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Microscopic calculation of fission product yields with particle-number projection
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Fission fragments’ charge and mass distribution is an important input to applications ranging from basic
science to energy production or nuclear nonproliferation. In simulations of nucleosynthesis or calculations of
superheavy elements, these quantities must be computed from models, as they are needed in nuclei where no
experimental information is available. Until now, standard techniques to estimate these distributions were not
capable of accounting for fine-structure effects, such as the odd-even staggering of the charge distributions. In
this work, we combine a fully microscopic collective model of fission dynamics with a recent extension of the
particle number projection formalism to provide the highest-fidelity prediction of the primary fission fragment
distributions for the neutron-induced fission of 235U and 239Pu. We show that particle-number projection is an
essential ingredient to reproduce odd-even staggering in the charge yields and benchmark the performance of
various empirical probability laws that could simulate its effect. This new approach also enables for the first time
the realistic determination of two-dimensional isotopic yields within nuclear density functional theory.
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I. INTRODUCTION

A predictive theory of nuclear fission has been a long-
standing challenge of nuclear science that has gained renewed
interest in recent years [1]. While fission is a fascinating
problem on its own, as it involves the large-amplitude collec-
tive dynamics of a strongly interacting quantum many-body
system, it also plays an important role in both fundamental
science and technological applications. For example, fission
is a primary decay mechanism of superheavy elements [2]
and plays a crucial role in the rapid neutron capture process
at the origin of heavy elements in the universe [3]. Progress
in these disciplines requires accurate and precise fission data,
such as the distribution and full characteristics (charge, mass,
excitation energy, spin, level density, etc.) of the fragments
formed during the process. However, the ensemble of all these
fissioning nuclei covers a vast area of the nuclear chart. While
precise data are available on experimentally accessible nuclei,
information on very short-lived, neutron-rich systems out of
reach of experimental facilities must come from theoretical
predictions.

There are many approaches geared toward describing
low-energy neutron-induced fission reactions [4–12]. Among
them, collective models have been particularly successful in
predicting fission fragment distributions [3,10,13–19]. These
models are based on the identification of a few collective
variables driving the fission process, the calculation of a po-
tential energy surface in the resulting collective space, and
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the explicit time-dependent simulation of collective motion
on top of these surfaces. Basic fission fragment properties
such as proton or neutron number are mapped to the fissioning
nucleus’s characteristics, such as its deformation. Until now,
particle-number estimates were obtained by simply integrat-
ing the density of particles in the prefragments. This local
averaging made it impossible to predict fine structure ef-
fects such as the odd-even staggering in the fission fragments
charge distributions.

In the seminal work of Refs. [20,21], the authors intro-
duced a new method based on particle-number projection
techniques to predict particle transfer in heavy-ion reactions
in the context of time-dependent density functional theory.
In Ref. [22], this method was applied to calculate the dis-
persion in particle number for the most probable scission
configuration of 239Pu(n, f ) fission and showed that odd-even
staggering naturally emerged. By further combining particle-
number projection in the fission fragments with a strongly
damped random walk on semiclassical potential energy sur-
faces, the authors of Ref. [23] showed that it is possible to
predict odd-even staggering and also the charge polarization
of the fission fragments’ distribution.

This paper aims to combine particle-number projection
in fission fragments with a quantum-mechanical theory of
large-amplitude collective dynamics to predict the mass and
charge fission fragment distributions before prompt emis-
sion. We investigate the role of projection for reproducing
odd-even staggering effects in fragment distributions and
discuss how various phenomenological probability distribu-
tions could approximate exact results. We also present the
first two-dimensional isotopic yields predicted with such a
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microscopic approach and their evolution as a function of
excitation energy.

In Sec. II, we describe in detail our theoretical frame-
work. It includes a very short reminder on the time-dependent
generator coordinate method under the Gaussian overlap ap-
proximation with Hartree-Fock-Bogoliubov (HFB) generator
states, a comprehensive presentation of the method used to ex-
tract fission yields from the time evolution of a collective wave
packet, and a discussion of the various methods to estimate
particle-number dispersion in prefragments. Section III con-
tains the results of our calculations for the two important cases
of 235U(n, f ) and 239Pu(n, f ) low-energy fission, focusing on
the impact of particle-number projection and the evolution of
the yields as a function of excitation energy.

II. THEORETICAL FRAMEWORK

Our goal is to predict the initial, or primary, fission frag-
ment mass and charge distributions before prompt emission
of neutrons and gamma rays. These quantities are deter-
mined by estimating the population of scission configurations
through the resolution of a collective Schrödinger-like equa-
tion in the collective space spanning nuclear deformations
[6,24,25]. This approach is based on the time-dependent
generator coordinate method (TDGCM) under the Gaussian
overlap approximation (GOA). References [26,27] and refer-
ences therein give a comprehensive presentation of the general
framework; details about the specific implementation of the
TDGCM + GOA for the description of fission dynamics can
be found in Ref. [16].

In this section, we discuss in more detail our method
to extract fission yields from TDGCM + GOA calculations
by combining the population of scission configurations with
an estimate of particle-number distributions at each config-
uration. We first recall in Sec. II A how we estimate the
population of scission configurations in the TDGCM + GOA.
We then derive in Sec. II B the expression for the probability
distribution of the mass and charge of the fission fragments.
These derivations require introducing the probability dis-
tributions associated with each scission configuration. The
determination of the latter, based on particle-number projec-
tion techniques, is presented in Sec. II C.

A. Population of scission configurations

In practical applications, fission models that rely on the
calculation of a potential energy surface (e.g., the semi-
classical random walk and Langevin approaches or the
fully-microscopic TDGCM) cannot correctly describe the
separation of the fissioning nucleus into two separated and
excited primary fragments; see Ref. [23] for further discus-
sion. Instead, quantities such as fission fragment distributions
are computed just before scission, which is defined, somewhat
arbitrarily, based on several possible criteria; see discussions
in Refs. [4,26].

Following common practice, we define scission configura-
tions through the average value of the operator, Q̂N, counting
the number of nucleons in the neck. It is defined, as in

Ref. [28], by

Q̂N = e−(z−zN )2/a2
N . (1)

This expression contains two parameters. The neck location,
zN, is the point between the two prefragments along the z
axis of the intrinsic reference frame where the local density is
minimum. The position of the neck defines two prefragments:
a point (x, y, z) belongs to the “left” fragment if z < zN and to
the “right” fragment if z � zN. The dispersion, aN, is chosen
to be equal to one nucleon. By convention, we consider that a
configuration is located past scission, i.e., corresponds to two
fully separated fragments, if

qN ≡ 〈φ(q)|Q̂N|φ(q)〉 � qsciss
N , (2)

where |φ(q)〉 is the HFB state associated with the constrains
q ≡ (q20, q30) on the quadrupole and octupole moments and
qsciss

N is a parameter. This allows us to define the scission
configurations as the set of all the states |φ(q)〉 such that (i)
qN > qsciss

N and (ii) at least one of their neighbors is located
past scission.

In our two-dimensional calculations, the set of scission
configurations can be parametrized by a single coordinate ξ .
The population of scission configurations is then obtained by
integrating the flux density φ(ξ, t ), which reads in this specific
case

φ(ξ, t ) = J0(q(ξ ), t )
dq1

dξ
− J1(q(ξ ), t )

dq0

dξ
, (3)

where J = (J0, J1) is the current as defined in Ref. [16]. We
assume that the probability to exit through the point q(ξ ) is
proportional to the time-integrated flux density, defined as

F (ξ ) = lim
t→∞

∫ τ=t

τ=0
dτ φ(ξ, τ ). (4)

B. Expression of the yields

Previous studies using the TDGCM framework to pre-
dict fission fragment yields accounted for the width of the
particle-number probability distribution at a single scission
configuration, as well as a possible experimental mass reso-
lution (to compare with experimental preneutron yields), by
convoluting the time-integrated flux density of Eq. (4) with a
Gaussian function [16–19,29]. The mean of such a Gaussian
is typically set to the average number of particles in the right
fragment at the scission configuration |φ(q(ξ ))〉, while its
standard deviation is a free parameter. The major novelty of
this work is the determination of the fission fragment mass and
charge yields Y (Zf , Af ) by computing the exact probabilities
for each fragment Zf , Af using a particle-number projection-
based technique rather than a convolution with a Gaussian.

We seek to calculate the probability P (ZR, NR | Z, N ) to
measure ZR charges and NR neutrons in the right fragment
at scission given a compound system with Z protons and N
neutrons. In our approach, it is given by

P (ZR, NR | Z, N ) ∝
∫

dξ F (ξ ) P (ZR, NR | Z, N, q(ξ )), (5)

where P (ZR, NR | Z, N, q(ξ )) is the probability, whose deter-
mination is presented in Sec. II C, associated with a right
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fragment having ZR protons and NR neutrons, only consid-
ering the part of the compound system’s state at q(ξ ) having
Z protons and N neutrons. Once this quantity is inserted in
Eq. (5) and after a proper normalization, we recover the fission
fragments yields, in percent, assuming that the system splits
in two fragments:

Y (Zf , Nf ) = 100 × [P (ZR = Zf , NR = Nf | Z, N )

+ P (ZR = Z − Zf , NR = N − Nf |Z, N )]. (6)

We could use the same procedure to determine one-
dimensional yields. For example, the charge distributions
would read

Y (Zf ) = 100 × [P (ZR = Zf | Z, N )

+ P (ZR = Z − Zf | Z, N )], (7)

where the probability P (ZR | Z, N ), associated with ZR pro-
tons in the right fragment at scission given Z and N , is

P (ZR | Z, N ) ∝
∫

dξ F (ξ ) P (ZR | Z, N, q(ξ )), (8)

and the marginalized probability P (ZR | Z, N, q) is given by

P (ZR | Z, N, q) =
N∑

n=0

P (ZR, NR = n | Z, N, q). (9)

However, all the distributions of interest can alternatively be
obtained directly from Y (Zf , Nf ) through the relations

Y (Zf , Af ) = Y (Zf , Nf = Af − Zf ), (10)

Y (Zf ) =
N∑

n=0

Y (Zf , Nf = n), (11)

Y (Af ) =
∑
n=0

Y (Zf = Af − n, Nf = n). (12)

Therefore, the essential quantity to compute the fission
yields is the probability distribution P (ZR, NR | Z, N, q).

C. Particle-number projection

In this work, we estimate the distribution of probabil-
ity P (ZR, NR | Z, N, q) based on particle-number projection
techniques. Particle-number projection (PNP) was originally
introduced to restore the number of particles in superfluid sys-
tems that spontaneously break the particle-number symmetry
[30–34]. Following Refs [20–22], we use PNP to estimate
the probability P (ZR, NR | Z, N, q). For a fissioning nucleus
described by the many-body state |φ(q)〉, this value can be
interpreted as the probability to measure Zf protons and Nf

neutrons in the right fragment in the component of |φ(q)〉 with
Z protons and N neutrons.

We do not consider isospin mixing in this work, i.e.,

|φ(q)〉 = |φ(q)〉neut. ⊗ |φ(q)〉prot.. (13)

Thus, the probabilities P (ZR, NR | Z, N, q) can be decomposed
accordingly,

P (ZR, NR | Z, N, q) = P (NR | N, q) × P (ZR | Z, q). (14)

The probability distributions P (ZR | Z, q) and P (NR | N, q)
both derive from a double projection of the scission config-
uration |φ(q)〉:

P (ZR | Z, q) = 〈φ(q)|P̂(R)
p (ZR)P̂p(Z )|φ(q)〉

〈φ(q)|P̂p(Z )|φ(q)〉 . (15)

The operator P̂p(Z ) projects the state onto the states’
eigenspace with a good total proton number Z . We imple-
mented this projector in its standard gauge angle integral form

P̂p(Z ) = 1

2π

∫ 2π

0
dθ eiθ (Ẑ−Z ). (16)

Similarly, the operator P̂(R)
p (ZR) projects onto the eigenspace

of states with a good number of protons ZR in the right half-
space. We recall that the right half-space corresponds to the
set of spatial coordinates whose component along the z axis is
greater than zN, the position of the neck. Its expression reads

P̂(R)
p (ZR) = 1

2π

∫ 2π

0
dθ eiθ (ẐR−ZR ), (17)

where ẐR counts the number of protons in the right half-space.
This operator can be expressed from the proton creation,
â(p)†(r, σ ), and annihilation, â(p)(r, σ ), operators as

ẐR =
∑

σ=↓,↑

∫
x

∫
y

∫ +∞

z=zN

dr â(p)†(r, σ )â(p)(r, σ ). (18)

We define the projectors on the neutrons number, in the full
space, P̂n(N ), as well as in the right half-space, P̂(R)

n (NR), in
a similar way, and we follow the same procedure to calculate
the neutron probability

P (NR | N, q) = 〈φ(q)|P̂(R)
n (NR)P̂n(N )|φ(q)〉

〈φ(q)|P̂n(N )|φ(q)〉 . (19)

In our calculations, we determine the numerator of
Eqs. (15) and (19) using the gauge angle integrals based on a
Fomenko quadrature [35] using 41 integration points. Instead
of explicitly calculating the corresponding denominator, we
directly normalize the distributions using

〈φ(q)|P̂p(Z )|φ(q)〉 =
∑

z

〈φ(q)|P̂(R)
p (z)P̂p(Z )|φ(q)〉, (20)

〈φ(q)|P̂n(N )|φ(q)〉 =
∑

n

〈φ(q)|P̂(R)
n (n)P̂n(N )|φ(q)〉. (21)

III. APPLICATION

This section summarizes our results for the thermal
neutron-induced fission of 235U and 239Pu. In Sec. III A, we
discuss the static fission properties related to the potential
energy surfaces and the properties of prefragments at scission.
In Sec. III B, we show the primary fission fragments mass and
charge yields obtained by combining the TDGCM + GOA
collective dynamics with PNP. We then compare the projected
yields with results obtained from assuming several analytical
distributions in Sec. III C, and assuming different criteria for
the scission line in Sec. III D. Finally, the evolution of both the
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FIG. 1. Potential energy surface for 240Pu (top) and 236U (bot-
tom) as a function of the axial quadrupole and axial octupole
moments.

two-dimensional yields and their one-dimensional reductions
as a function of the energy of the incident neutron is illustrated
in Sec. III E.

A. Static properties

While the potential energy surfaces (PESs) used in this
work have already been presented in other publications—
Ref. [36] for 240Pu and Ref. [37] for 236U—we recall them
for the sake of completeness. Figure 1 thus shows the total
potential energy V (q) entering the master equation of the
TDGCM + GOA, namely Eq. (4) of Ref. [16], for both 240Pu
(top) and 236U (bottom) as a function of the axial quadrupole
and octupole moments. The PES is characterized by a ground-
state at around Q20 ≈ 30 b, a fission isomer at Q20 ≈ 85 b, and
the main large fission valley opening up beyond the second
barrier. Note that triaxiality is included in this calculation,
but plays a role only near the first barrier; see Ref. [36] for a
discussion. Additional details about the resolution of the HFB
equation, such as the characteristics of the harmonic oscillator
basis or the convention for the multipole operators used as
constraints can be found in that same reference.

An HFB generator state |φ(q)〉 is associated with each
point of the PES of Fig. 1. The scission configurations are
defined based on the procedure outlined in Sec. II. For each
state in the scission region, we identify the neck position
zN, which is used to compute the average charge, number of
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FIG. 2. Probability P (ZR | Z, q) of having ZR protons in the right
fragment given the total number of protons Z as a function of ZR.
We show such a probability distribution for a set of scission config-
urations q in 236U. The deformations q are in b (q20) and b3/2 (q30),
where b = barn.

neutron, and mass, according to

〈ẐR〉 =
∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ +∞

zN

dz ρp(r), (22)

〈N̂R〉 =
∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ +∞

zN

dz ρn(r), (23)

〈ÂR〉 =
∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ +∞

zN

dz ρ0(r), (24)

where ρn and ρp are respectively the neutron and proton
density distributions and ρ0 = ρn + ρp is the isoscalar (total)
density. Since the HFB wave function is not an eigenstate of
the operator of Eq. (18) counting the number of particles in
the right fragment, the fluctuations 〈Ẑ2

R〉 and 〈Â2
R〉 are nonzero

and could be in principle computed as well.
Projection techniques give us a much more complete view

of the content in particle number in the fragments. For each
scission configuration of the two PES we performed the pro-
jection on the total number of protons and neutrons as well as
on the number of protons and neutrons in the right half-space
following Eq. (15). The projection on the fragment particle
numbers was only performed for eigenvalues ZR and NR close
to the mean values defined by Eq. (22), where the probability
is not negligible. In practice we considered in each scission
configuration the set �〈ẐR〉 − 20 � ZR < �〈ẐR〉 + 20 and
�〈N̂R〉 − 20 � NR < �〈N̂R〉 + 20, hence a total of 41 pro-
jected values for protons and for neutrons. The notation �X
indicates the integer part of the real number X .

Figure 2 presents an example of these probabilities distri-
butions for the case of a few scission configurations in 236U,
the locations q of which are indicated in the legend. More
specifically, it shows the probability P (ZR | Z, q) as a function
of the charge number ZR for the fixed value Z = 92 of the
total number of proton in the fissioning nucleus. These results
highlight two important features brought about by projection:
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(i) the curves are not necessarily symmetric around the mean
value and (ii) there can be odd-even staggering effects, as
in the case of the configuration (q20, q30) = (325 b, 40 b3/2).
These two features are absent by construction when consider-
ing empirical dispersion laws such as Gaussian folding.

B. Fragment distributions

In this section, we show the primary mass and charge
distributions for the two important cases of the low-energy,
neutron-induced fission of 235U and 239Pu. Throughout this
section, FELIX calculations were performed with the GCM
collective inertia, the metric γ (q) and the GCM zero point
energy correction, and the frontier was defined by qsciss

N =
4.0. The dispersion in energy of the initial collective wave
packet, see Eq. (19) of Ref. [16], is σ = 0.5 MeV. The col-
lective dynamics with FELIX is characterized by a time step of

t = 2 × 10−4 zs and we simulate the dynamics up to a time
t = 20 zs.

For the two actinides under consideration, there are con-
siderably fewer measurements on charge distributions Y (Z )
than on mass distributions Y (A). Yet charge distributions are
important tests for theory since they can exhibit an odd-even
effect, namely, the yield of even-Z elements is higher than that
of odd-Z [40–44]. Note that an experimental determination of
such an effect requires a sufficiently good resolution in the
detection of the fragment charge. Typically, for the case of
neutron-induced fission of 235U at thermal energy, odd-even
effects were not reported in [38]. According to the authors,
the experimental technique used as well as the hypothesis
assumed in the data analysis could smooth out the odd-even
structures in this work. In contrast, the experiment of Ref. [39]
claims a resolving power of Z/
Z = 45 (full width at 1/10
maximum) for the charge Z = 40 at the maximum of the
light peak. With such resolution, the resulting yields present
a strong odd-even staggering effect. Such effect was also
observed for various fissioning systems in the high precision
measurements based on inverse kinematics reactions at higher
excitation energies [45–47].

In Fig. 3, we show the charge distributions for the neutron-
induced fission 239Pu(n, f ) and 235U(n, f ) reactions, at an
excitation energy of 1 MeV above the first fission barrier.
For these fissile isotopes it should correspond to an incident
neutron energy of En � 1 MeV. For both systems, the overall
agreement with data is satisfactory, especially considering the
lack of precise experimental measurements of charge distribu-
tions for the 240Pu. In the case of 236U, it is worth noting that
our calculations do not predict odd-even effects in the charge
yields. We will discuss this in more details in Sec. III D.

In Fig. 4, we show the mass distributions for these same
isotopes. The agreement with data is not as good, especially
in the case of 235U(n, f ). However, we must bear in mind
that these experimental primary mass yields do not have a
perfect mass resolution. The mass of the (primary) fragments
is typically deduced from the measurement of the kinetic
energy of the fission fragments in ionization chambers. This
technique implies a mass resolution of roughly FWHM = 5.5
mass units for A [57]. Therefore, we also show in Fig. 4 the
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FIG. 3. Charge distribution Y (Z ) in 240Pu (top) and 236U (bottom)
as a function of Z . The yields obtained with PNP are compared
to a Gaussian convolution of the raw flux with σ = 1.6 and to the
experimental data from Refs. [38,39]; see text for additional details.

results of the calculation when accounting for such a mass
resolution.

In both Figs. 3 and 4, we compare the theoretical cal-
culations with PNP with the standard method of Gaussian
folding. Note that the width σ of the folding must be different
for protons and for masses as the overall proton density is
smaller than the total one. As a result, most of the (theoretical)
uncertainty on the proton number can be attributed to pairing
effects in each prefragment. As seen in Fig. 2, the average
dispersion around the mean value is of the order of 1.6 indeed.
In contrast, neutrons are much less localized in the prefrag-
ments and contribute rather significantly to the overall neck
between the prefragments [36,58,59]. The number of parti-
cles in the neck used to define scission configuration in our
calculations, qsciss

N = 4.0, is larger than the typical dispersion
in particle number one could expect from pairing effects and
thus dominates. This justifies fixing σ = 4 for the Gaussian
folding of mass yields. It is worth mentioning that, for this
reference calculation at qsciss

N = 4.0, Gaussian folding is a very
good approximation to the exact PNP result. In Sec. III C we

054602-5



VERRIERE, SCHUNCK, AND REGNIER PHYSICAL REVIEW C 103, 054602 (2021)

80 90 100 110 120 130 140 150 160
Mass

0

5

10

Y
ie

ld
(%

)

Gaussian σ = 4.0

PNP

PNP+Exp. resolution

Wagemans (1984)

Geltenborg (1985)

Schillebeeckx (1992)

Nishio (1995)

Tsuchiya (2000)

80 90 100 110 120 130 140 150 160
Mass

0

5

10

15

20

Y
ie

ld
(%

)

Gaussian σ = 4.0

PNP

PNP+Exp. resolution

Müller (1984)

Geltenborg (1986)

Simon (1990)

Zeynalov (2006)

Romano (2010)

FIG. 4. Mass distribution Y (A) in 240Pu (top) and 236U (bottom)
as a function of A. Results obtained after PNP are compared to a
Gaussian convolution of the raw flux with σ = 4.0 and to exper-
imental data from Refs. [48–56]. The curve labeled PNP + Exp.
resolution gives the PNP results with an additional convolution by
a Gaussian with a FWHM of 5.5 mass units to account for the typical
mass resolution of experiments; see text for additional details.

will evaluate the performance of other analytical probability
laws, and in Sec. III D we will further discuss the dependency
of the results on the definition of the frontier.

Beyond enhancing the robustness of our approach by elimi-
nating the (somewhat) arbitrary width of the Gaussian folding,
PNP also allows determining more realistic two-dimensional
isotopic distribution Y (Z, A). Such distributions are especially
important when simulating the deexcitation of fission frag-
ments [60]. The results for the particular case of 240Pu are
presented in Fig. 5. To our knowledge, no experimental data
can be directly compared to these preneutron emission yields.
Thus, we present the two-dimensional independent yields
(after the emission of the prompt neutrons) of the JEFF-3.3
evaluated data library [61] alongside our results. We show that
the PNP approach predicts a significant width for the light and
heavy peaks of the two-dimensional fission yields. This width
is larger than the data of JEFF-3.3. Currently, it is not clear
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FIG. 5. Two-dimensional isotopic fission yields Y (Z, A) for the
reaction 239Pu(n, f ) for an incoming neutron energy of En = 1.0
MeV using PNP in the fragments. Our results predict a deviation
from the unchanged charge distribution (UCD) approximation, called
the charge-polarization of the fission fragment distributions, in the
primary yields. To give a point of reference, we also show the in-
dependent two-dimensional yields evaluated in the JEFF-3.3 library.
Note that these yields account for the mass number of the fragments
after emission of the prompt neutrons (in contrast to our predictions
that give the primary fragment yields).

whether this reduction of the width could be totally explained
by the prompt neutron emission.

From Y (Zf , Af ) we can extract the charge polarization 
Zf

which measures the deviation of the most probable charge in
a fragment of given mass to the unchanged charge distribution
(UCD) approximation [62],


Zf (Af ) = Z̄f (Af ) − Af
Z

A
, (25)

with

Z̄f (Af ) =
∑

Zf
Zf × Y (Zf , Af )∑
Zf

Y (Zf , Af )
. (26)

For the thermal neutron induced-fission induced on 239Pu, a
large corpus of experimental data agree on a charge polariza-
tion of the order of −0.5 charge unit for the heavy fragments
[63,64]. We find in this work a consistent value of −0.58 on
average on the fragments in the heavy peak (Af ∈ [130, 150]).
A qualitative explanation of this polarization effect, already
proposed in 1966 [65], is the asymmetry energy term in the
liquid drop formula of the deformation energy. However, no
such preneutron experimental data were available at the time.
As illustrated in Ref. [66], classical models are able to explain
the smooth trend of the charge polarization favoring less pro-
tons in the heavy fragment. On top of that, shell and pairing
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FIG. 6. Average neutron excess of fragments produced in the
fission of 240Pu. PNP results at En = 2.0 MeV are compared with
the local discrete approach of Sec. III C and with the experimental
data of Ref. [66].

effects bring additional structures to the charge polarization
measured in the fission of actinides in general [67,68].

An equivalent probe for this phenomenon is the neutron
excess, defined as

N̄f (Zf )

Zf
=

∑
Nf

Nf/Zf × Y (Zf , Nf )∑
Nf

Y (Zf , Nf )
. (27)

We compare in Fig. 6 the predictions of the TDGCM dy-
namics with PNP to the experimental data obtained with the
VAMOS spectrometer [66]. The experimental data come from
an inverse kinematic experiment with an equivalent incident
neutron energy of �2.5 MeV and a standard deviation of 6
MeV on this energy. To obtain an approximate description of
this entrance channel, we performed our calculation with an
initial energy of 2 MeV above the first fission barrier. The
shape of the neutron excess obtained, especially the bump
when going from the light to the heavy fragment and the
overall order of magnitude in the light and heavy fragments,
reproduces well this experimental data set. At high asymme-
tries we notice significant deviations from experiment. To see
the impact of projection on the quality of our prediction we
also show the results obtained when the two-dimensional mass
and charge yields are simply estimated with the local discrete
approach of Sec. III C. Particle-number projection turns out to
be an important ingredient for reproducing the neutron excess.

C. Comparison with various analytical distributions

Many studies of fission fragment distributions in the frame-
work of the TDGCM + GOA approximate the uncertainty on
particle number at scission, or equivalently, particle transfer
effects, by simple Gaussian folding of the mean value of
particles for each scission configuration [16–19,29,69]. This
corresponds to setting the quantity P (ZR, NR | Z, N, q(ξ ))
involved in Eq. (5) to follow a Gaussian distribution as dis-
cussed in Sec. III C. In the work of Ref. [70], this convolution
of the flux was also obtained from a random neck rupture
mechanism.

In this section, we compare fission distributions obtained
through the direct calculation of the projected mass and charge

of the fragments with the ones obtained assuming analytic
probability distributions for P (ZR, NR | Z, N, q). For each dis-
tribution, the mean μ is set to the average number of particles
(neutrons or protons) in the fragments. Note that this slightly
differs from our previous works, see Ref. [16,18], where μ

was chosen to be the closest integer to the average number of
particles.

The first analytical distribution we consider is the Gaussian
distribution used in earlier works and also used to add a mass
resolution in the fission fragment distribution before com-
paring with experimental data [71]. While the mean of this
distribution is specified by the average number of particles,
the standard deviation σ is a free parameter. The contribution
of a scission configuration is then

P (ZR | Z, N, q)

= 1

2
erf

(
ZR + 1

2 − μ(q)√
2σ

)
− 1

2
erf

(
ZR − 1

2 − μ(q)√
2σ

)
.

(28)

The hypothesis that the dispersion in charge number ZR

in the fission fragments is minimal leads to the second dis-
tribution considered in this paper, the most local distribution
of mean μ. The domain of this distribution is the set of
positive integers. The only integers associated with a nonzero
probability are �μ and �μ + 1, respectively having the prob-
abilities 1 − x and x, where x = μ − �μ. Consequently, the
contribution P (ZR, NR | Z, N, q) reads

P (ZR | Z, N, q) =

⎧⎪⎨
⎪⎩

1 − x if Xf = �μ(q),
x if Xf = �μ(q) + 1,

0 otherwise.

(29)

If we model scission as a set of independent and identically
distributed draws where each nucleons is put in the left or right
fragment according to a coin toss, the probability distribution
follows a binomial law:

P (ZR | Z, N, q) =
(

X

Xf

)
(μ/X )Xf [1 − (μ/X )]X−Xf . (30)

Finally, the law of rare events suggests that the more
asymmetrical fission is, the better the binomial law can be
approximated by the fourth and last distribution considered in
this work, a Poisson distribution whose contribution at each
point q is

P (ZR | Z, N, q) = μXf e−μ

Xf !
. (31)

The results are summarized in Fig. 7 for the charge yields;
the mass yields are qualitatively similar. The Poisson and
binomial distributions are considerably too broad. In contrast,
both the local discrete and Gaussian distribution do a decent
job at reproducing the width of the charge distribution, al-
though the local discrete distribution is too narrow, leading to
overestimating the height of the peaks. The fact that a Gaus-
sian convolution reproduces quite well the PNP is consistent
with the conclusions of Ref. [72], although they were ob-
tained in a different context where the projection subvolume is
spherical.

054602-7



VERRIERE, SCHUNCK, AND REGNIER PHYSICAL REVIEW C 103, 054602 (2021)

30 35 40 45
Charge

0

10

20

Y
ie

ld
(%

)

Local

Binomial

Poisson

Gaussian σ = 1.6

PNP

FIG. 7. Light peak of the charge distribution Y (Z ) in 240Pu as a
function of Z for different analytic forms for P (ZR, NR | Z, N, q) as
well as from PNP. We only show the curve for the light fragment,
since the whole distribution is completely symmetric with respect to
Z/2; see text for additional details.

D. Evolution of yields as function of frontier definition

One of the well-known limitations of adiabatic approaches
to fission is the dependency of results on the definition of
scission configurations [4,58,73]. This problem is especially
relevant in self-consistent HFB calculations of PES: the large
computational cost often leads to limiting the number of ac-
tive collective variables—two in our case—which leads to
discontinuities in the PES [74]. Very often, scission config-
urations are in fact associated with such a major discontinuity.
In Fig. 1, the line that separates the colored area from the
white background at q20 > 300 b is the visual representation
of such a discontinuity, where the expectation value qN of
the Gaussian neck operator drops from 3–6 down to values
smaller than 0.1. It is especially important to quantify the
impact of the definition of the frontier on charge distributions,
as recent work suggests the odd-even staggering effect may
only manifest itself at rather small values of the neck between
the two prefragments [23].

In Fig. 8, we thus show the evolution of the charge dis-
tribution in 240Pu as a function of the criterion qsciss

N used
to define scission configurations, as explained in Sec. II A.
As expected, there is no evidence of odd-even staggering for
large values of qN. For 3.0 � qN � 8.0, the peak does not
really change very significantly. The first hints of odd-even
staggering only appear at qN � 2.5. At the same time, there is
a more pronounced shift of the peak toward larger values of
Z . While this result is encouraging, we should point out that
values of qN < 3 often require interpolating the PES through
the discontinuity defining scission, which is non physical.
Better-resolved, continuous PESs are required to verify the
possibility of an odd-even staggering effects. This may be
achieved for instance by increasing the number of collective
degrees of freedom.

E. Evolution of yields as function of excitation energy

Within our approach, we can estimate the primary fission
fragment mass and charge distributions Y (A; En) and Y (Z; En)
for different values of the incoming neutron energy En. For
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N = 6.0
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FIG. 8. Light peak of the fragment charge distribution Y (Z ) for
240Pu at En = 1.0 MeV obtained with different values of the frontier
definition qsciss

N .

this purpose, we make the approximation that all the exci-
tation that the compound nucleus acquires after absorbing
the neutron is of collective nature. This implies that varying
incident neutron energies En translate simply into varying
mean energies of the collective wave packet; see Eq. (19)
of Ref. [16]. We are very aware that this approximation is
rather strong and probably not entirely valid. A more accu-
rate treatment of collective dynamics would require including
quasiparticle excitations in the TDGCM formalism along the
lines of Ref. [75], or adopting a finite-temperature approach as
in, e.g., Refs. [29,76]. The former strategy faces considerable
computational challenges, while the latter is not formally well
defined: the very concept of a GCM wave function made of a
superposition of kets requires generalization at finite temper-
ature; see, e.g., Ref. [77]. Pending such future developments
and bearing in mind the limitations of our approach, we can
still provide a useful reference point for future comparisons.

In Fig. 9, we thus show the evolution of the full,
two-dimensional isotopic fragment distribution as a function
of incident neutron energy. As expected from statistical
mechanics—at “infinite” excitation energy, all fragmentations
should become equiprobable—the distribution Y (Z, A; En)
includes an ever larger set of fragmentations as the incident
neutron energy increases from En = 0.5 MeV to En = 10.0
MeV. In particular, symmetric fission becomes more and
more likely, which is especially visible for En > 3.0 MeV,
and very asymmetric configurations with AL ≈ 80 get more
and more populated. A more careful analysis of these
maps show that the centroid of the distribution for the light
fragment shifts toward lower ZL and lower AL: at En = 0.5
MeV, it is located at (ZL, AL ) = (39.875, 100.364) and has
moved to (ZL, AL ) = (37.987, 95.575) at En = 10.0 MeV.
Similarly the most likely fission fragment changes from 100Zr
(ZL = 40, NL = 60) at En = 0.5 MeV to 96Sr (ZL = 37.987,
AL = 95.575) at En = 10.0 MeV.

To get a more quantitative feel for the variations of indi-
vidual charge yields, we show in Fig. 10 the charge yields
of 240Pu for various incident neutron energies in the range
En ∈ [0.5; 10] MeV. These results are compared to the ex-
perimental data of Ramos et al. [46] obtained in inverse
kinematics. This experiment leverages the transfer reaction
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FIG. 9. Isotopic yields Y (Zf , Af ) for the reaction 239Pu(n, f ) for different incoming neutron energies En using PNP in the fragments.
Symmetric fission becomes more probable with increasing excitation energy.

12C(238U, 240Pu) 10Be to produce the compound plutonium
system with an average excitation energy of 10.7 MeV and
a standard deviation of 3.0 MeV. This energy corresponds
to an incident neutron energy of En = E∗ − Sn � 4.3 MeV,

30 35 40 45
Charge

0

10

20

Y
ie

ld
(%

)

Ramos (2018) En 4.3 MeV
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En = 10. MeV

FIG. 10. Light peak of the fragment charge distribution Y (Z ) for
240Pu obtained with different values of initial energy of the com-
pound nucleus. Results with PNP are compared to the experimental
data from Ref. [46].

although differences in the resulting fission yields may arise
from the difference of input reaction channel. Once again our
results show a broadening of the charge yields with the in-
crease of the neutron energy. Overall, our predictions at En =
4 MeV compare well with the experimental data of Ref. [46].
We still notice a strong overestimation of the predicted charge
yields in the symmetric valley.

Finally, Fig. 11 shows the evolution of the neutron excess
of Eq. (27) as a function of incident neutron energy. We see
that the addition of the excitation energy to the system tends to
flatten the structure of the neutron excess. These predictions
are qualitatively consistent with the observed fission of 250Cf
at high excitation energy (E∗ = 43 MeV) [66] as well as with
the interpretation of shell effects being smoothed out as the
energy increases.

IV. CONCLUSION

In this paper, we reported the first microscopic calcula-
tion of fission fragment distribution within the TDGCM +
GOA framework where the number of particles in fission
fragments was extracted by direct particle-number projection.
While using Gaussian folding of particle number at scission
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FIG. 11. Evolution of the neutron excess of the primary fission
fragments for the reaction 239Pu(n, f ) according to En. If the UCD
were satisfied, all these quantities would be constant equal to 1.55.

is a good approximation of the exact PNP result, it still re-
quires specifying the width. Even guided by consideration
about pairing fluctuations or the size of the neck, this pa-
rameter remains somewhat arbitrary; PNP techniques allow
eliminating it entirely and thereby obtaining more realistic
distributions.

When comparing with experimental data for the two stan-
dard cases of 236U and 240Pu, we find that the agreement on
both charge and mass yields is satisfactory, especially consid-
ering the rather large uncertainties on the primary fragment

distributions, which translates itself into a large experimental
mass resolution for the mass yields, and somewhat con-
flicting datasets for the charge yields. Our analysis of the
two-dimensional isotopic yields recovers the excepted charge
polarization already at the level of the primary yields, i.e., be-
fore any evaporation of neutrons. Many recent measurements
seem to confirm the existence of an odd-even staggering in the
charge distributions. Our calculations with small neck sizes
for scission configurations seem to confirm this, although the
resolution of the potential energy surface is not sufficient to
draw firm conclusions.

The evolution of the yields as a function of incident neutron
energy, which in our framework translates into collective ex-
citation energy of the fissioning nucleus, is compatible with
what is expected from statistical mechanics and observed
experimentally: the peaks of the distribution widen and sym-
metric fission increases. We note that the shell effects visible
on the predicted charge polarization tend to vanish with in-
creasing energy.
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[29] J. Zhao, T. Nikšić, D. Vretenar, and S.-G. Zhou, Microscopic
self-consistent description of induced fission dynamics: Finite-
temperature effects, Phys. Rev. C 99, 014618 (2019).

[30] H.-J. Mang, The self-consistent single-particle model in nuclear
physics, Phys. Rep. 18, 325 (1975).

[31] J.-P. Blaizot and G. Ripka, Quantum Theory of Finite Systems
(MIT Press, Cambridge, 1985).

[32] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Self-consistent
mean-field models for nuclear structure, Rev. Mod. Phys. 75,
121 (2003).

[33] P. Ring and P. Schuck, The Nuclear Many-Body Problem, Texts
and Monographs in Physics (Springer, Berlin, 2004).

[34] N. Schunck, Energy Density Functional Methods for Atomic
Nuclei, IOP Expanding Physics (IOP, Bristol, UK, 2019).

[35] V. N. Fomenko, Projection in the occupation-number space
and the canonical transformation, J. Phys. A: Gen. Phys. 3, 8
(1970).

[36] N. Schunck, D. Duke, H. Carr, and A. Knoll, Description of
induced nuclear fission with Skyrme energy functionals: Static
potential energy surfaces and fission fragment properties, Phys.
Rev. C 90, 054305 (2014).

[37] N. Schunck, Z. Matheson, and D. Regnier, Microscopic cal-
culation of fission fragment mass distributions at increasing
excitation energies, in Proceedings of the 6th International
Workshop on Compound-Nuclear Reactions and Related Topics
CNR*18, Springer Proceedings in Physics, edited by J. Escher,
Y. Alhassid, L. A. Bernstein, D. Brown, C. Fröhlich, P. Talou,
and W. Younes (Springer, Berlin, 2020).

[38] W. Reisdorf, J. P. Unik, H. C. Griffin, and L. E. Glendenin, Fis-
sion fragment K X-ray emission and nuclear charge distribution
for thermal neutron fission of 233U, 235U, 239Pu and spontaneous
fission of 252Cf, Nucl. Phys. A 177, 337 (1971).

[39] W. Lang, H.-G. Clerc, H. Wohlfarth, H. Schrader, and K.-H.
Schmidt, Nuclear charge and mass yields for 235U(nth, f ) as a
function of the kinetic energy of the fission products, Nucl.
Phys. A 345, 34 (1980).

[40] B. Ehrenberg and S. Amiel, Independent yields of krypton and
xenon isotopes in thermal-neutron fission of 235U. Observation
of an odd-even effect in the element yield distribution, Phys.
Rev. C 6, 618 (1972).

[41] S. Amiel and H. Feldstein, Odd-even systematics in neutron
fission yields of 233U and 235U, Phys. Rev. C 11, 845 (1975).

[42] G. Mariolopoulos, C. Hamelin, J. Blachot, J. P. Bocquet, R.
Brissot, J. Crançon, H. Nifenecker, and C. Ristori, Charge dis-
tributions in low-energy nuclear fission and their relevance to
fission dynamics, Nucl. Phys. A 361, 213 (1981).

[43] J. P. Bocquet and R. Brissot, Mass, energy and nuclear charge
distribution of fission fragments, Nucl. Phys. A 502, 213 (1989).

[44] F. Gönnenwein, On the notion of odd-even effects in the yields
of fission fragments, Nucl. Instrum. Methods in Phys. Res. A
316, 405 (1992).

[45] K.-H. Schmidt, S. Steinhäuser, C. Böckstiegel, A. Grewe, A.
Heinz, A. R. Junghans, J. Benlliure, H.-G. Clerc, M. de Jong,
J. Müller, M. Pfützner, and B. Voss, Relativistic radioactive
beams: A new access to nuclear-fission studies, Nucl. Phys. A
665, 221 (2000).

[46] D. Ramos, M. Caamano, F. Farget, C. Rodriguez-Tajes, L.
Audouin, J. Benlliure, E. Casarejos, E. Clement, D. Cortina,
O. Delaune, X. Derkx, A. Dijon, D. Dore, B. Fernandez-
Dominguez, G. de France, A. Heinz, B. Jacquot, A. Navin, C.
Paradela, M. Rejmund et al., Isotopic fission-fragment distribu-
tions of 238U, 239Np, 240Pu, 244Cm, and 250Cf produced through
inelastic scattering, transfer, and fusion reactions in inverse
kinematics, Phys. Rev. C 97, 054612 (2018).

[47] A. Chatillon, J. Taieb, H. Alvarez-Pol, L. Audouin, Y. Ayyad,
G. Belier, J. Benlliure, G. Boutoux, M. Caamano, E. Casarejos,
D. Cortina-Gil, A. Ebran, F. Farget, B. Fernandez-Dominguez,
T. Gorbinet, L. Grente, A. Heinz, H. T. Johansson, B. Jurado, A.
Kelic-Heil et al., Experimental study of nuclear fission along the
thorium isotopic chain: From asymmetric to symmetric fission,
Phys. Rev. C 99, 054628 (2019).

[48] C. Wagemans, E. Allaert, A. Deruytter, R. Barthelemy, and P.
Schillebeeckx, Comparison of the energy and mass characteris-
tics of the 239Pu(nth, f ) and the 240Pu(sf) fragments, Phys. Rev.
C 30, 218 (1984).

[49] P. Geltenbort, F. Gönnenwein, and A. Oed, Precision mea-
surements of mean kinetic energy release in thermal-neutron-
induced fission of 233U, 235U and 239Pu, Radiat. Eff. 93, 57
(1986).

[50] P. Schillebeeckx, C. Wagemans, A. J. Deruytter, and R.
Barthélémy, Comparative study of the fragments’ mass and
energy characteristics in the spontaneous fussion of 238Pu, 240Pu

054602-11

https://doi.org/10.1103/PhysRevC.96.024319
https://doi.org/10.1103/PhysRevC.99.024611
https://doi.org/10.1103/PhysRevC.99.054613
https://doi.org/10.1103/PhysRevLett.105.192701
https://doi.org/10.1103/PhysRevC.92.011602
https://doi.org/10.1103/PhysRevC.100.024612
https://doi.org/10.1103/PhysRevC.103.034617
https://doi.org/10.1016/0375-9474(84)90240-9
https://doi.org/10.3389/fphy.2020.00233
https://doi.org/10.1103/PhysRevC.66.014310
https://doi.org/10.1103/PhysRevC.99.014618
https://doi.org/10.1016/0370-1573(75)90012-5
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1088/0305-4470/3/1/002
https://doi.org/10.1103/PhysRevC.90.054305
https://doi.org/10.1016/0375-9474(71)90297-1
https://doi.org/10.1016/0375-9474(80)90411-X
https://doi.org/10.1103/PhysRevC.6.618
https://doi.org/10.1103/PhysRevC.11.845
https://doi.org/10.1016/0375-9474(81)90477-2
https://doi.org/10.1016/0375-9474(89)90663-5
https://doi.org/10.1016/0168-9002(92)90928-W
https://doi.org/10.1016/S0375-9474(99)00384-X
https://doi.org/10.1103/PhysRevC.97.054612
https://doi.org/10.1103/PhysRevC.99.054628
https://doi.org/10.1103/PhysRevC.30.218
https://doi.org/10.1080/00337578608207429


VERRIERE, SCHUNCK, AND REGNIER PHYSICAL REVIEW C 103, 054602 (2021)

and 242Pu and in the thermal-neutron-induced fission of 239Pu,
Nucl. Phys. A 545, 623 (1992).

[51] K. Nishio, Y. Nakagome, I. Kanno, and I. Kimura, Measure-
ment of fragment mass dependent kinetic energy and neutron
multiplicity for thermal neutron induced fission of plutonium-
239, J. Nucl. Sci. Technol. 32, 404 (1995).

[52] C. Tsuchiya, Y. Nakagome, H. Yamana, H. Moriyama,
K. Nishio, I. Kanno, K. Shin, and I. Kimura, Simulta-
neous measurement of prompt neutrons and fission frag-
ments for 239Pu(nth,f), J. Nucl. Sci. Technol. 37, 941
(2000).

[53] R. Muller, A. A. Naqvi, F. Kappeler, and F. Dickmann, Frag-
ment velocities, energies, and masses from fast neutron induced
fission of 235U, Phys. Rev. C 29, 885 (1984).

[54] G. Simon, J. Trochon, F. Brisard, and C. Signarbieux, Pulse
height defect in an ionization chamber investigated by cold
fission measurements, Nucl. Instrum. Methods Phys. Res., Sect.
A 286, 220 (1990).

[55] S. Zeynalov, V. I. Furman, F. J. Hambsch, M. Florec, V. Y.
Konovalov, V. A. Khryachkov, and Y. S. Zamyatnin, Investi-
gation of mass-TKE distributions of fission fragments from the
235U(n, f )-reaction in resonances, in Proceedings of the 13th
International Seminar on Interaction of Neutrons with Nuclei
(ISINN-13) - Neutron Spectroscopy, Nuclear Structure, Related
Topics (Joint Institute for Nuclear Research, Dubna, Russia,
2006), Vol. 13, pp. 351–359.

[56] C. Romano, Y. Danon, R. Block, J. Thompson, E. Blain, and
E. Bond, Fission fragment mass and energy distributions as a
function of incident neutron energy measured in a lead slowing-
down spectrometer, Phys. Rev. C 81, 014607 (2010).

[57] A. Gook, F.-J. Hambsch, S. Oberstedt, and M. Vidali, Prompt
neutrons in correlation with fission fragments from 235U(n, f ),
Phys. Rev. C 98, 044615 (2018).

[58] W. Younes and D. Gogny, Nuclear Scission and Quantum Lo-
calization, Phys. Rev. Lett. 107, 132501 (2011).

[59] J. Sadhukhan, C. Zhang, W. Nazarewicz, and N. Schunck, For-
mation and distribution of fragments in the spontaneous fission
of 240Pu, Phys. Rev. C 96, 061301(R) (2017).

[60] B. Becker, P. Talou, T. Kawano, Y. Danon, and I. Stetcu, Monte
Carlo Hauser-Feshbach predictions of prompt fission γ rays:
Application to nth + 235U, nth + 239Pu, and 252Cf (sf), Phys. Rev.
C 87, 014617 (2013).

[61] A. J. M. Plompen, O. Cabellos, C. De Saint Jean, M. Fleming,
A. Algora, M. Angelone, P. Archier, E. Bauge, O. Bersillon,
A. Blokhin, F. Cantargi, A. Chebboubi, C. Diez, H. Duarte,
E. Dupont, J. Dyrda, B. Erasmus, L. Fiorito, U. Fischer, D.
Flammini et al., The joint evaluated fission and fusion nuclear
data library, JEFF-3.3, Eur. Phys. J. A 56, 181 (2020).

[62] A. C. Wahl, Systematics of fission-product yields, Los Alamos
National Laboratory Technical Report No. LA-13928, 2002
(unpublished).

[63] C. Schmitt, A. Guessous, J. P. Bocquet, H. G. Clerc, R. Brissot,
D. Engelhardt, H. R. Faust, F. Gönnenwein, M. Mutterer, H.
Nifenecker, J. Pannicke, C. Ristori, and J. P. Theobald, Fission
yields at different fission-product kinetic energies for thermal-
neutron-induced fission of 239Pu, Nucl. Phys. A 430, 21 (1984).

[64] A. Bail, O. Serot, L. Mathieu, O. Litaize, T. Materna, U. Koster,
H. Faust, A. Letourneau, and S. Panebianco, Isotopic yield mea-
surement in the heavy mass region for 239Pu thermal neutron
induced fission, Phys. Rev. C 84, 034605 (2011).

[65] W. Nörenberg, Theory of mean primary charge distribution
in low energy fission of even-even nuclei, Z. Phys. 197, 246
(1966).

[66] M. Caamano, F. Farget, O. Delaune, K. H. Schmidt, C. Schmitt,
L. Audouin, C. O. Bacri, J. Benlliure, E. Casarejos, X. Derkx, B.
Fernandez-Dominguez, L. Gaudefroy, C. Golabek, B. Jurado,
A. Lemasson, D. Ramos, C. Rodriguez-Tajes, T. Roger, and A.
Shrivastava, Characterization of the scission point from fission-
fragment velocities, Phys. Rev. C 92, 034606 (2015).

[67] H. Naik, S. P. Dange, R. J. Singh, and S. B. Manohar, Sys-
tematics of charge distribution studies in low-energy fission of
actinides, Nucl. Phys. A 612, 143 (1997).

[68] H. Naik, S. P. Dange, and A. V. R. Reddy, Charge distribution
studies in the odd-Z fissioning systems, Nucl. Phys. A 781, 1
(2007).

[69] W. Younes and D. Gogny, Fragment yields calculated in a time-
dependent microscopic theory of fission, Lawrence Livermore
National Laboratory Technical Report No. LLNL-TR-586678,
2012 (unpublished).

[70] A. Zdeb, A. Dobrowolski, and M. Warda, Fission dynamics of
252Cf, Phys. Rev. C 95, 054608 (2017).

[71] P. Jaffke, P. Möller, P. Talou, and A. J. Sierk, Hauser-Feshbach
fission fragment de-excitation with calculated macroscopic-
microscopic mass yields, Phys. Rev. C 97, 034608 (2018).

[72] D. Lacroix and S. Ayik, Counting statistics in finite fermi sys-
tems: Illustrations with the atomic nucleus, Phys. Rev. C 101,
014310 (2020).

[73] K. T. R. Davies and J. R. Nix, Calculation of moments, po-
tentials, and energies for an arbitrarily shaped diffuse-surface
nuclear density distribution, Phys. Rev. C 14, 1977 (1976).

[74] N. Dubray and D. Regnier, Numerical search of discontinu-
ities in self-consistent potential energy surfaces, Comput. Phys.
Commun. 183, 2035 (2012).

[75] R. Bernard, H. Goutte, D. Gogny, and W. Younes, Microscopic
and nonadiabatic Schrödinger equation derived from the gen-
erator coordinate method based on zero- and two-quasiparticle
states, Phys. Rev. C 84, 044308 (2011).

[76] N. Schunck, D. Duke, and H. Carr, Description of induced
nuclear fission with Skyrme energy functionals. II. Finite tem-
perature effects, Phys. Rev. C 91, 034327 (2015).

[77] K. Dietrich, J.-J. Niez, and J.-F. Berger, Microscopic transport
theory of nuclear processes, Nucl. Phys. A 832, 249 (2010).

054602-12

https://doi.org/10.1016/0375-9474(92)90296-V
https://doi.org/10.1080/18811248.1995.9731725
https://doi.org/10.1080/18811248.2000.9714976
https://doi.org/10.1103/PhysRevC.29.885
https://doi.org/10.1016/0168-9002(90)90224-T
https://doi.org/10.1103/PhysRevC.81.014607
https://doi.org/10.1103/PhysRevC.98.044615
https://doi.org/10.1103/PhysRevLett.107.132501
https://doi.org/10.1103/PhysRevC.96.061301
https://doi.org/10.1103/PhysRevC.87.014617
https://doi.org/10.1140/epja/s10050-020-00141-9
https://doi.org/10.1016/0375-9474(84)90191-X
https://doi.org/10.1103/PhysRevC.84.034605
https://doi.org/10.1007/BF01325942
https://doi.org/10.1103/PhysRevC.92.034606
https://doi.org/10.1016/S0375-9474(97)80002-4
https://doi.org/10.1016/j.nuclphysa.2006.10.082
https://doi.org/10.1103/PhysRevC.95.054608
https://doi.org/10.1103/PhysRevC.97.034608
https://doi.org/10.1103/PhysRevC.101.014310
https://doi.org/10.1103/PhysRevC.14.1977
https://doi.org/10.1016/j.cpc.2012.05.001
https://doi.org/10.1103/PhysRevC.84.044308
https://doi.org/10.1103/PhysRevC.91.034327
https://doi.org/10.1016/j.nuclphysa.2009.11.004

