
exp[−�sym(1 + 3χ )], the νsym is given as

νsym(χ,�sym) = 1

3�sym
(1 − e−3χ�sym ). (8)

The resulting auxiliary-function-based reconstruction
of the symmetry energy is given by

Esym(ρ) ≈ S + Lνsym(χ,�sym)

+ 1

2
Ksym

(
1 + 3L

Ksym
�sym

)
ν2

sym(χ,�sym)

+ 1

6
Jsym

(
1 + 9Ksym

Jsym
�sym + 18L

Jsym
�2

sym

)
× ν3

sym(χ,�sym). (9)

Some new features emerge in (9). First, be-
sides the conventional term 2−1Ksym, a new term
3�symL/Ksym (normalized by 2−1Ksym) contributes at
order ν2

sym(χ,�sym). This term is generally sizable and
cannot be thought of as a perturbation. Secondly, for
small χ , e.g., ρ0 � ρ � 3ρ0, we have

νsym(χ,�sym) ≈ χ − 3
2�symχ2

+ 3
2�2

symχ3 − 9
8�3

symχ4

+ 27
40�4

symχ5 − 27
80�5

symχ6 + · · · ,

→ χ, χ → 0, (10)

i.e., although high-order terms such as the fourth-order
kurtosis Isym, etc., are absence in the expansion (4), the
effects of χ4 or χ5 are effectively generated. It means
that the effects of high order terms are modeled with
the help of the function �sym(χ,�sym). For example,
the effective kurtosis Ieff

sym of the symmetry energy de-
fined as the fourth-order Taylor’s expansion coefficient
of Esym(ρ) at ρ0 could be obtained in terms of L, Ksym,
Jsym, and �sym once the expression (9) is expand to
order χ4, i.e., Ieff

sym = −9�sym(2Jsym + 11�symKsym +
18�2

symL). From the above expansion, one can see that
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the limit �sym → 0 (equivalently �sym(χ,�sym) →
χ ) is equivalent to the conventional expansion of the
Esym(ρ) in Eq. (1).

(2) In the algebraic model, �sym(χ,�sym) = [1 +
�sym(1 + 3χ )]−1, we have

νsym(χ,�sym) = χ
1 + �−1

sym

1 + 3χ + �−1
sym

(11)

for the expansion element and

Esym(ρ) ≈ S + Lνsym(χ,�sym)

+ 1

2
Ksym

(
1 + 6L

Ksym

1

1 + �−1
sym

)
× ν2

sym(χ,�sym)

+ 1

6
Jsym

[
1 + 18Ksym

Jsym

1

1 + �−1
sym

+ 54L

Jsym

(
1

1 + �−1
sym

)2]
ν3

sym(χ,�sym) (12)

for the auxiliary-function-based reconstruction of the
symmetry energy. There are two limits for the function
νsym. If �sym is small (i.e., the small-�sym limit), we
then have

νsym(χ,�sym) ≈ χ (1 − 3χ�sym) → χ, (13)

where the last relation holds for χ → 0 (near the sat-
uration density). On the other hand, if �sym is large
(i.e., the large-�sym limit), then one can treat 1/�sym

as a small quantity,

νsym(χ,�sym) ≈ χ

1 + 3χ

(
1 + 1

�sym

3χ

1 + 3χ

)
→ χ.

(14)
In fact, from expressions (11) and (12), one can find
that the �sym appears naturally in the form of 1/�sym.

There are two different approaches to determine the param-
eter �sym. In the first approach, one determines the expression
for �sym by truncating the symmetry energy in the expansion
(4). For example, if the symmetry energy is truncated at order
νsym, i.e., Esym(ρ) ≈ S + Lνsym(χ,�sym), then by using the
curvature Ksym (which is assumed to be known) one can obtain
the expression for �sym. For instance, the �sym = −Ksym/3L
in the exponential model is obtained according to the expres-
sion (10), i.e., Esym(ρ) ≈ S + Lχ − 3L�symχ2/2 + O(χ3).
This determination could also be expressed as the condition

� = 0, (15)

with � defined in Eq. (5) see the Appendix for a general proof
of this equivalence. In the exponential model, the expression
for � is given by � = 1 + 3�symL/Ksym, and setting it to
zero gives the �sym = −Ksym/3L. At this order, we thus have
Esym(ρ) ≈ S − L2K−1

sym[1 − eχKsym/L]. Similarly, the �sym

could be determined when the truncation of the symmetry
energy (4) is made at order ν2

sym, by solving the equation for

�sym from

	 = 0 (16)

with 	 defined in Eq. (6). For the exponential model,
for example, we have �sym = −[Ksym/4L][1 ± (1 −
8LJsym/9K2

sym)1/2] under the condition Jsym � 9K2
sym/8L,

since now the symmetry energy (4) is expanded as Esym(ρ) ≈
S + Lχ + 2−1Ksymχ2 − 3�symχ3(2L�sym + Ksym)/2.
Setting the last term equal to 6−1Jsymχ3 gives then the
expression for �sym at this order.

The second approach which is adopted in the current work
determines the value of �sym by some empirical value of
the symmetry energy at a density where there are sufficiently
accurate experimental and/or theoretical constraints. Here we
use [30]

Esym(ρlow) ≈ 16.4 ± 0.5 MeV, ρlow ≈ 0.05 fm−3. (17)

This empirical value was recently extracted from Bayesian
analyses of both the centroid energy of isovector giant dipole
resonance and electrical dipole polarizability of 208Pb [30]. Of
course, other empirical constraints on the symmetry energy
mostly below ρ0 could also be used for determining the �sym.
For example, the Esym(ρc) = 26.65 ± 0.20 MeV [31] at the
so-called cross density ρc ≈ 0.11 fm−3 where many different
model predictions for Esym(ρ) using various effective interac-
tions cross is another useful point.

The physical meaning and determination procedure of
�sym discussed above can be seen more clearly by mak-
ing an analogy with solving the forced oscillator problem.
Consider an oscillator moving under an extra force −σx3

besides the conventional Hooke’s force fH(x) = −kx with
k the spring constant, i.e., ftot(x) = −kx − σx3; here σ >

0 is a high-order coefficient. In order to avoid dealing
with the dynamical variable “x” in the nonlinear term σx3,
one can define an effective spring constant keff ≈ k(1 +
s1φ + s2φ

2) + O(φ3) where φ = σd2
max/k � 1 with dmax

the amplitude of the oscillator, via the equation of en-
ergy conservation 2−1mẋ2 + 2−1kx2 + Uσ (x) = 2−1kd2

max +
Uσ (dmax),Uσ (x) = 4−1σx4. The two coefficients s1 and s2

could be matched by requiring, e.g., that the periods of
the oscillation obtained by using the full potential Utot(x) =
2−1kx2 + Uσ (x) and the effective potential Ueff(x) = 2−1keffx2

are the same, to order φ2. Consequently, one obtains s1 = 3/4
and s2 = −3/128 and thus keff ≈ k(1 + 3φ/4 − 3φ2/128)
through the basic formula T = 2π (m/keff )1/2, as the period
of the oscillation from the full potential is given by

T ≈ 2π

√
m

k
×

(
1 − 3

8

σd2
max

k
+ 57

256

σ 2d4
max

k2

)
(18)

to order φ2. In other applications, one can then use the
effective potential Ueff(x) = 2−1keffx2 to do the relevant calcu-
lations (without dealing with the dynamical variable “x”). The
high order effects characterized by the parameter σ appear in
the effective potential through the low-order coefficient keff.
The effective spring constant keff could be constructed order
by order with respect to the perturbative element φ, similar to
the construction of the �sym parameter by considering certain
types of higher order contributions from the Ksym, Jsym, etc.
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FIG. 1. Nuclear symmetry energy predicted by the nonlinear
relativistic mean field model with the FSUGold interaction in
comparison with its reconstructions from the conventional and
auxiliary-function-based expansions.

IV. TESTING THE AUXILIARY-FUNCTION-BASED
APPROACH AGAINST A KNOWN Esym(ρ) FUNCTIONAL

Again, our main goal is to see if and how one can re-
construct accurately the high-density behavior of nuclear
symmetry by using its characteristics at saturation density. As
the first test of the auxiliary-function-based reconstruction,
we show in Fig. 1 the Esym(ρ) obtained by the expan-
sion (9) within the exponential model to order ν3

sym, and
the conventional expansion to order χ3, with respect to the
RMF prediction using the FSUGold interaction [32]. With
the FSUGold parameters, the RMF predicts a saturation
density ρ0 ≈ 0.148 fm−3 for SNM as well as a magni-
tude S ≈ 32.5 MeV, slope L ≈ 60.4 MeV, curvature Ksym ≈
−51.0 MeV, and a skewness Jsym ≈ 426.5 MeV for the sym-
metry energy. The �sym parameter in this example is found to
be about 0.56 within the exponential model, and consequently,
the correction 3L�sym/Ksym in (9) gives a value about −2,
which is obviously nonperturbative. Similarly, the correction
9Ksym�sym/Jsym + 18L�2

sym/Jsym in (9) generates a value of
about 0.2. They both are thus important in reconstructing the
Esym(ρ) in a broad density range.

Interestingly, it is clearly seen from Fig. 1 that the ap-
plicable region of the conventional expansion (smaller than
about 2ρ0) is much smaller than that of the expansion (9)
(up to about 5ρ0), at both sub- and suprasaturation densities.
These result show that the reconstruction (9) with a reasonable
�sym to order ν3

sym can well reconstruct the symmetry energy
predicted by the RMF/FSUGold model. Moreover, using the
algebraic model for νsym we can obtain a very similar recon-
struction by adjusting the parameter �sym.

V. PREDICTING NUCLEAR SYMMETRY ENERGY AT
ρ0 � ρ � 3ρ0 USING ITS CHARACTERISTICS AT ρ0

In this section, using the auxiliary-function-based recon-
struction with the condition (17) for determining the �sym we
investigate the symmetry energy at suprasaturation densities
in the range of ρ0 � ρ � 3ρ0 based on its characteristic pa-
rameters at ρ0.

A. Results of Monte Carlo simulations

For our Monte Carlo simulations, the following three test
sets with the specified characteristic parameters of Esym(ρ) at
ρ0 are considered:

(I) The Esym(ρ) is expanded to order ν2
sym or order χ2

with −300 � Ksym � 0 MeV [19].
(II) The Esym(ρ) is expanded to order ν3

sym or or-
der χ3 with −300 � Ksym � 0 MeV, 0 � Jsym �
2000 MeV.

(III) The Esym(ρ) is expanded to order ν3
sym or order χ3

with Ksym and Jsym given by the following intrinsic
relations imposed by the unbound nature of pure neu-
tron matter (PNM) [33]:

Ksym ≈ K0

(
1 − 1

3

K0

L
+ 1

2

J0

K0

L

K0

)
, (19)

Jsym ≈ 2K3
0

3L2

(
1 − 3L

K0

)
+ I0L

3K0

+
(

2K0Ksym

L
− J0

)(
1 + J0L

K2
0

− Ksym

K0

)
. (20)

Here K0, J0, I0 are the incompressibility, skewness, and
kurtosis of the EOS of SNM, appearing in the expansion
E0(ρ) ≈ E0(ρ0) + 2−1K0χ

2 + 6−1J0χ
3 + 24−1I0χ

4 + · · · .
These sets are denoted as “set I,” “set II,” and “set III,”
respectively. For the main physical demonstrations, we adopt
in the Monte Carlo simulations S ≈ 32 ± 4 MeV, L ≈
60 ± 30 MeV [24], K0 ≈ 240 ± 40 MeV [34–38],
J0 ≈ −300 ± 200 MeV [39,40], and I0 ≈ 0 ± 2000 MeV.

In Fig. 2, the symmetry energy Esym(ρ) from simulations
adopting the exponential model (abbreviated as “exp” in the
figure) is shown for the test sets I [panel (a)], II [panel (b)],
and III [panel (c)], respectively. The statistical error shown in
the figure, i.e., Esym(ρf ) ± σ [Esym(ρf )] where ρf is a reference
density, is calculated via

σ [ f ] =
√

〈 f 2〉 − 〈 f 〉2 =
√√√√1

n

n∑
i=1

f (i),2 −
(

1

n

n∑
i=1

f (i)

)2

;

(21)
here f (i) is the reconstructed symmetry energy from the
ith independent run of the Monte Carlo samplings, and in
our simulations n = 104 is used. In fact, the uncertainty of
Esym(ρf ) is determined mainly by the uncertainties of the
characteristics L, K0, etc., and has tiny dependence on n.
Specifically, the �sym parameter in set I is found to be about
�sym ≈ 1.67 ± 0.56, while that in set II (set III) is found to
be about �sym ≈ 1.41 ± 0.88 (1.74 ± 0.81). The ν3

sym order
contribution introduces about −11% (4%) effect on �sym in
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FIG. 2. Density dependence of nuclear symmetry energy from simulations adopting the exponential model (abbreviated as “exp” in the
figure) for the auxiliary function for the test sets I [panel (a)], II [panel (b)], and III [panel (c)], respectively.

set II (set III) compared with that in set I, with the latter
truncated at order ν2

sym.
Several interesting features are demonstrated in Fig. 2.

First, below about 1.5ρ0 the auxiliary-function-based and
the conventional expansions give almost identical results.
At higher densities, however, changing from the test set I
to set III, the result from the auxiliary-function-based ap-
proach is stable and always has smaller error bars compared
to that from the conventional expansion. In another words,
as the truncation orders and/or the empirical values for
Ksym and Jsym change [panels (b) and (c)], the prediction on
the symmetry energy at suprasaturation densities from the
auxiliary-function-based expansion is more stable than that
from the conventional expansion approach. These features
are more quantitatively demonstrated in the second and third
columns of Table I. The fourth and fifth columns are results
using the algebraic model to be discussed in Sec. V C. In
particular, the Esym(2ρ0) in the auxiliary-function-based ex-
pansion changes from 44.8 MeV in set I to 43.3 MeV (43.7
MeV) in set II (set III), generating a difference of about
−3.3% (−2.5%). Very similarly, the Esym(3ρ0) changes from
48.6 MeV in set I to 51.8 MeV (44.7 MeV) in set II (set III),
and the relative change is found to be about 6.6% (−8.0%).
On the other hand, the Esym(3ρ0) changes from 36.0 MeV in
the conventional expansion in set I to 72.0 MeV (13.4 MeV)
in set II (set III), with the latter inducing a difference of about
100% (−62.7%).

TABLE I. Nuclear symmetry energies at 2ρ0 and 3ρ0 from the
auxiliary-function-based (abbreviated as “AUX”) and the conven-
tional (abbreviated as “CON”) expansions in the two models; units:
MeV; “exp” and “alge” are abbreviations for the exponential and
algebraic models.

Esym(ρ ) 2ρ0 [exp] 3ρ0 [exp] 2ρ0 [alge] 3ρ0 [alge]

AUX [I] 44.8 ± 5.9 48.6 ± 8.9 47.3 ± 6.5 53.9 ± 13.4
CON[I] 43.7 ± 8.4 36.0 ± 23.7 45.9 ± 7.9 42.9 ± 21.8
AUX [II] 43.3 ± 6.4 51.8 ± 18.0 43.5 ± 6.5 52.1 ± 18.7
CON [II] 44.9 ± 8.1 72.0 ± 36.3 44.8 ± 7.5 70.4 ± 33.7
AUX [III] 43.7 ± 7.6 44.7 ± 22.3 44.4 ± 9.2 43.2 ± 31.2
CON [III] 40.3 ± 10.5 13.4 ± 46.0 42.8 ± 10.3 26.7 ± 42.7

Second, noticing that the test set I is at ν2
sym or χ2 orders

while the test set II and set III are both at ν3
sym or χ3 orders,

the results shown in Fig. 2 and Table I indicate that the
higher order contributions from ν3

sym are relatively small in
the auxiliary-function-based reconstruction. In fact, as already
mentioned earlier, the function νsym itself can generate higher
order terms in χ like χ3 and χ4, etc., even when the symmetry
energy is truncated apparently at order ν2

sym. It is thus not sur-
prising that the predicted symmetry energy at suprasaturation
densities from the auxiliary-function-based reconstruction ei-
ther to order ν2

sym or to order ν3
sym looks very similar, since

the effects from the characteristic parameter Jsym and even
higher order contributions are modeled effectively with the
help of νsym in the set I by adaptively adjusting the �sym

parameter, and these terms are included directly in the set II
and set III simulations. On the other hand, compared to set I,
the Esym(ρ) from the set II from the conventional expansion
quickly becomes stiffer at supra-saturation densities since a
positive Jsym is used (which is absent in the set I). A similar
phenomenon occurs when the intrinsic relations for Jsym and
Ksym are used in set III, i.e., the Esym(ρ) quickly becomes
softer at densities ρ � 2.5ρ0.

Finally, the large uncertainty band σ [Esym(ρf )] needs some
more explanations and the relevant context. First, the uncer-
tainty is mostly coming from the uncertainties of S, L, Ksym,
and Jsym. Of course, for each set of fixed values of these
parameters, the Esym(ρf ) is fixed at a unique value. But in our
Monte Carlo simulations—that generate randomly the initial
values of these parameters within their 1σ uncertainty range
subject to the condition of Eq. (17) for fixing the �sym—the
resulting Esym(ρf ) at any given density ρf is approximately
a Gaussian distribution, as one expects statistically. Practi-
cally, in fact, in the nowadays widely used Bayesian statistical
inference of model parameters directly from data of the
observations, the posterior probability distribution functions
(PDFs) of the model parameters are typically characterized
by their most probable value (the peak of the PDF, which is
of course different from the mean when the PDF is asym-
metric) and a variable confidence boundary, e.g., 68% (1σ )
or 95% (2σ ). Correspondingly, functions reconstructed using
model parameters extracted in such an approach are generally
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described with the most probable (or mean) value together
with selected confidence boundaries; see, e.g., examples given
in Refs. [16,19]. Our presentations should be understood in
this context. Second, although the uncertainties of Esym(ρf )
reconstructed using the auxiliary functions are significantly
reduced compared to those in the traditional approach using
the Taylor expansion, as indicated clearly in Fig. 2, Table I,
and also Fig. 4, the uncertainties of Esym(ρf ) at (2–3)ρ0 are
still very large, motivating/requiring many ongoing/future
works in this field.

B. Understanding the dependence of high-density symmetry
energy Esym(ρ) on its characteristics at ρ0

While in the conventional expansion of Eq. (1) the depen-
dences of Esym(ρ) on its characteristic parameters at ρ0 are
obvious by definition, these dependences are no longer obvi-
ous in the auxiliary-function-based expansions because of the
convolutions. Nevertheless, they can be mathematically ana-
lyzed rigorously by calculating the relevant derivatives. For
example, the dependences of Esym(ρf ) at a reference density
ρf on Ksym and Jsym can be analyzed within the auxiliary-
function-based expansion with the exponential model to order
ν3

sym using the following derivatives:

∂Esym(ρf )

∂Ksym
= 1

2
νf,2

sym

(
1 + 3�symνf

sym

)
×

[
1 −

(
ν low

sym

νf
sym

)2(
1 + 3�symν low

sym

1 + 3�symνf
sym

)(
ϒf

ϒlow

)]
,

(22)

∂Esym(ρf )

∂Jsym
= 1

6
νf,3

sym ×
[

1 −
(

ν low
sym

νf
sym

)3(
ϒf

ϒlow

)]
, (23)

where the superscripts/subscripts “f” and “low” are for ρf and
ρlow ≈ 0.05 fm−3 [see the fitting scheme (17)], respectively.
The function ϒ(ρ) in the above two equations is given by

ϒ(ρ) = 3

2
Lν2

sym + 3

2
(Ksym + 4L�sym)ν3

sym

+ ∂νsym

∂�sym

[
L + (Ksym + 3L�sym)νsym

+ 1

2

(
Jsym + 9Ksym�sym + 18L�2

sym

)
ν2

sym

]
. (24)

The corrections in the square brackets in (22) and (23)
come from the dependence of the �sym parameter on the
curvature Ksym and the skewness Jsym of the symmetry en-
ergy, i.e., ∂�sym/∂Ksym and ∂�sym/∂Jsym. By adopting the
empirical values of Jsym ≈ 300 MeV, Ksym ≈ −80 MeV,
L ≈ 60 MeV, and the �sym ≈ 1.74 (set III), respec-
tively, we immediately find ∂Esym(3ρ0)/∂Ksym ≈ 0.0495 and
∂Esym(3ρ0)/∂Jsym ≈ 0.0026. On the other hand, we have in
the conventional reconstruction that ∂Esym(ρf )/∂Ksym = χ2

f /2
and ∂Esym(ρf )/∂Jsym = χ3

f /6, and thus ∂Esym(3ρ0)/∂Ksym ≈
0.2223 and ∂Esym(3ρ0)/∂Jsym ≈ 0.0494, respectively. The
small value of ∂Esym(3ρ0)/∂Jsym ≈ 0.26% demonstrates
again that the dependence of Esym(ρf ) with ρf � 3ρ0 on the

FIG. 3. The expansion variable νsym as a function of density
within the two auxiliary models.

skewness Jsym is weak in the auxiliary-function-based recon-
struction approach, e.g., δJsym∂Esym(3ρ0)/∂Jsym ≈ 1.3 MeV
if δJsym ≈ 500 MeV. The same uncertainty of Jsym leads how-
ever to an uncertainty of about 24.7 MeV for Esym(3ρ0) in the
conventional reconstruction, which is about 19 times larger
than the value in the auxiliary-function-based approach. We
found similar conclusions with the algebraic model.

The main reason for the weak dependence of high-density
Esym(ρ) on Jsym in the auxiliary-function-based reconstruction
is that the expansion variable νsym converges much faster than
χ . In Fig. 3 we show the density dependence of νsym. It is
clearly seen that the νsym quickly approaches a small value
significantly below χ at suprasaturation densities, guarantee-
ing the faster convergence of the auxiliary function approach.
More quantitatively, we find that at ρ = 3ρ0 (with χ =
2/3, χ2 = 4/9 and χ3 = 8/27) that νsym ≈ 0.186, ν2

sym ≈
0.034, and ν3

sym ≈ 0.006 in the exponential model, while
νsym ≈ 0.288, ν2

sym ≈ 0.083, and ν3
sym ≈ 0.024 in the alge-

braic model. These numbers show again that the contribution
from order ν3

sym is relatively small in the auxiliary-function-
based approach, and thus has little impact.

It is necessary to point out that, although the νsym fac-
tor becomes small even approaching zero at suprasaturation
densities, its value deviates from zero faster than χ at sub-
saturation densities. This means that the converges of the
reconstruction of the symmetry energy using the auxiliary
function approach becomes worse at subsaturation densities.
Thus, it may be practical and important to consider using one
auxiliary function at suprasaturation and another one at sub-
saturation densities, or simply use the �sym as a free parameter
such that the expansion factor νsym converges at both small
and large densities. These issues are among the topics of our
future studies.
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FIG. 4. Symmetry energy reconstructed via the auxiliary func-
tions in the exponential and algebraic models with the test set III
(adopting the intrinsic correlation between Ksym and Jsym imposed by
the unbound nature of PNM).

C. Independence of the high-density Esym(ρ) on the auxiliary
function selected

In order to investigate possible model dependences of
the reconstructed high-density symmetry energy due to the
function νsym(χ,�sym) or �sym(χ,�sym) selected, we have
plotted curves similar to those shown in Fig. 2 by adopting
the algebraic model (11) instead. The resulting symmetry en-
ergies at 2ρ0 and 3ρ0 are listed in the fourth and fifth columns
of Table I. As the test set I, set II, and set III themselves are
very similar either in the exponential model or in the algebraic
model, in the following we focus on the results obtained in the
test set III, where the intrinsic correlations among the charac-
teristics of Esym(ρ) at ρ0 are adopted for the simulations.

In Fig. 4, the density dependence of nuclear symmetry
energy from 0.3ρ0 to 3ρ0 with its 1σ uncertainty band is
shown with the exponential and algebraic auxiliary functions,
respectively. The �sym parameter for the algebraic model in
the set III is found to be about �sym ≈ 1.91 ± 1.80 while
that in the exponential model is �sym ≈ 1.74 ± 0.81. It is
seen clearly that the Esym(ρ) obtained from the two models
(blue solid and black dashed) behave very similarly albeit with
slightly different error bands (cyan and magenta), indicating
that the reconstruction is effective and largely independent of
the auxiliary function used.

It is interesting to note that the Esym(ρ) at subsaturation
densities is found to be consistent with the result from analyz-
ing the isobaric-analog-state (IAS) data (indicated by the red
solid curve) [41]. Moreover, the reference symmetry energy
Esym(0.05 fm−3) = 16.4 ± 0.5 MeV (green circle) we used
in fixing the �sym parameter is also consistent with the IAS
result.

In order to investigate how the predicted high-density
Esym(ρ) may depend on the scheme of Eq. (17) for fixing
the �sym parameter, we have done a test by artificially ex-

tending ρlow to 0.03–0.06 fm−3 and taking correspondingly
Esym(ρlow) = 12–18 MeV, as shown in Fig. 4 by the yellow
box. The symmetry energies thus obtained from the two mod-
els still show very similar behavior in the density region of
0.5ρ0–3ρ0, as shown by the green solid and red dash-dotted
lines (indicated by “artificial” in the parentheses). More quan-
titatively, we have now E exp

sym(2ρ0) ≈ 44.8 ± 8.1 MeV and
E alge

sym (2ρ0) ≈ 46.4 ± 9.1 MeV, as well as E exp
sym(3ρ0) ≈ 47.1 ±

22.7 MeV and E alge
sym (3ρ0) ≈ 47.6 ± 31.7 MeV, respectively.

Therefore, although the determination scheme for �sym has
been changed, its effect on the predicted high-density Esym(ρ)
is minor, e.g., E exp

sym(2ρ0) changes from 43.7 to 44.8 MeV,
and E alge

sym (2ρ0) changes from 44.4 to 46.4 MeV, etc, showing
quantitatively the stability of the prediction once again.

Despite of the fact that very similar Esym(ρf ) functions
with ρf � 3ρ0 are obtained by using either the exponential
or the algebraic model, they are not enough to prove model
independence of our results. Nevertheless, one can argue that
all the models νsym(χ,�sym) at low-density scales of χ are
effectively equivalent, i.e., νsym(χ,�sym) ≈ χ + corrections,
and the higher order contributions (characterized by character-
istics like Jsym) could be effectively absorbed into the lower-
order coefficients via the parameter �sym. These higher-order
terms are expected to have little impact on the low-density
scales of χ , which is the basic consideration of the auxiliary-
function-based reconstruction. However, to verify these ex-
pectations quantitatively, further investigations using more
different forms of �sym(χ,�sym) will be extremely useful.

D. High-density trend and limit of nuclear symmetry energy

It is also interesting to note from Fig. 4 that the mean
value of Esym(ρ) from adopting the intrinsic relations (19)
and (20) either in the exponential model or in the algebraic
model shows a decreasing or flattening trend starting around
2ρ0–3ρ0. Since the intrinsic relations used in the test set III
are obtained from a model-independent manner by consider-
ing only the unbound nature of PNM [33], the Esym(ρ) with
ρ � 3ρ0 from the auxiliary-function-based reconstruction is
also expected to be rather general.

Since the high-density behavior of Esym(ρ) has long been
debated in nuclear physics, see, e.g., Refs. [42–46] and it
has significant implications for neutron stars [26,47–51], a
few more comments are necessary here. As noticed earlier,
the curvature Ksym ≈ −118 MeV is found from the relation
(19) by adopting the empirical values of K0 ≈ 240 MeV, J0 ≈
−300 MeV, and L ≈ 60 MeV. It is very close to the Ksym ≈
−120+80

−100 MeV obtained from a recent Bayesian analysis of
several observables of neutron stars [19]. The negative value
of Ksym naturally leads to the bending down or flattening of
the symmetry energy at some suprasaturation density unless
the skewness Jsym is extremely large and positive. But, as
we have discussed earlier, the latter plays little role in deter-
mining the Esym(ρ) around 2ρ0–3ρ0 in the auxiliary function
approach. Thus, it is not surprising to see the flattening or de-
creasing trend of Esym(ρ) starting around 2ρ0–3ρ0. However,
it is too early to conclude that the symmetry energy definitely
decreases beyond this density region as the uncertainty is still
very large at ρ ≈ 3ρ0.
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Moreover, some quantitative comparisons of the Esym(ρ)
values around 2ρ0–3ρ0 reconstructed here with those from
other approaches are useful. Combining the Esym(ρ) recon-
structed from the two models for �sym(χ,�sym) with the
test set III, we find the effective central values of 43 �
Esym(3ρ0) � 54 MeV and 43 � Esym(2ρ0) � 48 MeV, respec-
tively. As shown in Table I, similar values are obtained
with the other two test sets. Interestingly, the reconstructed
Esym(2ρ0) value is consistent with its current fiducial value
and predictions of the state-of-the-art nuclear many-body the-
ories. In particular, eight earlier independent analyses of some
heavy-ion reaction data and neutron star properties [19] gave
a fiducial value of about 47 MeV for Esym(2ρ0). It is con-
sistent with the very recent prediction of Esym(2ρ0) � 53.2
MeV based on a nuclear energy density functional theory
[52], Esym(2ρ0) ≈ 46 ± 4 MeV [53] based on quantum Monte
Carlo calculations, and Esym(2ρ0) ≈ 45 ± 3 MeV [54] from
the latest many-body perturbation theory calculation using
consistent nucleon-nucleon and three-nucleon interactions up
to fourth order in the chiral effective field expansion.

Finally, we have not attempted to explore the symmetry
energy at densities above 3ρ0 in the auxiliary-function-based
approach. The reason is twofold. First, as the density increases
beyond 3ρ0, the Esym(ρ) from the exponential and algebraic
models shows systematic differences (either in set I, set II, or
set III), indicating a serious dependence on the auxiliary func-
tion �sym(χ,�sym). Second, a hadron-quark phase transition
and non-nucleonic degrees of freedom are likely to appear
above 3ρ0 and hence there is no basic need there to define
a nucleonic symmetry energy; see more detailed discussions
in, e.g., Ref. [55].

VI. SUMMARY AND OUTLOOK

In summary, by adopting the auxiliary-function-based
expansion for nuclear symmetry energy at suprasaturation
densities, one can effectively incorporate contributions from
its higher order characteristics at saturation density. The sym-
metry energy in the density region of ρ0 � ρ � 3ρ0 is found to
be stable irrespective of the truncation order in the approach
and/or the adopted empirical values for the higher order char-
acteristics like Ksym and Jsym. The reconstructed symmetry
energy at suprasaturation densities from the new approach has
smaller error bars compared to that from using the conven-
tional χ expansion. Moreover, the symmetry energy Esym(ρ)
at densities 2ρ0 � ρ � 3ρ0 is found to be flat and trending
down as the density increases.

The auxiliary function approach is found to converge much
faster than the conventional χ expansion in the density region
of ρ0 � ρ � 3ρ0. In principle, it can be applied not only to ex-
panding the symmetry energy but also the EOS of SNM. The
conventional expansion of the latter based on χ suffers from
similar shortcomings as in expanding the symmetry energy.
Moreover, the auxiliary function approach may also be used to
study simultaneously the isospin and density dependences of
superdense neutron-rich matter by reforming the expansion of
its EOS in terms of the isospin asymmetry δ2 via a transform

�(δ,�) similar to the �sym(χ,�sym), where � is a parameter
of � similar to the �sym used in the �sym(χ,�sym) function.
Applications of such approach may be useful for extracting
more accurately the EOS of superdense neutron-rich matter
from structures and collision products of both heavy nuclei in
terrestrial laboratories and neutron stars.
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APPENDIX: PROOF OF EQUIVALENCE BETWEEN � = 0
OF EQ. (5) AND EXPANSION OF

Esym(ρ) ≈ S + Lνsym ≈ S + Lχ + 2−1Ksymχ2 + O(χ3)

In this Appendix, we prove that the expansion of the sym-
metry energy in the auxiliary-function-based reconstruction
at the truncation order of νsym, i.e., Esym(ρ) ≈ S + Lνsym, to
the conventional order of χ2, namely Esym(ρ) ≈ S + Lχ +
Ksymχ2/2 + O(χ3), is equivalent to condition � = 0 with �

defined in (5).
Expanding �sym(χ,�sym) around χ ≈ 0 gives

�sym(χ,�sym) ≈ �sym(0,�sym) + ∂�sym

∂χ

∣∣∣∣
χ=0

χ

+ 1

2

∂2�sym

∂χ2

∣∣∣∣
χ=0

χ2 + O(χ3). (A1)

The expansion of the symmetry energy Esym(ρ) ≈
S + Lνsym then becomes [where ν̃sym = �sym(χ,�sym) −
�sym(0,�sym)]

Esym(ρ) ≈ S + L

3ρ0

∂ρ

∂�sym

∣∣∣∣
χ=0

ν̃sym

= S + Lχ + 3ρ0L

2

∂2�sym/∂ρ2

∂�sym/∂ρ

∣∣∣∣
χ=0

χ2. (A2)

By using the basic relations between derivatives, i.e.,

∂�sym

∂ρ
=

(
∂ρ

∂�sym

)−1

, (A3)

∂2�sym

∂ρ2
= −

(
∂�sym

∂ρ

)3
∂2ρ

∂�2
sym

, (A4)

we can rewrite the last term in (A2) as

−3ρ0L

2

[(
∂�sym

∂ρ

)2
∂2ρ

∂�2
sym

]
χ=0

χ2, (A5)

and then make it be equal to Ksymχ2/2, leading to

Ksym + 3ρ0L

[(
∂�sym

∂ρ

)2
∂2ρ

∂�2
sym

]
χ=0

= 0, (A6)

which is just the condition � = 0.
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