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on relativistic continuum Hartree-Bogoliubov calculations
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In this paper we study mass relations of mirror nuclei in terms of Coulomb energies calculated by the micro-
scopic relativistic continuum Hartree-Bogoliubov theory. An additional term corresponding to the Nolen-Schiffer
anomaly is assumed to take the same form as the well-known empirical formula. The resultant root-mean-square
deviations of these mass relations are typically less than 100 keV. Based on these relations, 61 unknown
proton-rich nuclear masses are predicted for 18 � A � 87 with positive two-proton separation energies and are
tabulated in the Supplemental Material of this paper.
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I. INTRODUCTION

Nuclear mass M(N, Z ) (where N is the neutron number and
Z is the proton number) is one of the most fundamental quan-
tities in both nuclear physics and astrophysics [1,2]. Many
theoretical models and approaches are developed to describe
the state-of-the-art atomic-mass evaluation database and to
predict unknown masses. One of the main types are called
global models, such as Duflo-Zuker model [3], the finite-range
droplet model (FRDM) [4,5], the improved Weizsäcker mass
formula [6], and the covariant density-functional theory [7–9].

Besides these theoretical efforts, various mass relations
have also been investigated, and one of the most accurate
types is the relations of mirror nuclei [10–16], based on the
isospin symmetry of the nucleon-nucleon interaction. With
this assumption, the mass difference between two mirror nu-
clei is dominated by the Coulomb-energy difference [17–20],
denoted by

δm(K − k, K ) ≡ Ec(K − k, K ) − Ec(K, K − k), (1)

and the neutron-proton difference in atomic mass, viz.,

kδMnp ≡ k(mn − mp − me) = 0.7823k MeV. (2)

In Eq. (1), Ec(K − k, K ) represents the Coulomb energy of
the nucleus with K − k neutrons and K protons, and k rep-
resents the difference of proton number (or neutron number,
equivalently) for the mirror nuclei. mn, mp, and me are the
neutron, proton and electron masses, respectively. Note that
the electron mass is included in δMnp because the database
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of nuclear masses is tabulated by using atomic masses, and a
neutral atom with a nucleus of K protons and K − k neutrons
has additionally k electrons more than a neutral atom with a
nucleus of K − k protons and K neutrons. We define the mass
difference between two mirror nuclei as

�m(K − k, K ) ≡ M(K − k, K ) − M(K, K − k). (3)

By assuming isospin symmetry, we obtain

�m(K − k, K ) = δm(K − k, K ) − kδMnp. (4)

In recent years, we studied the patterns exhibited by mass
differences of mirror nuclei. In Ref. [13], the relation of
Eq. (4) was exploited with the simple assumption that the
Coulomb energy of a nucleus could be well represented by
a uniformly charged sphere, with the corresponding Coulomb
energy given by

Ec(K − k, K ) = acK2A−1/3, (5)

where A = 2K − k is the mass number of the nucleus, and
ac (≈0.72 MeV) is the strength parameter of the Coulomb
energy. By using Eq. (1) and the empirical Coulomb energy
in Eq. (5), the mass difference between two mirror nuclei is
reduced to

�m(K − k, K ) = ackA2/3 − kδMnp. (6)

By using ac and δMnp as adjustable parameters, the resultant
root-mean-square deviation (RMSD) values are 126, 221, 289,
and 237 keV for k = 1–4, respectively. On the other hand, the
optimized value of the parameter δMnp is close to 1.5 MeV,
which is much larger than its expected value (0.782 MeV) in
Eq. (2). This anomaly is well remedied by considering the
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self-energy and exchange terms [denoted E (self)
c and E (exc)

c ,
respectively] in the Coulomb energy [15,20],

E (self )
c = acKA−1/3, E (exc)

c = 5
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Accordingly, we obtain a more sophisticated formula for
Coulomb energy,

Ec(K − k, K ) = ac
K (K − 1)
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Substituting the above Coulomb energy into Eq. (1), one ob-
tains

δm(K − k, K ) = acA− 1
3 [K (K − 1) − (K − k)(K − k − 1)]
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To facilitate our discussion, in this paper we denote the value
of δm such obtained by δ

(emp)
m , and denote the corresponding

results based on δ
(emp)
m by using the subscript “(emp).” In the

last step of the above relation for δ
(emp)
m , we present the Taylor

expansion to the first order of k/K . Because K/A ≈ 1/2 for
small k, the second term equals approximately

5

3

(
3

2π

) 2
3

(1/2)
1
3 ack ≡ Ck, C = 0.808ac.

The form of δm defined in Eq. (1) is replaced by

δ(emp)
m (K − k, K ) = ack(A − 1)A− 1

3 − Ck, (9)

and accordingly the mass relation of two mirror nuclei is given
by

�(emp)
m (K − k, K ) = ack(A − 1)A− 1

3 − (C + δMnp)k. (10)

Thus one sees that consideration of the exchange term for
protons leads to a constant C, with C = 0.808ac = 0.808 ×
0.72 = 0.582 MeV, which well accounts for the large dis-
agreement between the optimized δMnp in Ref. [13] and its ex-
pectation value in Eq. (2). By optimizing ac and C with respect
to the Atomic Mass Evaluation (AME2016) database [21]
(with the exception of mass for the 44V nucleus which was
recently reexamined in Refs. [22,23]), one obtains a RMSD of
151 keV for nuclei with proton number larger than eight. The
optimized ac is ≈700 keV, which is slightly smaller than and
yet close to its conventional value, 720 keV; and the optimized
value of C is ≈650 keV, which is slightly larger than (but
reasonably consistent with) its expected value, 582 keV.

In Refs. [14,15], the mass relations of two mirror nuclei
were improved by associating two pairs of mirror nuclei. We
define

�n(K − k, K ) ≡ M(K − k, K ) − M(K − k + 1, K )

− M(K, K − k) + M(K, K − k + 1), (11)

�p(K − k, K ) ≡ M(K − k, K ) − M(K − k, K − 1)

− M(K, K − k) + M(K − 1, K − k). (12)

Clearly, one has

�n(K − k, K ) = δn(K − k, K ) − δMnp, (13)

�p(K − k, K ) = δp(K − k, K ) − δMnp, (14)

where

δn(K − k, K ) ≡ δm(K − k, K ) − δm(K − k + 1, K ), (15)

δp(K − k, K ) ≡ δm(K − k, K ) − δm(K − k, K − 1). (16)

Assuming δ
(emp)
m in Eq. (9), one has

�(emp)
n (K − k, K )

= ac
[
k(A − 1)A− 1

3 − (k − 1)A(A + 1)−
1
3
]

− (C + δMnp), (17)

�(emp)
p (K − k, K )

= ac
[
k(A − 1)A− 1

3 − (k − 1)(A − 2)(A − 1)−
1
3
]

− (C + δMnp). (18)

The main advantage of these two mass relations (17) and
(18) in comparison with the �m relation in Eq. (10) is that
the magnitudes of Coulomb-energy differences, δn(K − k, K )
and δp(K − k, K ), are much smaller than δm(K − k, K ) in the
�m relation. This substantially reduces the uncertainties of
the Coulomb energy which is calculated based on empirical
formulas. The �n and �p relations in Eqs. (17) and (18) were
exemplified by using the AME2016 database [21]. The χ2

fitting of parameters ac and C for these two relations yielded
the RMSDs of 112 and 116 keV, respectively, for nuclei with
proton number K larger than 8. If a subtle odd-even staggering
of the Coulomb energy originated from the nuclear pairing
correlation is considered, the RMSD values are reduced to 82
and 94 keV, respectively [15]. In Ref. [16] the mass relations
are further improved by employing the so-called correlation
correction, which considers both the pairing and shell effects;
and the RMSD values of such improved �n and �p relations
are reduced to 51 keV.

The efforts in Refs. [13–16] are all based on Eq. (5)
or Eq. (8), which are the empirical Coulomb energies. It
is therefore the purpose of this paper to examine our mass
relations of mirror nuclei by employing more sophisticated
and microscopically evaluated Coulomb energies. Here we
adopt the results from the state-of-the-art relativistic contin-
uum Hartree-Bogoliubov (RCHB) calculations [9]. Based on
the covariant density functional, the RCHB approach solves
the relativistic Hartree-Bogoliubov equations in the coordi-
nate representation in the presence of the continuum [24]. In
the RCHB mass table calculations [9], one of the most suc-
cessful relativistic energy density functionals, PC-PK1 [25],
was adopted. For the particle-particle channel, the density-
dependent zero-range force is used and the pairing strength
is fixed to be V0 = −342.5 MeV fm3 for both neutron and
proton. The box size Rbox = 20 fm, the mesh size �r = 0.1
fm, and the angular-momentum cutoff Jmax = 19/2h̄, which
can guarantee a good convergence, are adopted, respectively.

This paper is organized as follows. In Sec. II, we perform
a systematic study of the RCHB-based Coulomb energies in
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terms of the �m, �n and �p relations; in Sec. III, we investi-
gate the predictive power of the RCHB-based mass relations
through extrapolations from a previous AME database to the
current AME2016 database, and compare the theoretical pre-
dictions in this article with our former results. Our summary
and conclusion are given in Sec. IV.

II. MASS RELATIONS WITH RCHB-BASED
COULOMB ENERGIES

The Coulomb-energy differences between two mirror nu-
clei, δm, defined in Eq. (1), and those among four mirror
nuclei, δn and δp, defined in Eqs. (15) and (16), are calculated
by using the RCHB Coulomb energies. Based on these results
and the constant δMnp, as in Eqs. (4), (13), and (14), we evalu-
ate �m, �n, and �p values for 1 � k � 4 and K � 8 + k and
plot them in Fig. 1 by using solid symbols. As a comparison,
we extract �m, �n, and �p values based on their definitions,
i.e., Eqs. (3), (11), and (12) and the AME2016 database and
plot them by using open symbols in Fig. 1.

From Fig. 1, one sees that the evolution tendency of the
�m, �n, and �p based on the RCHB calculations agree very
well with those extracted by using Eqs. (3), (11), and (12)
and the AME2016 database, and that, on the other hand, the
RCHB results are systematically lower than those extracted
from experimental data by 9.3%, 9.6%, and 9.6% for �m,
�n, and �p, respectively. In Fig. 1 we also plot the theoret-
ical �

(emp)
m , �

(emp)
n , and �

(emp)
p calculated based on empirical

Coulomb energies, i.e., Eqs. (10), (17), and (18), by using
solid lines in black; one sees that these empirical values agree
very well with those extracted from experimental data.

It is interesting to look at whether the difference of �m,
�n, and �p based on the RCHB calculations from those ex-
tracted from experimental data is related to the Nolen-Schiffer
anomaly. Toward this end, we evaluate relative deviations
between RCHB-based nuclear charge radii [9] and corre-
sponding experimental values compiled in Ref. [26],

δR = |Rexpt − Rth|
Rexpt

.

The resultant δR for nuclei with Z � 50 is only 0.53%.
Therefore, the RCHB calculations reproduce nuclear charge
radii very well, and meanwhile the Coulomb energies are
sizably underestimated. This pattern is usually attributed to
the Nolen-Schiffer anomaly [20,27] and was studied in terms
of isospin-nonconserving interactions [28,29].

We now note on the advantage of using the RCHB-
based Coulomb energy instead of empirical Coulomb energy
in the mass relations of mirror nuclei. In Fig. 2, we plot
�m(K − k, K ) − �m(K − 1 − k, K − 1) extracted from the
experimental data (with k = 1) versus K by solid balls in
black. The results calculated by using empirical �m [Eq. (10)]
are plotted by using dotted lines in green, and those extracted
from the RCHB calculations are plotted by using solid squares
in blue. According to our calculations shown in Fig. 2, the
results extracted from experimental data exhibit odd-even fea-
tures with fluctuations, which originate from pairing and shell
effects. The RCHB calculation could properly describe such

FIG. 1. The values of �m and �p (in units of MeV) versus
proton number K , and �n (in units of MeV) versus neutron number
K − k. �m = δm(K − k, K ) − kδMnp, �n = δn(K − k, K ) − δMnp,
and �p = δp(K − k, K ) − δMnp, where δm(K − k, K ) ≡ Ec(K −
k, K ) − Ec(K, K − k). Solid symbols are based on the theoretical
Ec values of the RCHB calculations, and the hollow symbols are
based on Eq. (3), in which the masses are taken from the AME2016
database. The solid line in black are calculated by using Eqs. (10),
(17), and (18).

features except slight discrepancies at K = 16–20 and K =
29–30. The results extracted from the empirical Coulomb
energy cannot reproduce this subtle pattern. To make good
use of this advantage, we introduce an additional term which
assumes the same form of the empirical Coulomb energy
formula (but a much smaller value of ac, denoted a′

c for
discrimination) to compensate for the systematic deviations
of the RCHB-calculated �m, �n, and �p from experimental
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FIG. 2. Difference between �m(K − k, K ) and its neighbor with
same k and adjacent K , i.e., �m(K − 1 − k, K − 1), for k = 1 case.
Results extracted from experimental masses are denoted by solid
balls in black. The green line and blue squares are calculated by using
empirical formula of Eq. (10), and RCHB-based Coulomb energy of
Eq. (19), respectively.

data, namely,

�m(K − k, K ) = E ′
c(K − k, K ) − E ′

c(K, K − k)

+ a′
ck(A − 1)A−1/3 − C′k, (19)

�n(K − k, K ) = E ′
c(K − k, K ) − E ′

c(K − k + 1, K )

− E ′
c(K, K − k) + E ′

c(K, K − k + 1)

+ a′
c

[
k(A − 1)A− 1

3 − (k − 1)A(A + 1)−
1
3
]

−C′, (20)

�p(K − k, K ) = E ′
c(K − k, K ) − E ′

c(K − k, K − 1)

− E ′
c(K, K − k) + E ′

c(K − 1, K − k)

+ a′
c[k(A − 1)A− 1

3

− (k − 1)(A − 2)(A − 1)−
1
3 ] − C′. (21)

In Eqs. (19)–(21), E ′
c represents the RCHB-based Coulomb

energy [9], and a′
c and C′ are adjustable parameters corre-

sponding to ac and (C + δMnp) in Eqs. (3), (9), and (18),
respectively. The values of a′

c and C′ are optimized by a
χ2 fitting of the AME2016 database [21] for �m, �n, and
�p relations; the resultant RMSD values for the relations of
(19)–(21) are 109, 88, and 105 keV, respectively. In Fig. 3
we present deviations of these calculated �m, �n, and �p

results from those extracted from experimental data. One sees
that most of the deviations are below 200 keV, albeit with a
number of exceptions, among which �m(26, 29), �m(35, 36),
�m(37, 38), �n(35, 36), �n(37, 38), �p(18, 22), �p(26, 29),
�p(35, 36), and �p(37, 38) have large uncertainties originat-
ing from experimental uncertainties for 40

22Ti18, 55
29Cu26, 71

36Kr35,
and 75

38Sr37, whose experimental uncertainties are 160, 156,
129, and 220 keV, respectively.

If one examines the results with large deviations, one sees
systematic and large deviation at the proton shell Z = 28.

FIG. 3. Deviations (in units of MeV) of our theoretical �m, �n,
and �p in Eqs. (19)–(21) from those extracted from the AME2016
database [21] by using Eqs. (3), (11), and (12), except that the mass
of 44V is taken from Ref. [22]. The error bars corresponds to uncer-
tainties in experimental data. The results affected by the anomaly of
RCHB-calculated Coulomb energies at proton numbers K = 28 are
denoted by using gray shadows and the corresponding results with
the shell correction are plotted by using open squares and triangles.

More specifically, large deviations arise for all �m with proton
number from 28 to 29, for all �n with proton number from 27
to 28 and for all �p with proton number from 28 to 29. These
� values involve mirror nuclei for which the proton-rich nu-
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TABLE I. Optimized parameters in Eqs. (19)–(21) and the cor-
responding RMSD values for nuclei N, Z � 8. N is the number of
�. a′

c, C′ are parameters in Eqs. (19)–(21). The RMSD value of �m,
�n, and �p corresponds to σm in Eq. (25), σn in Eq. (26), and σp

in Eq. (27), respectively. 200 keV is added to the RCHB-calculated
Coulomb energies E ′

c of nuclei with proton number Z > 28 as an
additional shell effect at Z = 28 (see text). The AME2016 [21]
database (except that the mass of 44V is taken from Ref. [22]) is used
in the χ 2 fitting.

Type N a′
c (MeV) C′ (MeV) RMSD (MeV)

�m 75 0.047(2) 0.641(23) 0.097
�n 75 0.046(3) 0.637(38) 0.084
�p 75 0.045(4) 0.606(46) 0.092

cleus has proton number larger than 28 and neutron number
�28, and the corresponding neutron-rich nucleus has proton
number �28 and neutron number >28; namely, the last proton
of the proton-rich partner is in the p f shell, and that of the
proton-deficient partner is in the f 7

2
shell, while the last neu-

tron of the proton-rich partner is in the f 7
2

shell while that of
the proton-deficient partner is in the p f shell. For these cases,
theoretical values of �m with proton number K > 28 and neu-
tron number K − k � 28, �n with K − k = 28, and �p with
K = 29, are systematically smaller than corresponding results
extracted from experimental data, by about 130–430 keV.
The relevant results are plotted in shadows in Fig. 3. One
observes a consistent pattern if one uses the RCHB-calculated
masses in Ref. [9] and extracts the �m, �n, and �p, which
yield deviations from 310 to 720 keV for nuclei in the same
region, in comparison with those extracted from experimental
data. To compensate for this systematic deviation for these
nuclei, we add an artificial constant (200 keV) to the RCHB
Coulomb energies E ′

c with Z > 28. The deviations with this
revision of these corresponding � from those extracted from
experimental data are plotted in Fig. 3 (denoted by using open
symbols). The optimized a′

c, C′
i as well as the resultant RMSD

values are given in Table I. One sees that the three sets of a′
c

and C′
i are very close to each other (except that the C′ in the

�p relation is slightly smaller). All of these three relations
yield RMSD less than 100 keV and are competitive with the
precision in Ref. [15].

In this work we have also studied the relations of mirror
nuclei based on a few other calculations. Both the resultant
parameters and the RMSD values of those for other theo-
retical efforts are close to the results based on the RCHB
calculations (yet the RMSD values are slightly larger than
the RCHB calculations [9]) adopted in this paper. By using
the direct term of Coulomb energy from the RCHB calcula-
tions, the optimized a′

c = 43 keV, C′ = 980 keV, and RMSD
values range from 93 to 113 keV; by using the Coulomb
energy extracted from the FRDM2012 database [5], we obtain
a′

c = 45 keV, and C′ = 1030 keV, and RMSD values vary be-
tween 139 and 149 keV; by using Coulomb energies extracted
from the Gogny-Hartree-Fock-Bogoliubov method (named
the AMEDEE database) [30], a′

c = 15 keV, C′ = 600 keV, and
RMSD values range from 116 to 150 keV.

III. PREDICTIVE POWER OF RCHB-BASED MASS
RELATIONS

The predictive power of the mass relations for mirror nuclei
is demonstrated by numerical experiments of extrapolation
from the AME2003 database [31] to the AME2016 database.
The procedure of our extrapolation is as follows: First, we
optimize the �m, �n, and �p relations by using the AME2003
database, and obtain optimal parameters a′

c and C′, as well as
the RMSD values, for Eqs. (19)–(21). For short, we denote
the unknown mass (to be predicted) of proton-rich nucleus
with K protons and K − k neutrons by using M (m)

k,K , M (p)
k,K ,

and M (n)
k,K , based on Eqs. (19)–(21). The predicted mass of

proton-rich nucleus with K protons and K − k neutrons is
given by

M (m)
k,K = M(K, K − k) + �m, (22)

M (n)
k,K = M(K, K − k) + M(K − k + 1, K )

− M(K, K − k + 1) + �n, (23)

M (p)
k,K = M(K, K − k) + M(K − k, K − 1)

− M(K − 1, K − k) + �p, (24)

where M(N, Z ) is experimental mass of nucleus with N
neutrons and Z protons in the AME2003; however, if the
experimental uncertainty is larger than our theoretical uncer-
tainty, M(N, Z ) is replaced by the corresponding theoretical
value. Corresponding to Eqs. (22)–(24), theoretical uncertain-
ties of our predicted mass with proton number K and neutron
number K − k, denoted by σ

(m)
k,K , σ

(n)
k,K , and σ

(p)
k,K , are defined,

respectively, as follows:

(
σ

(m)
k,K

)2 = σ 2(K, K − k) + σ 2
m, (25)

(
σ

(n)
k,K

)2 = σ 2(K, K − k) + σ 2(K − k + 1, K )

+ σ 2(K, K − k + 1) + σ 2
n , (26)

(
σ

(p)
k,K

)2 = σ 2(K, K − k) + σ 2(K − k, K − 1)

+ σ 2(K − 1, K − k) + σ 2
p , (27)

where σ (N, Z ) on the right-hand side in the above definitions
corresponds to the uncertainty of M(N, Z ) (which is avail-
able), σm, σn, and σp are the RMSD values of the �m, �n,
and �p relations obtained in the optimization process in the
first step.

Our numerical experiment of extrapolation from the
AME2003 database is carried out by recursive application of
the above process. In this proton-rich region, there are thirteen
masses not accessible in the AME2003 database but com-
piled in the AME2016 database. The RMSD of our predicted
masses from experimental data in the AME2016 database for
these thirteen nuclei is 107, 88, and 83 keV, individually for
M (m), M (n), and M (p), respectively; one sees that the latter two
approaches is more accurate than those in previous extrapo-
lations: for the same set of nuclei, the RMSD is 351 keV in
Ref. [13], 102 keV in Ref. [14], and 112 keV in Ref. [15].
One sees the advantage of the extrapolations in this work
because the predicted M (n) and M (p) in terms of Eqs. (19)–(21)
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FIG. 4. Deviations (in unit of MeV) of masses extrapolated
based on the AME2003 database [31], from those compiled in the
AME2016 database [21]. The uncertainty of experimental database
are denoted by using shadows, and theoretical uncertainties of our
extrapolated masses are plotted by using error bars.

are more consistent with experimental data than previous pre-
dictions.

Because the RMSD values of predicted M (n) and M (p) are
considerably smaller than that of M (m), our final predicted
value of the mass for the nucleus with proton number K and
neutron number K − k is taken to be the statistical average of
M (n) and M (p), viz.,

M (pred)
k,K =

(
1

σ
(n)
k,K

)2
M (n)

k,K +
(

1
σ

(p)
k,K

)2
M (p)

k,K(
1

σ
(n)
k,K

)2
+

(
1

σ
(p)
k,K

)2 , (28)

and theoretical uncertainty of our predicted mass of the nu-
cleus with proton number K and neutron number K − k is
correspondingly given by

σ
(pred)
k,K

2 = 1(
1

σ
(n)
k,K

)2
+

(
1

σ
(p)
k,K

)2 . (29)

The deviation of our predicted results for nuclear masses
which were not available in the AME2003 database, from
those compiled in the AME2016 database, is plotted in Fig. 4.
One sees that most deviations of our predicted masses from
experimental data are well below 100 keV, except for 55

29Cu26,
63
32Ge31, and 67

34Se33. The final RMSD value of our predicted
masses for these thirteen nuclei is 83 keV from those in the
AME2016 database.

Because Eqs. (19)–(21) are remarkably accurate and, fur-
thermore, preferable in extrapolations, it is of interest to make
use of these formulas to extrapolate the AME2016 database
and to predict unknown masses of proton-rich nuclei with Z >

N . According to our extrapolated masses, sixty-one nuclei
with 18 � A � 87, Z > N , and masses not accessible in the
AME2016 database, are predicted to have positive two-proton
separation energies. We present our predicted masses in the
Supplemental Material of this paper [32].

Finally, we present a comparison of the predicted masses
in this work with those in Ref. [15]. In Fig. 5(a), we plot

FIG. 5. Deviations (in units of MeV) of our predicted results
from those predicted in Ref. [15]. (a) Nuclear masses, (b) single-
proton separation energies, and (c) two-proton separation energies.
The vertical axis corresponds predicted results of Ref. [15] subtracted
by those predicted in this paper, with the uncertainty (error bar) taken
to be the root of the squared sum of two theoretical uncertainties,
one from this work and the other from Ref. [15]. One sees that the
consistence between two predictions are good; one also sees that
binding energies predicted in this work are very slightly larger [see
panel (a)] than those in Ref. [15].

the deviations of masses predicted in this work from those
in Ref. [15], namely, M(K − k, K ) predicted in Ref. [15]
subtracted by the above M (pred)

k,K in this article. One sees that
most deviations are well below 500 keV, except for 21

13Al8,
22
13Al9, 22

14Si8, and 24
15P9, for which the number Z − N is 4–6

and the mass number is ≈20 for which case the mean-field
approach is not best applicable. The average deviation of the
predicted results from those in Ref. [15] is 170 keV; and if we
exclude these four nuclei with relatively small mass number,
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the average deviation is 135 keV. On the other hand, one sees
that predicted masses in this work are lower, on average, than
those in Ref. [15]. In Fig. 5, we also present a comparison of
our predicted one-proton with two-proton separation energies
with those based on Ref. [15]. Here the one-proton separation
energy

S1p(K − k, K ) = M(K − k, K − 1) + MH − M(K − k, K )

and the two-proton separation energy

S2p(K − k, K ) = M(K − k, K − 2) + 2MH − M(K − k, K ),

where MH is the mass of the hydrogen atom. In Figs. 5(b) and
5(c), we present the predicted S1p and S2p based on Ref. [15],
subtracted by those predicted in this work. The deviations are
≈80 and ≈140 keV, on average, for S1p and S2p, respectively.

IV. SUMMARY

To summarize, in this paper we study mass relations of mir-
ror nuclei in terms of Coulomb energies calculated by the mi-
croscopic relativistic continuum Hartree-Bogoliubov (RCHB)
theory. Systematic underestimations of mass differences be-
tween two mirror nuclei are pointed out for RCHB-based
masses, and such systematic deviations are compensated by

using the same form of empirical Coulomb energy terms. The
advantage of the RCHB-calculated Coulomb energy is that the
odd-even feature and shell effect of Coulomb energy, which
is not considered in empirical Coulomb energy formulas are
reasonably reproduced. The RMSD values in this work are
sizably below 100 keV. Numerical experiments of an extrapo-
lation from the AME2003 database to the AME2016 database
demonstrates the competitive predictive power of the mass
relations in this paper.

Based on these mass relations, we tabulate 61 unknown
masses, one-proton and two-proton separation energies, of
proton-rich nuclei with mass number 18 � A � 87, in the
Supplemental Material of this paper. The theoretical predic-
tions in this work are in general entirely consistent with the
predicted result in Ref. [15]. On the other hand, predicted
binding energies in this paper are very slightly larger, on
average, than those in previous work [15] (by 135 keV if a
very few cases with small mass number are excluded). Further
consideration of this deviation is warranted.
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