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Nuclear matter in relativistic Brueckner-Hartree-Fock theory
with Bonn potential in the full Dirac space
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Starting from the Bonn potential, the relativistic Brueckner-Hartree-Fock (RBHF) equations are solved for
nuclear matter in the full Dirac space, which provides a unique way to determine the single-particle potentials
and avoids the approximations applied in the RBHF calculations in the Dirac space with positive-energy states
(PESs) only. The uncertainties of the RBHF calculations in the Dirac space with PESs only are investigated, and
the importance of RBHF calculations in the full Dirac space is demonstrated. In the RBHF calculations in the full
Dirac space, the empirical saturation properties of symmetric nuclear matter are reproduced, and the obtained
equation of state agrees with the results based on the relativistic Green’s function approach up to the saturation
density.
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I. INTRODUCTION

The nuclear ab initio calculation, i.e., solving the nuclear
many-body system starting from the bare nucleon-nucleon
(NN) interaction, is one of the hot topics in nuclear physics
[1–6]. Due to the strong repulsive core at short distance [7],
the bare NN interaction cannot be directly applied within the
conventional mean-field or Hartree-Fock (HF) approximation.
Many methods including the Brueckner theory [8], the low
momentum NN interaction Vlow-k [9] and the similarity renor-
malization group (SRG) [10] have been proposed to deal with
the strong repulsive core. In the Brueckner theory, by sum-
ming all the ladder diagrams of the bare NN interaction and
taking into account the Pauli principle in the nuclear medium,
an effective interaction, the G matrix, is derived which incor-
porates the two-body short-range correlations induced by the
strong repulsive core.

Replacing the bare NN interaction by the G matrix, the
saturation properties of nuclear matter can be described qual-
itatively within the HF approximation [11]. However, in the
nonrelativistic framework, the saturation points of symmet-
ric nuclear matter calculated by the Brueckner-Hartree-Fock
(BHF) theory with different two-body interactions are located
on a so-called Coester line [12], which deviates systemati-
cally from the empirical values. The same is found by other
nonrelativistic ab initio methods [13]. To solve this problem,
it has been proposed to include a three-body force (TBF)
and the BHF calculations with appropriately adjusted TBFs
improve the description for the saturation properties of nuclear
matter [14,15]. On the other hand, with two-body interac-
tions only, the relativistic Brueckner-Hartree-Fock (RBHF)
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results [16] shift remarkably the saturation points close to-
wards the empirical values, in contrast with those found in the
nonrelativistic BHF theory. This can be understood by the fact
that, through virtual nucleon-antinucleon excitations in the
intermediate states (the so-called Z diagrams) [17], relativistic
effects lead to a TBF. RBHF theory has been widely applied
to nuclear matter [18–26], neutron stars [27–31], finite nuclei
[32,33], and neutron drops [34–36].

The key point in the RBHF calculations for nuclear matter
is to identify the single-particle potentials of the nucleons.
Due to the limitations of symmetries [37], the single-particle
potential operator U is generally divided into scalar and vec-
tor components. However, the effective interaction G matrix
has mixed the components through the solution of the scat-
tering equation, and prevents a straightforward extraction of
the single-particle potentials. Several methods have been pro-
posed for the determination of single-particle potentials from
the G matrix, including the momentum-independence approx-
imation [16], the projection methods [38,39], the effective
DBHF method [19,40], and the solution of the scattering equa-
tion in the full Dirac space including positive-energy states
(PESs) and negative-energy states (NESs) [41–43].

As in the nonrelativistic case, the full solution of the RBHF
equations is an iterative process. Starting from an effective
interaction G(0), which sums all the ladder diagrams with the
Dirac spinors in free space, a single-particle potential U (0)

is determined. In the second step, the single-particle ener-
gies and Dirac spinors derived from this potential are used
for the solution of the relativistic Bethe-Goldstone equation,
and a new effective interaction G(1) is found. Based on this
interaction, a new single-particle potential U (1) is determined.
This iteration goes on until the convergence is achieved. In
each iteration, for a unique determination of the single-particle
potential U , one needs the complete matrix elements of this
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operator, i.e., the matrix elements of U between PESs (U++),
as well as those between PESs and NESs (U+−), and those be-
tween NESs (U−−). The problem is that one usually calculates
the G matrix with similar codes as those for calculating the T
matrix by the solution of the relativistic scattering equation,
where only the scattering between nucleons, i.e., PESs, are
considered. This means that in each iteration only U++ is well
determined, which prevents the unique determination of U .
Therefore, in most of the RBHF calculations, U is calculated
with various approximations.

The momentum-independence approximation [16] as-
sumes that the single-particle potentials are independent of
the momentum, and the spacelike component of the vector
potential is neglected. The scalar potential and the timelike
part of the vector potential can be extracted directly from the
single-particle potential energies at two selected momenta.
However, the calculation suffers from uncertainties arising
from the arbitrary choice for these two momenta. Moreover,
this approximation fails to determine the correct behavior
of the isospin dependence of the single-particle potentials
[44,45].

In the projection methods, the G matrix elements are pro-
jected onto a complete set of five Lorentz invariant amplitudes
[38], from which the single-particle potentials are calculated
analytically. However, the choice of these Lorentz invariant
amplitudes is not unique. Different schemes of projections
have been used [38,39,46,47], which differ mainly in the
effect of the pseudoscalar meson exchange.

The effective DBHF method [19,40] suggests separating
the G matrix into the bare NN interaction V and a correlation
term �G. Then �G is parametrized in terms of a zero-
range effective interaction with density-dependent coupling
vertices. In this way, both the contributions of V and �G
to the single-particle potentials can be calculated within the
relativistic Hartree-Fock (RHF) approach. Here, the uncer-
tainties originate from the different choices of the form and
the parametrization of �G.

As discussed above, the uncertainties in these methods are
caused by the calculations in the Dirac space with PESs only.
They can be cured by solving the RBHF equations in the full
Dirac space, i.e., including PESs and NESs simultaneously
[48,49]. In principle, the RBHF calculation for nuclear matter,
including NESs, dates back to the 1980s. In the pioneering
work of the Brooklyn group [41,50–52], the relativistic effects
were taken into account by expressing the single-particle wave
functions for finite density by positive- and negative-energy
spinors in free space and applying the first-order pertur-
bation theory. Thus the G matrix was calculated with the
Dirac spinors in free space and the self-consistency was not
achieved.

In the later 1980s [42], a slightly different RBHF calcu-
lation in the full Dirac space was implemented utilizing the
techniques of relativistic many-body Green’s functions, in
which the intermediate propagator in the scattering equation
was chosen as the Brueckner propagator. In this way, Huber,
Weber, and Weigel [53] found that the saturation properties of
symmetric nuclear matter calculated with the Bonn potentials
[54] are in rather good agreement with the empirical values.
However, it should be pointed out that the scattering equation

for the G matrix is different from the Thompson equation [55],
which is commonly used in most RBHF calculations.

In Ref. [43], the RBHF calculation for nuclear matter was
performed in the full Dirac space: the Thompson equation was
solved to obtain the G matrix, and the bare NN interaction
matrix elements are calculated in the rest frame of nuclear
matter. For symmetric nuclear matter, an underestimation of
the binding energy per nucleon by about 5 MeV was found at
saturation density for the potential Bonn-A [56], compared to
the empirical values of −16 ± 1 MeV.

As manifested by the different predictions for the nuclear
matter properties obtained in the literature [43,53], fully self-
consistent RBHF calculations in the full Dirac space are still
an open problem [6].

In this work, to clarify the different predictions in the full
Dirac space [43,53], we will perform the RBHF calculation
including the PESs and NESs simultaneously. We choose the
Thompson equation as the scattering equation, and the matrix
elements of the bare NN interaction are treated in the c.m.
frame. Apart from the inclusion of the NESs in each iteration,
this scheme is consistent with the RBHF calculations in the
Dirac space with PESs only.

This paper is organized as follows. In Sec. II, the theo-
retical framework of the RBHF theory for nuclear matter in
the full Dirac space is introduced. The numerical details are
provided in Sec. III. The calculated results and discussions are
presented in Sec. IV. Finally, a summary is given in Sec. V.

II. THEORETICAL FRAMEWORK

In the relativistic Brueckner-Hartree-Fock framework, the
starting point is a bare NN interaction in covariant form. In
this work we adopt the one-boson-exchange interaction Bonn
potential in Ref. [54], where the NN interaction is mediated
by the exchange of various bosons in terms of the following
interaction Lagrangian densities coupling the meson fields to
the nucleon:

L (pv) = − fps

mps
ψ̄γ 5γ μψ∂μϕ(ps),

L (s) = gsψ̄ψϕ(s),

L (v) = − gvψ̄γ μψϕ(v)
μ − fv

4M
ψ̄σμνψ

(
∂μϕ(v)

ν − ∂νϕ
(v)
μ

)
,

(1)

where ψ denotes the nucleon field with the mass M. The
bosons to be exchanged include the pseudoscalar (ps) mesons
(η, π ) with pseudovector (pv) coupling, the scalar (s) mesons
(σ, δ), and the vector (v) mesons (ω, ρ). For each pair, e.g.,
(η, π ), the first (second) meson has isoscalar (isovector) char-
acter. For isovector mesons, the field operator ϕα will be
replaced by �ϕα�τ with �τ being the usual Pauli matrices in
isospin space, where the index α denotes different meson. mα

is the meson mass and the coupling strengths fα and gα are
determined by fitting to the NN scattering data and deuteron
properties (see Ref. [54]).

From the Lagrange density in Eq. (1), the Hamiltonian
density is obtained by a Legendre transformation. In the sta-
tionary case, the Hamiltonian for the nuclear system is found
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as an integral of the Hamiltonian density over the three-
dimensional coordinate space and can be given in a second
quantized form [57]

H =
∑

kl

〈k|T |l〉b†
kbl + 1

2

∑
klmn

〈kl|V |mn〉b†
kb†

l bnbm, (2)

where the matrix elements are calculated as

〈k|T |l〉 =
∫

d3rψ̄k (r)(−iγ∇ + M )ψl (r),

〈kl|V |mn〉 =
∑

α

∫
d3r1d3r2ψ̄k (r1)ψ̄l (r2)�α (1, 2)

× Dα (1, 2)ψm(r1)ψn(r2). (3)

Here, b†
k and bk form a complete set of creation and anni-

hilation operators for nucleons, and the state |k〉 stands for
the Dirac spinor ψk (r). The bare NN interaction contains
contributions from different mesons, with �α and Dα being the
interaction vertices and meson propagators, respectively. The
calculations of the matrix elements 〈kl|V |mn〉 in momentum
space are referred to Ref. [16] and Chap. 9 in Ref. [58].
As mentioned in the Introduction, in the Brueckner theory,
the two-body short-range correlation induced by the strong
repulsive core in the bare NN interaction is incorporated into
the G matrix.

In the RBHF calculation, the G matrix is obtained by
solving the in-medium relativistic scattering equation, which
is in strict analogy to the free-space scattering. The scattering
equation in free space is chosen as the covariant Thompson
equation [55], one of the relativistic three-dimensional reduc-
tions of the Bethe-Salpeter equation [59]. By replacing the
Dirac spinors in free space by the ones in the nuclear medium
and considering the Pauli principle, the Thompson equation is
applied in the rest frame of nuclear matter in the form [16]

G(q′, q|P,W ) = V (q′, q|P) +
∫

d3k

(2π )3
V (q′, k|P)

× M∗
P+kM∗

P−k

E∗
P+kE∗

P−k

Q(k, P)

W − EP+k − EP−k

× G(k, q|P,W ), (4)

where Ep is the eigenvalue of the Dirac equation in the nuclear
medium [see Eq. (9)]. P = 1

2 (k1 + k2) is the center-of-mass
momentum, and k = 1

2 (k1 − k2) is the relative momentum of
the two interacting nucleons with momenta k1 and k2, and
q, k, and q′ are the initial, intermediate, and final relative
momenta of the two nucleons scattering in nuclear matter,
respectively. The starting energy is denoted as W . M∗

P±k and
E∗

P±k are corresponding effective masses and energies [see
Eqs. (12) and (13), respectively]. The Pauli operator Q pro-
hibits the scattering to the occupied states, i.e.,

Q(k, P) =
{

1, |P + k|, |P − k| > kF

0, otherwise (5)

with kF being the Fermi momentum.
Usually, Eq. (4) is decomposed into partial waves in the he-

licity scheme [60] and reduced to a one-dimensional integral

equation over the relative momentum k [61]

〈λ′
1λ

′
2|GJ (q′, q|P,W )|λ1λ2〉

= 〈λ′
1λ

′
2|V J (q′, q|P)|λ1λ2〉 +

∑
h1,h2

∫
k2dk

(2π )3

M∗2
av (k, P)

E∗2
av (k, P)

× 〈λ′
1λ

′
2|V J (q′, k|P)|h1h2〉 Qav(k, P)

W − 2Eav(k, P)

× 〈h1h2|GJ (k, q|P,W )|λ1λ2〉, (6)

where the indexes for the PESs and NESs have been
suppressed for simplicity. J stands for the total angular mo-
mentum for each partial wave. λi, hi and λ′

i (i = 1, 2) denote
the helicities of two nucleons in the initial, intermediate
and final states. To achieve this reduction, the Pauli opera-
tor Q(k, P) is replaced by an angle-averaged Pauli operator
Qav(k, P) [62], and the single-particle energies Eav(k, P) and
effective quantities M∗

av(k, P) and E∗
av(k, P) are calculated

with the angle-averaged approximation (P ± k)2 ≈ P2 + k2

[16]. In this work, the Thompson equation (6) is solved in the
full Dirac space by including PESs and NESs simultaneously
for the initial and final states. For the intermediate states,
the NESs are excluded due to the positive-energy projection
operator in the Thompson propagator [55].

In this work, the scattering equation (6) is solved in the
rest frame of nuclear matter. Since the bare NN interaction,
the Bonn potential, is determined in the two-body c.m. frame,
a transformation for the matrix elements of the Bonn potential
from the c.m. frame to the rest frame is necessary. Usually
one assumes that because of Lorentz invariance, the matrix
elements of the Bonn potential in the rest frame are identical
to those in the c.m. frame, as in Ref. [16]. However, the
neglection of the retardation effects in the Bonn potential and
the inclusion of one NES in the matrix elements will violate
the Lorentz invariance of the matrix elements [63]. The strict
transformation from the c.m. frame to the rest frame is not
trivial. For simplicity, we approximate the Lorentz invariance
of the matrix elements of the bare NN interaction in the
following way:

〈λ′
1λ

′
2|V J (q′, q|P)|λ1λ2〉 ≈ 〈λ′

1λ
′
2|V J (q′, q)|λ1λ2〉, (7)

i.e., the violation of the Lorentz invariance can be neglected.
The matrix elements of the bare NN interaction in the c.m.

frame for a given partial wave can be calculated as

〈λ′
1λ

′
2|V J (q′, q)|λ1λ2〉

= 2π

∫ +1

−1
d (cos θ )dJ

λλ′ (θ )〈q′λ′
1λ

′
2|V |qλ1λ2〉, (8)

where λ = λ1 − λ2, λ′ = λ′
1 − λ′

2. θ is the angle between q
and q′, and dJ

λλ′ (θ ) are the conventional Wigner functions
[64]. For the RBHF theory in the full Dirac space, both the
PESs and NESs are included in the calculation in Eq. (8).
With the approximation in Eq. (7), the Thompson equation
(6) in the full Dirac space can be solved using the partial-wave
decomposition. Details are given in Appendix A.

In the RBHF theory, the nucleon inside the nuclear medium
is regarded as a dressed particle in consequence of its interac-
tion with surrounding nucleons. The single-particle motion in
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nuclear matter is described by the Dirac equation

(αp + βM + βU )u(p, s) = Epu(p, s), (9)

where α and β are the Dirac matrices and u(p, s) is the
positive-energy spinor with momentum p, single-particle en-
ergy Ep, and spin s. The medium effects are manifested by the
single-particle potential (operator) U . Due to the translational
and rotational invariance, parity conservation, time-reversal
invariance, and Hermiticity in the rest frame of infinite nuclear
matter, the single-particle potential U has the general form
[37]

U (p) = US (p) + γ 0U0(p) + γ p̂UV (p), (10)

where US (p),U0(p),UV (p) are the scalar potential, timelike,
and spacelike components of the vector potential, respectively.
p̂ = p/|p| is the unit vector parallel to the momentum p.

With the definition of following effective quantities:

p∗ = p + p̂UV (p), (11)

M∗
p = M + US (p), (12)

E∗
p = Ep − U0(p), (13)

the Dirac equation in the nuclear medium can be expressed as

(αp∗ + βM∗
p )u(p, s) = E∗

p u(p, s), (14)

where E∗
p =

√
M∗2

p + p∗2. The positive-energy spinor u and

negative-energy spinor v are obtained as

u(p, s) =
√

E∗
p + M∗

p

2M∗
p

[
1

σ·p∗
E∗

p +M∗
p

]
χs, ū(p, s)u(p, s) = 1, (15a)

v(p, s) = γ 5u(p, s) =
√

E∗
p + M∗

p

2M∗
p

[ σ·p∗
E∗

p +M∗
p

1

]
χs, v̄(p, s)v(p, s) = −1, (15b)

where χs is the spin wave function. The single-particle energies for PESs and NESs can be calculated as

E+
p = Ep = E∗

p + U0(p), E−
p = −E∗

p + U0(p). (16)

The Dirac equation can be solved analytically once the single-particle potentials are determined. To achieve this, three matrix
elements of the single-particle potential operator U (p) are introduced as in Refs. [41,42,56]:

�++(p) = ū(p, 1/2)U (p)u(p, 1/2) = US (p) + E∗
p

M∗
p

U0(p) + p∗

M∗
p

UV (p), (17a)

�−+(p) = v̄(p, 1/2)U (p)u(p, 1/2) = p∗

M∗
p

U0(p) + E∗
p

M∗
p

UV (p), (17b)

�−−(p) = v̄(p, 1/2)U (p)v(p, 1/2) = −US (p) + E∗
p

M∗
p

U0(p) + p∗

M∗
p

UV (p), (17c)

where the direction of p is taken along the z axis.
Once �++, �−+, and �−− are obtained, single-particle potentials can be determined uniquely through

US (p) = �++(p) − �−−(p)

2
, (18a)

U0(p) = E∗
p

M∗
p

�++(p) + �−−(p)

2
− p∗

M∗
p
�−+(p), (18b)

UV (p) = − p∗

M∗
p

�++(p) + �−−(p)

2
+ E∗

p

M∗
p
�−+(p). (18c)

On the other hand, the three matrix elements of the single-particle potential operator in Eq. (17) describe the single-particle
potential energies of the nucleon with momentum p. They can be calculated as the integrals over the effective interaction G
matrix

�++(p) =
∑

s′

∫ kF

0

d3 p′

(2π )3

M∗
p′

E∗
p′

〈ū(p, 1/2)ū(p′, s′)|Ḡ++++(W )|u(p, 1/2)u(p′, s′)〉, (19a)

�−+(p) =
∑

s′

∫ kF

0

d3 p′

(2π )3

M∗
p′

E∗
p′

〈v̄(p, 1/2)ū(p′, s′)|Ḡ−+++(W )|u(p, 1/2)u(p′, s′)〉, (19b)
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�−−(p) =
∑

s′

∫ kF

0

d3 p′

(2π )3

M∗
p′

E∗
p′

〈v̄(p, 1/2)ū(p′, s′)|Ḡ−+−+(W )|v(p, 1/2)u(p′, s′)〉. (19c)

Ḡ is the antisymmetrized G matrix with the ± signs in
the superscript denoting the PESs or NESs. The no-sea ap-
proximation [65] is used and thus the integrals are performed
only for the single-particle states in the Fermi sea. The factor
M∗

p′/E∗
p′ is due to the fact that the Dirac spinors are normalized

as, e.g., ūu = 1 in Eq. (15a). In practice, the G matrices in
Eq. (19) are calculated as a summation over different partial
waves. Details are given in Appendix B.

From Eq. (17) to Eq. (19), it is clear that the full Dirac
space provides a unique way to extract the single-particle
potentials from the G matrix, which effectively avoids the
uncertainties of the calculations based on PESs only.

Equations (6), (19), (18), and (9) constitute a coupled set
of equations that needs to be solved self-consistently. Starting
from initial values of U (0)

S ,U (0)
0 ,U (0)

V in vacuum, the Dirac
spinors are obtained from the Dirac equation (9). Then one
solves the Thompson equation (6) to get the G matrix and
obtains �++, �−+, �−− using the integrals in Eq. (19). From
Eq. (18) a new set of values for U (1)

S ,U (1)
0 ,U (1)

V are found to be
used in the next iteration. This iterative procedure is repeated
until a satisfactory convergence is reached.

Once the solution is converged, the binding energy per
nucleon in nuclear matter can be calculated as

E/A = 1

ρ

∑
s

∫ kF

0

d3 p

(2π )3

M∗
p

E∗
p

〈ū(p, s)|γ p + M|u(p, s)〉 − M

+ 1

2ρ

∑
s,s′

∫ kF

0

d3 p

(2π )3

∫ kF

0

d3 p′

(2π )3

M∗
p

E∗
p

M∗
p′

E∗
p′

× 〈ū(p, s)ū(p′, s′)|Ḡ++++(W )|u(p, s)u(p′, s′)〉,
(20)

where the isospin indices are suppressed. The starting energy
W = Ep + Ep′ . The density ρ is related to the Fermi momen-
tum kF through ρ = 2k3

F /3π2. In parallel, the binding energy
per nucleon can be calculated as the following as well:

E/A = 1

2ρ

∑
s

∫ kF

0

d3 p

(2π )3

[
M∗

p

E∗
p

〈ū(p, s)|γ · p

+ M|u(p, s)〉 + Ep

]
− M. (21)

Equations (20) and (21) should lead to the same result.
The second derivative of E/A with respect to the density ρ

at saturation density is the compression modulus K∞,

K∞ = 9ρ2 ∂2E/A(ρ)

∂ρ2

∣∣∣∣
ρ=ρ0

, (22)

where ρ0 is the saturation density.

III. NUMERICAL DETAILS

In each iteration, by discretizing the momentum, the
Thompson equation (6) in the rest frame of nuclear matter

leads to a set of matrix equations, which are solved by matrix
inversion. The resulting G matrix are used to determine the
matrix elements of the single-particle operator (details are
given in Appendix B) and a new set of single-particle energies
Ep and Dirac spinors with Eq. (9). They enter the Thompson
equation (6) in the next iteration.

This procedure depends crucially on the approximation
introduced in the Lorentz transformation of the matrix ele-
ments of the bare NN interaction in Eq. (7). Therefore it is
very important to analyze the quality of this approximation
and its influence on the binding energy. This can be done by
comparing the results from two RHF calculations with the
same effective interaction Ve f f . One of these RHF calculations
is carried out in the rest frame of nuclear matter and the other
one in the c.m. frame. It is expected to get the same results, if
we would carry out a proper Lorentz transformation between
the two reference frames. The approximation in Eq. (7) leads
to two different results and by comparing the results we can
check the quality of this approximation. The calculation in
the rest frame of nuclear matter is trivial. It corresponds to
the solution of the conventional RHF equation as discussed
in Ref. [66]. In this case the single-particle potentials are
obtained by a variation of the energy functional with respect
to the Dirac spinor, rather than using Eq. (18). The solution in
the c.m. frame is more complicated because the calculation of
the single-particle potentials with Eqs. (18) and (19) requires
the Lorentz transformation of four vectors as discussed in
Appendix B.

Comparing the results in the rest frame and in the c.m.
frame with the effective force Wen R(δ) in Ref. [67], the
deviation for the binding energy per nucleon is smaller than
0.2 MeV in the density region kF = 0.6–1.6 fm−1. This shows
the reliability of the approximation introduced in Eq. (7).

As usual, in (R)BHF theory, the single-particle potentials
of the states with momentum p above the Fermi momentum kF

are not well defined. Different methods have been introduced
in the literature, including the gap choice [68] and the contin-
uous choice [69]. Here, a choice in between is adopted, where
the single-particle potentials with momentum p above kF are
assigned to be equal to the ones at the Fermi momentum, i.e.,

US (p) = US (kF ), U0(p) = U0(kF ),

UV (p) = UV (kF ), for p > kF . (23)

A similar treatment has been applied for finite nuclei in
Refs. [33,70].

To calculate the matrix elements of the single-particle po-
tential operator U from the G matrix, the starting energies
W in Eqs. (19a)–(19c) need to be assigned. For �++ in
Eq. (19a), one usually follows the Bethe-Brandow-Petschek
(BBP) theorem [68] to choose W = E+

p + E+
p′ . For �−+ and

�−−, one must clarify at first how to treat the NESs, either as
occupied or as unoccupied states. In the fully self-consistent
RBHF calculation for finite nuclei in Ref. [71], it is found that,
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FIG. 1. Binding energy per nucleon E/A of symmetric nuclear
matter as a function of the Fermi momentum kF calculated by the
RBHF theory in the full Dirac space with the potential Bonn-A [54].
Our result (red solid line) is compared with Ref. [53] (blue dashed
line). The shaded area indicates the empirical values.

if the NESs are treated as occupied states, the ground-state
properties for 16O are in better agreement with the experi-
mental data. Moreover, the spin symmetry in the Dirac sea is
better conserved in this choice [71–73]. Following Ref. [71],
the NESs in Eqs. (19b) and (19c) are treated as occupied
states. For �−− in Eq. (19c), the starting energy is W = E−

p +
E+

p′ . For �−+ in Eq. (19b), Ḡ−+++(W ) should be replaced
by [Ḡ−+++(W1) + Ḡ−+++(W2)]/2, with W1 = E+

p + E+
p′ and

W2 = E−
p + E+

p′ .
In the calculation, the integrals over momentum and angle

variables are discretized with 24 and 12 Gaussian grid points,
respectively. The cutoff of total angular momentum is 10h̄.
With these numerical conditions, the precision of binding
energy per nucleon is less than 0.2 MeV.

IV. RESULTS AND DISCUSSION

We perform the RBHF calculation in the full Dirac space
with the bare NN interaction chosen as the relativistic po-
tential Bonn-A [54], where the scattering equation is chosen
as the Thompson equation [55] and the matrix elements of
Bonn-A are treated in the c.m. frame. Figure 1 shows the
binding energy per nucleon E/A of symmetric nuclear matter
as a function of the Fermi momentum kF . The shaded area
indicates the empirical values. It can be seen that the nuclear
matter saturation point is reasonably described in this work,
much better than in a nonrelativistic calculation with Bonn-A
[16], where the saturation energy is −23.55 MeV and the
saturation density corresponds to kF = 1.85 fm−1, as listed
in Table I.

The RBHF results in the full Dirac space by Huber, We-
ber, and Weigel [53], utilizing the techniques of relativistic
many-body Green’s functions, are shown as the blue dashed

TABLE I. Saturation properties of symmetric nuclear matter cal-
culated by the RBHF theory in the full Dirac space using the bare NN
interactions Bonn-A, -B, and -C [54]: the saturation density ρ0, the
binding energy per nucleon E/A, the compression modulus K∞, and
the Dirac mass M∗

D/M at the saturation density. They are compared
with the corresponding values from the nonrelativistic BHF calcu-
lations and the phenomenological covariant density functionals NL3
[78], DD-ME2 [79], DD-PC1 [80], PC-PK1 [81], and PKO1 [82].
The empirical values are listed in the last row.

Potential ρ0 [fm−3] E/A [MeV] K∞ [MeV] M∗
D/M

RBHF Bonn-A 0.188 −15.40 258 0.55
RBHF Bonn-B 0.164 −13.36 206 0.61
RBHF Bonn-C 0.144 −12.09 150 0.65
BHF Bonn-A 0.428 −23.55 204
BHF Bonn-B 0.309 −18.30 160
BHF Bonn-C 0.247 −15.75 103
NL3 0.148 −16.30 272 0.60
DD-ME2 0.152 −16.14 251 0.57
DD-PC1 0.152 −16.06 230 0.58
PC-PK1 0.154 −16.12 238 0.59
PKO1 0.152 −16.00 250 0.59
Empirical 0.16 ± 0.01 −16 ± 1 240 ± 20

line. They agree with our results below the saturation density.
The discrepancy above the saturation density is found mainly
arising from the different schemes for the starting energies W
in Eqs. (19b) and (19c).

In this work the NESs in Eqs. (19b) and (19c) are treated
as occupied states. In the relativistic Green’s function ap-
proach, the quantities corresponding to the starting energies in
Eqs. (19a), (19b), and (19c) are all chosen as W = E+

p + E+
p′ .

This scheme is the same as the one to treat the NESs as unoc-
cupied states in the Brueckner theory. We also performed the
calculation with this unoccupied choice, and the discrepancy
above the saturation density could be eliminated to a large
extent. To our knowledge, although there are some discussions
on the similarities and differences between the Brueckner
theory and the Green’s function approach [74,75], a compre-
hensive comparison has, so far, not yet been carried out [76].

The RBHF results in the full Dirac space performed by
Katayama and Saito [43,56] are not be shown here, because, in
these calculations, the binding energy per nucleon calculated
with Eq. (21) does not agree with the one obtained with
Eq. (20).

The single-particle potentials US , U0, and UV given by the
RBHF calculation in the full Dirac space at kF = 1.34 fm−1

are shown in Fig. 2 as functions of momentum (red solid
lines). These quantities exhibit only a weak momentum de-
pendence. In addition, the strength of the spacelike component
of the vector potential UV is extremely small as compared to
the other two components. Figure 2 also shows the results
obtained by the projection method with the ps representation
for the subtracted T matrix [39] (cyan dash-dotted line), where
the bare NN interaction and the higher order ladder graphs
of the meson exchange potential are treated separately. It can
be seen that, in comparison to the results in the full Dirac
space, the projection method leads to a qualitatively consistent
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FIG. 2. Momentum dependence of the single-particle potentials
US , U0, and UV calculated by the RBHF theory in this work at kF =
1.34 fm−1 with the potential Bonn-A [54]. Also shown is the results
obtained by the projection method in Ref. [39].

momentum dependence of the single-particle potentials, and
that the amplitudes of US and U0 are less pronounced here.

To investigate the uncertainties of single-particle poten-
tials obtained in the Dirac space with PESs only, we use
the momentum-independence approximation introduced in
Ref. [16]. UV is neglected and the momentum-independent
potentials US and U0 are extracted from the values of the
single-particle potential energy at two different momenta. By
varying in this procedure one momentum from 0.1 kF to
0.9 kF and the other from 0.2 kF to 1.0 kF in steps of 0.1 kF ,
RBHF calculations are performed in the Dirac space with
PESs only and the uncertainties are shown schematically by
the shaded regions in Fig. 3. Considerable uncertainties of
about 70 MeV are found for both potentials US and U0. These

FIG. 3. Momentum dependence of the single-particle potentials
US , U0, and UV calculated by the RBHF theory with NESs (red solid
line) at kF = 1.35 fm−1 with the potential Bonn-A [54]. The shaded
areas denote the uncertainties of the RBHF results without NESs (see
text for more details).

FIG. 4. Density dependence of the single-particle potentials US ,
U0, and UV at the Fermi momentum calculated by the RBHF theory
with NESs (red solid line) with the potential Bonn-A [54]. The
shaded areas denote the uncertainties of the RBHF calculations with-
out NESs (see text for more details).

results again demonstrate the importance of the calculations
in the full Dirac space.

In Fig. 4, the single-particle potentials US , U0, and UV at
the Fermi momentum calculated in the full Dirac space are
shown as functions of the Fermi momentum kF . A strong
density dependence is found for US and U0, while it is less
pronounced for UV . We also show in Fig. 4 the results obtained
by the RBHF calculations without NESs. For US and U0 at
kF = 1.14 fm−1 we found uncertainties up to 126 and 128
MeV, respectively. Although these uncertainties are reduced
with the increasing density, the strengths of US and U0 are both
underestimated above the saturation density, as compared to
the results obtained in the full Dirac space.

Since the binding energy of nuclear matter generally re-
sults from a sensitive cancellation between single-particle
potentials, it is interesting and necessary to study also the
uncertainties of the equation of state in the Dirac space with
PESs only. In Fig. 5 we show the binding energy per nucleon
E/A as a function of the Fermi momentum kF calculated with-
out NESs, in comparison with the one calculated in the full
Dirac space. It is found that the uncertainties of the binding
energy per nucleon can reach 0.7 MeV at kF = 1.10 fm−1.
Above the saturation density, less binding is obtained. More-
over, for the calculations in the Dirac space with PESs only,
the compression modulus K∞ ranges from 218 to 426 MeV.
Again, this shows the importance to perform the RBHF calcu-
lations in the full Dirac space.

In Table I, we summarize the saturation properties of
nuclear matter obtained in this work by solving the RBHF
equations in the full Dirac space with the potentials Bonn-
A, -B, and -C. Corresponding nonrelativistic BHF results,
successful phenomenological covariant density functionals
[77] NL3 [78], DD-ME2 [79], DD-PC1 [80], PC-PK1 [81],
and PKO1 [82] as well as empirical values are listed for
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FIG. 5. Binding energy per nucleon E/A of symmetric nuclear
matter as a function of the Fermi momentum kF calculated by the
RBHF theory in the full Dirac space (red solid line) using the poten-
tial Bonn-A [54]. The shaded area denotes the uncertainties of the
RBHF calculations without NESs (see text for more details).

comparison. The binding energy per nucleon obtained by
the RBHF calculations in the full Dirac space with Bonn-A
is −15.40 MeV, which is in agreement with the empiri-
cal values −16 ± 1 MeV, and the saturation density ρ is
0.188 fm−3, which is slightly higher than the empirical ones
0.16 ± 0.01 fm−3. For Bonn-B, the saturation density is de-
scribed satisfactorily, while the binding energy is inadequate.
Bonn-C leads to smaller values for both the density and
the binding energy at the saturation density. This trend for
Bonn-A, -B, and -C is similar to the case found in Ref. [16].
The compression modulus of nuclear matter at the saturation
density is 258 MeV for Bonn-A, which is in good agreement
with the empirical values of 240 ± 20 MeV [83]. In the last
column, the Dirac masses at the Fermi momentum in unit of

nucleon mass are also shown, which are close to the values in
phenomenological covariant energy density functionals.

V. SUMMARY

In summary, the RBHF equations have been solved for
symmetric nuclear matter in the full Dirac space with the
Bonn potential. In this way the uncertainties in the RBHF
calculations in the Dirac space with PESs only could be
avoided. The Thompson equation is chosen as the scattering
equation and the matrix elements of the Bonn potential are
treated in the c.m. frame. The obtained saturation properties
of symmetric nuclear matter are in good agreement with the
empirical values. The equation of state agrees with the results
based on the relativistic Green’s function approach up to the
saturation density. The discrepancy above the saturation den-
sity is found mainly arising from the different schemes for the
starting energies. Uncertainties of the RBHF calculation in the
Dirac space with PESs only have been analyzed. It is found
that the uncertainties of the single-particle potentials can reach
more than 100 MeV, and the equation of state is less bound
above the saturation density. These analyses demonstrate the
significance of the RBHF calculations in the full Dirac space.
Further investigation for asymmetric nuclear matter with the
RBHF calculations in the full Dirac space is expected to clar-
ify the isospin dependence of the single-particle potentials.
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APPENDIX A: PARTIAL-WAVE DECOMPOSITION OF THE THOMPSON EQUATION

In this Appendix we give the details for the solution of the Thompson equation (6) in the full Dirac space with partial-wave
decomposition. There are 24 = 16 possible combinations of PESs and NESs for the bare NN interaction such as V −+++. The ±
signs in the superscript are used to denote the PESs or NESs. Due to the no-sea approximation and the limitation of intermediate
states as PESs in the Thompson equation [55], four combinations V ++++,V −+++,V −+−+, and V −++− are needed in practice.
For a given combination, the number of independent helicity amplitudes is 24 = 16 for each partial wave. This number can be
reduced to eight independent amplitudes due to the symmetries under parity transformation

〈λ′
1λ

′
2|V ++++

J (q′, q)|λ1λ2〉 = + 〈−λ′
1 − λ′

2|V ++++
J (q′, q)| − λ1 − λ2〉,

〈λ′
1λ

′
2|V −+++

J (q′, q)|λ1λ2〉 = − 〈−λ′
1 − λ′

2|V −+++
J (q′, q)| − λ1 − λ2〉,

〈λ′
1λ

′
2|V −+−+

J (q′, q)|λ1λ2〉 = + 〈−λ′
1 − λ′

2|V −+−+
J (q′, q)| − λ1 − λ2〉,

〈λ′
1λ

′
2|V −++−

J (q′, q)|λ1λ2〉 = + 〈−λ′
1 − λ′

2|V −++−
J (q′, q)| − λ1 − λ2〉, (A1)
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where J is the total angular momentum for each partial wave. The magnitudes of the relative momenta of the two nucleons in
the initial and final states are denoted by q and q′. λi and λ′

i (i = 1, 2) represent the helicities of the nucleon i in the initial and
final states, respectively.

The eight independent helicity amplitudes are chosen as follows:

V J
1 (q′, q) ≡ 〈+ + |V J (q′, q)| + +〉,

V J
2 (q′, q) ≡ 〈+ + |V J (q′, q)| − −〉,

V J
3 (q′, q) ≡ 〈+ − |V J (q′, q)| + −〉,

V J
4 (q′, q) ≡ 〈+ − |V J (q′, q)| − +〉,

V J
5 (q′, q) ≡ 〈+ + |V J (q′, q)| + −〉,

V J
6 (q′, q) ≡ 〈+ − |V J (q′, q)| + +〉,

V J
7 (q′, q) ≡ 〈+ + |V J (q′, q)| − +〉,

V J
8 (q′, q) ≡ 〈+ − |V J (q′, q)| − −〉, (A2)

where the ± signs correspond to the signs of the helicities and the labels of PESs and NESs have been suppressed. To partially
decouple this system, it is useful to introduce the following linear combinations of helicity amplitudes:

0V J ≡ V J
1 − V J

2 ,

1V J ≡ V J
3 − V J

4 ,

12V J ≡ V J
1 + V J

2 ,

34V J ≡ V J
3 + V J

4 ,

57V J ≡ V J
5 + V J

7 ,

68V J ≡ V J
6 + V J

8 ,

2V J ≡ V J
5 − V J

7 ,

3V J ≡ V J
6 − V J

8 . (A3)

Corresponding definitions for GJ are also introduced. Using these definitions, the system of Thompson equation for a given
combination can be partially decoupled. Taking V −+++

J and G−+++
J as an example, two subsets of coupled integral equations

are obtained

0G−+++
J = 0V −+++

J +
∫

M∗2
av

E∗2
av

Qav

W − 2Eav

[
0V −+++

J
0G++++

J + 2V −+++
J

3G++++
J

]
,

1G−+++
J = 1V −+++

J +
∫

M∗2
av

E∗2
av

Qav

W − 2Eav

[
3V −+++

J
2G++++

J + 1V −+++
J

1G++++
J

]
,

2G−+++
J = 2V −+++

J +
∫

M∗2
av

E∗2
av

Qav

W − 2Eav

[
0V −+++

J
2G++++

J + 2V −+++
J

1G++++
J

]
,

3G−+++
J = 3V −+++

J +
∫

M∗2
av

E∗2
av

Qav

W − 2Eav

[
3V −+++

J
0G++++

J + 1V −+++
J

3G++++
J

]
, (A4)

and

12G−+++
J = 12V −+++

J +
∫

M∗2
av

E∗2
av

Qav

W − 2Eav

[
12V −+++

J
12G++++

J + 57V −+++
J

68G++++
J

]
,

34G−+++
J = 34V −+++

J +
∫

M∗2
av

E∗2
av

Qav

W − 2Eav

[
68V −+++

J
57G++++

J + 34V −+++
J

34G++++
J

]
,

57G−+++
J = 57V −+++

J +
∫

M∗2
av

E∗2
av

Qav

W − 2Eav

[
12V −+++

J
57G++++

J + 57V −+++
J

34G++++
J

]
,

68G−+++
J = 68V −+++

J +
∫

M∗2
av

E∗2
av

Qav

W − 2Eav

[
68V −+++

J
12G++++

J + 34V −+++
J

68G++++
J

]
. (A5)
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The coupled integral equations for other combinations G++++
J , G−+−+

J , G−++−
J can be obtained in a complete analogy to

Eqs. (A4) and (A5). These matrix equations can be solved with the standard method of Haftel and Tabakin [84].

APPENDIX B: THE CALCULATIONS OF THE MATRIX ELEMENTS OF THE SINGLE-PARTICLE POTENTIAL OPERATOR

The matrix elements of the single-particle potential operator in Eq. (19) can be calculated with the G matrix coupled to the
total angular momentum in the helicity scheme. The transformations for �++ and �−− are trivial, which are given by [61]

�++(p) =
∫ kF

0

d3 p′

(2π )3

M∗
p′

E∗
p′

1

4

∑
JT λ1λ2

(2J + 1)(2T + 1)

4π
〈λ1λ2|G++++

JT (q, q|P,W )(1 − P12)|λ1λ2〉 (B1)

and

�−−(p) =
∫ kF

0

d3 p′

(2π )3

M∗
p′

E∗
p′

1

4

∑
JT λ1λ2

(2J + 1)(2T + 1)

4π
〈λ1λ2|G−+−+

JT (q, q|P,W )(1 − P12)|λ1λ2〉, (B2)

where T is the total isospin and P12 is the exchange operator. In our calculation, the amplitude P is calculated as P = |P| =
|p + p′|/2. q is the amplitude of q in the c.m. frame, which is obtained with a strict Lorentz transformation from p in the rest
frame, as in Ref. [38]. Taking a four-vector aμ = (a0, a) in the rest frame of nuclear matter with nonvanishing P as an example,
the corresponding four-vector aμ

c = (a0
c , ac) in the c.m. frame where P = 0 is determined by [38]

ac = a + βγ

(
γ

γ + 1
βa − a0

)
, (B3a)

a0
c = γ

(
a0 − βa

)
. (B3b)

The parameters β and γ are found as β = P/P0, γ = (1 − β2)−1/2, where P0 = (Ep + Ep′ )/2.
�−+ is more complicated. With explicit spin and isospin degrees of freedom, �−+ is calculated as

�−+(p) =
∑
s2t2

∫
d3 p′

(2π )3

M∗
p′

E∗
p′

〈s1s2t1t2|G−+++(q, q|P,W )(1 − P12)|s1s2t1t2〉 (B4)

with s1 = 1
2 . Following Appendix B of Ref. [41], the G matrix must be expressed in the angular momentum projected helicity

basis as follows:∑
s2t2

〈s1s2t1t2|G−+++(q, q|P,W )(1 − P12)|s1s2t1t2〉

= 1

2

∑
LL′JT SS′Lλ1λ2λ

′
1λ

′
2m

(−1)J+L+L′+S+S′+s1− 1
2

(2J + 1)(2T + 1)[(2S + 1)(2S′ + 1)(2L + 1)(2L′ + 1)]1/2

4π

× 〈λ′
1λ

′
2|G−+++

JT (q, q|P,W )(1 − P12)|λ1λ2〉〈L′S′J|λ′
1λ

′
2J〉〈λ1λ2J|LSJ〉

×
(

L L′ L
0 0 0

)(
1
2

1
2 L

−s1 s1 m

){L S′ S
J L L′

}{L 1
2

1
2

1
2 S S′

}√
4π (2L + 1)Y ∗

Lm(q̂), (B5)

where

〈LSJ|λ1λ2J〉 =
(

2L + 1

2J + 1

)1/2

(L0Sλ1 − λ2|Jλ1 − λ2)

(
1

2
λ1

1

2
− λ2|Sλ1 − λ2

)
. (B6)

Terms in curly brackets are 6 j symbols in quantum angular momentum theory [64].
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