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The ground-state pairing correlations in finite fermionic systems are described with a high degree of accuracy
within a variational approach based on a combined coupled-cluster and particle-number-projected BCS ansatz.
The flexibility of this symmetry-preserving wave function enables a unified picture valid from weak to strong
coupling, both in small and large systems. The present variational approach consistently yields an energy upper
bound while operating at the same level of precision as the nonvariational particle-number-projected Bogoliubov-
coupled-cluster theory [Phys. Rev. C 99, 044301 (2019)].
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I. INTRODUCTION

Pairing Hamiltonians are ubiquitous in quantum many-
body physics. Starting from their variational treatment in the
microscopic theory of superconductivity given by Bardeen,
Cooper and Schrieffer (BCS) [1], they were soon exported
to nuclear physics for the description of the large gaps ob-
served in even-even nuclei [2]. However, the violation of
particle number in the BCS theory, which is negligible for
macroscopic systems, represents a major drawback when ap-
plied to finite systems. Therefore, techniques to implement
number projection on top of the BCS wave function (PBCS)
were developed in nuclear structure [3,4] and more recently
in quantum chemistry [5,6] where the PBCS wave func-
tion is known as the antisymmetrized geminal power (AGP).
PBCS improves over the BCS theory in finite systems, espe-
cially in the strong coupling limit where superconductivity is
well established, but it still fails in the weak coupling limit
dominated by pairing fluctuations, and all along the transi-
tional region [7,8]. This fact was made evident in ultrasmall
superconducting grains, where PBCS predicted an abrupt
metal-superconductor transition as a function of the grain
size [9] while the exact solution showed a smooth crossover
dominated by large fluctuations [10]. It was precisely in the
field of ultrasmall superconducting grains that the exact solu-
tion of the constant pairing Hamiltonian given by Richardson
in the sixties [11] was recovered [12] and intensively used
as a natural benchmark model for superconducting theories
beyond BCS [13–21].

In the extreme weak coupling limit pair coupled-cluster
doubles (pCCD) describes correctly the pairing fluctuating
regime but it quickly overbinds because of the nonvariational
character of the theory based on the left projection to a
Hartree-Fock Slater determinant [8,14,22]. It seems, there-
fore, that a combination of pCCD and quasiparticle BCS
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would be able to approach both limits correctly. Indeed, the
extension of pCCD to BCS quasiparticles, the BCS-CCD
method [15], gave the correct behavior in the weak coupling
limit, but still suffers from large deviations (∼10% for sizes
of ∼100 particles) across the transition region. There were
attempts to interpolate between pCCD and PBCS [8,16] or to
diagonalize the pairing Hamiltonian in a subspace defined by
the reference PBCS state and different two and four number-
projected quasiparticle states [23]. Other possible ways to add
correlations to the PBCS state were explored in [21,24]. A
different, and perhaps more sophisticated approach, is based
on the use of the Richardson ansatz as a reference state
for variational or configuration interaction approximations in
nonintegrable pairing or spin models [25,26].

Perhaps, the most successful theory beyond BCS-CCD
is simply its number-projected version coined as particle-
number-projected BCS coupled-cluster doubles (PBCS-CCD)
theory [27]. The theory is not Ritz variational and therefore,
it cannot assure an upper bound for the ground-state energy.
However, it has an affordable computational cost that scales
polynomially with the system size. Moreover, it gives excel-
lent numerical results both in the weak and strong coupling
limits, as well as in the transitional region.

The aim of our paper is to design a Ritz variational method
with a trial wave function that combines pCCD and PBCS and
produces numerical results with the same level of precision of
PBCS-CCD and with a similar computational cost. We will
benchmark our variational theory with the exact solution of
the Richardson model [28] and with PBCS-CCD results [27]
where available.

II. THEORETICAL BACKGROUND

A. Pairing Hamiltonian

We consider the generic pairing Hamiltonian,

H =
L∑

i=1

εi (c†
i ci + c†

ī
cī ) +

L∑
i, j=1

Vi, jc
†
i c†

ī
c j̄c j, (1)
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where i and ī indicate one of the L pairs of conjugated degen-
erate single-particle levels with energy εi = εī.

The Hamiltonian (1) preserves seniority, and for simplicity
we restrict ourselves to the seniority zero (v = 0) subspace.
Then, in the absence of the interaction term the ground state
is given by the Hartree-Fock product state,

|HF〉 =
M∏

i=1

c†
i c†

ī
|0〉, (2)

where M is the number of pairs in the system.
In preparation for the discussion that follows, we pass to

the particle-hole (ph) representation and denote the particle
levels with p > M and the hole levels with h � M. We define
the particle and hole pair and number operators,

P†
p = c†

pc†
p̄, Pp = cp̄cp, Np = c†

pcp + c†
p̄cp̄,

(3)
P†

h = ch̄ch, Ph = c†
hc†

h̄
, Nh = 2 − c†

hch − c†
h̄
ch̄,

such that the Hartree-Fock state (2) is the vacuum to the P
and N operators, Pp|HF〉 = Ph|HF〉 = 0, Np|HF〉 = Nh|HF〉 =
0. The pairing Hamiltonian (1) is then expressed as

H = EHF +
L∑

p=M+1

εp Np +
M∑

h=1

(−εh − Vhh) Nh

+
L∑

p,p′=M+1

Vpp′P†
p Pp′ +

M∑
h,h′=1

Vhh′P†
h Ph′

+
L∑

p=M+1

M∑
h=1

Vph(P†
p P†

h + PhPp), (4)

with EHF = 〈HF|H |HF〉 = ∑M
h=1 (2εh + Vhh) being the en-

ergy of the Hartree-Fock state (2).

B. Mean-field theory and its symmetry restoration

The standard description of the pairing correlations in-
duced by the Hamiltonian (1) is given within the BCS
approximation [1] in terms of the pair condensate,

|BCS〉 = exp[�†(x)]|0〉, �†(x) ≡
L∑

i=1

xic
†
i c†

ī
, (5)

which explicitly breaks the U (1) gauge symmetry associated
with particle number conservation. For macroscopic systems
the symmetry broken picture is exact and the particle number
fluctuations are negligible. However, for finite systems like
atomic nuclei or small superconducting grains one speaks
only of obscured or emergent symmetry breaking [29–32],
in which case the quantum fluctuations inevitably lift any
degeneracy associated with the broken symmetry.

Much effort is thus devoted to restore the symmetry of
the mean-field ansatz with the help of projection techniques
[33–39]. In the BCS case upon particle number restoration
we obtain the so-called number-projected BCS (PBCS) [3]
or antisymmetrized geminal power (AGP) in the context of

quantum chemistry [40],

|PBCS(x)〉 = PM |BCS〉

= 1

M!
[�†(x)]M |0〉

= 1

2π

∫ 2π

0
dθe−iθM exp[�†(eiθ x)], (6)

where PM is the projector onto the state of M pairs. While
PBCS describes well the properties of superfluid nuclei with
a small number of valence nucleons [36], it cannot account
for the weak pairing correlations that develop within larger
spaces, e.g., those considered in the large-scale energy density
functional treatments of finite nuclei or in the study of small
superconducting grains [10]. For a working description of
the weak pairing regime one usually turns to RPA [14] or
coupled-cluster [8,15,22] approaches. Generalizations of the
PBCS ansatz have also been considered based on its structural
similarity with a particular coupled-cluster ansatz [8]. Specif-
ically, the PBCS representation in the ph basis is obtained as

|PBCS〉 ∝
M∑

�=0

1

�!2
[�†

P(x)�†
H (1/x)]� |HF〉

= 1

2π

∫ 2π

0
dθ exp[�†

P(eiθ x)] exp[�†
H (e−iθ /x)] |HF〉,

(7)

in terms of the particle and hole components of the collective
pairs,

�
†
P(x) =

L∑
p=M+1

xpP†
p , �

†
H (x) =

M∑
h=1

xhP†
h . (8)

The structure of the PBCS state is then defined by the inverse
squared factorials appearing as expansion coefficients in the
collective ph-pair basis.

C. Coupled-cluster theory

Analogously, by using a slightly modified expansion in-
volving plain factorials one obtains a separable pair coupled-
cluster doubles variational ansatz (vCCDsep),

|vCCDsep〉 =
M∑

�=0

1

�!
[�†

P(y)�†
H (y)]� |HF〉

= exp[�†
P(y)�†

H (y)] |HF〉

= exp

⎡
⎣∑

p,h

ypyhP†
p P†

h

⎤
⎦ |HF〉. (9)

This is a particular case of a pair coupled-cluster doubles
variational wave function (vCCD),

|vCCD〉 = exp

⎡
⎣∑

p,h

zphP†
p P†

h

⎤
⎦ |HF〉, (10)

involving the most general double excitations that do not
break pairs through a fully nonseparable structure matrix
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FIG. 1. Error in the correlation energy (29) relative to its exact value (in percentages) versus the pairing strength G (in units of the level
spacing ε) for the fully variational vCCD (10), PBCS (6), and vCCDsepPBCS (13) wave functions in the case of an L = 12 level system at
half filling. The “vCCDsep+PBCS” procedure indicated by a red dashed line involves an energy minimization with respect to the vCCDsep

amplitudes in the presence of the fixed optimal PBCS reference. Within the “PBCS+vCCDsep” procedure indicated by a blue dashed line the
PBCS amplitudes are varied in the presence of the fixed optimal vCCDsep structure.

zph [14]. The separable case vCCDsep is thus recovered for
zph = yp yh.

On the one hand, the full freedom in the structure matrix
of the CCD ansatz allows for an excellent description of the
weak pairing regime where the exact solution to leading order
involves the nonseparable pair-excitation amplitudes zph =
(G/2)/(εp − εh). This is from the additional beyond-pair cor-
relations (in the sense of Ref. [8]) accounted for relative to
the separable case. Note, for example, that the Richardson so-
lution involving complex-conjugated pairs may be expressed
exactly as a product of four-body quartet structures [41]. On
the other hand, the computational complexity of evaluating
operator matrix elements exactly in the nonseparable case
grows exponentially with the size of the system. The usual
approximation of coupled cluster involves a left projection
onto the subspaces of zero and two ph pairs, thus breaking
the Ritz variational principle. Furthermore, even with a fully
nonseparable structure matrix, the validity of the vCCD ansatz
breaks down around the critical value of the pairing strength
(see also Fig. 1). The choice of a BCS mean-field reference
state does improve on this aspect at the cost of effectively
breaking the particle number symmetry [15].

Given the success of vCCD in the weak pairing regime and
that of PBCS in the strong pairing regime, it is then natural to
combine them for a precise unified description of all regimes.

D. Combining coupled-cluster and symmetry-restored
mean-field theories

The symmetry restoration of broken-symmetry coupled-
cluster theories was only recently considered [27,42–44]. For
the schematic pairing Hamiltonian with the breaking and
restoration of the particle-number symmetry, the so-called
particle-number-projected Bogoliubov-coupled-cluster theory

yields highly accurate results [18]. In this context, a set
of differential equations is set up for obtaining the gauge-
angle-dependent excitation operator. The practical need for
truncating this set of equations implies, however, an approx-
imate action of the projection operator, which together with
the truncation of the cluster excitation operator itself leads to
a violation of the Ritz variational principle.

It is the purpose of this work to explore a physically trans-
parent alternative in the form of a variational CCD-PBCS
combined approach. Ideally the ground state would involve
the CCD excitations built directly on top of the particle-
number-projected BCS as

|vCCD-PBCS〉 = exp

⎡
⎣∑

p,h

zphP†
p P†

h

⎤
⎦|PBCS(x)〉, (11)

where the L mixing amplitudes xi of the PBCS state and the
M(L − M ) structure matrix elements zph of the CCD excita-
tions are to be treated as free variational parameters. Indeed,
the energy minimization procedure,

Egs = minψ

〈ψ |H |ψ〉
〈ψ |ψ〉 , (12)

yields extremely precise results for the few small systems
where this ansatz may actually be applied.

Computational access to larger systems is enabled upon
various simplifications. Let us consider first the separability
approximation zph = ypyh for the structure matrix of the CCD
excitations in Eq. (11), yielding the vCCDsepPBCS ansatz,

|vCCDsepPBCS〉 = exp[�†
P(y)�†

H (y)] |PBCS(x)〉, (13)

which involves 2L independent variational parameters xi, yi.
Remarkably, while the PBCS ansatz (6) and the vCCDsep
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ansatz (9) each individually fail in the weak pairing regime
because of their separable structure matrices, the combined
vCCDsepPBCS wave function will turn out to be quite accu-
rate. This may be easily understood by noting that for weak
pairing the above ansatz effectively involves a nonseparable
structure matrix in the form,

|vCCDsepPBCS〉 ≈
[

1 +
∑
p,h

(xpxh + ypyh)P†
p P†

h

]
|HF〉,

(14)
obtained after taking into account the PBCS (6) and vCCDsep

(9) expansions and redefining xh → 1/xh in (7). The accuracy
of the doubly separable 2L-dimensional parametrization of the
fully nonseparable M(L − M )-dimensional structure matrix
naturally degrades with increasing system size, the actual rate
being numerically determined in the next section.

An alternative approximation scheme would then involve
a fully nonseparable CCD excitation, limited, however, to a
relatively small finite window around the Fermi level. This
is from the exponential increase with the system size of the
computational cost for evaluating the various matrix elements
on the CCD wave function; see, e.g., Eqs. (26)–(28) below.
We thus consider the combination,

|vCCD(w)PBCS(x, z)〉 = vCCD(w)(z)|PBCS(x)〉, (15)

with

vCCD(w)(z) = exp

[
M+w/2∑
p=M+1

M∑
h=M+1−w/2

zphP†
p P†

h

]
, (16)

where w denotes the size of the truncation window. As will be
detailed in the next section, the quality of the results obtained
within this approach will turn out to be inferior to that of the
above vCCDsepPBCS ansatz of Eq. (13) involving two sets of
global parameters.

Overall the optimal compromise between the computa-
tional complexity and the accuracy of the results is found by
combining the above two approximation schemes (9) and (15)
into the ansatz,

|vCCD(w)
sep PBCS(x, y, z)〉 = vCCD(w)

sep (y, z)|PBCS(x)〉,
vCCD(w)

sep = vCCD(w)(z) vCCDsep(y), (17)

involving a total of 2L + (w/2)2 free variational parameters
and leading to highly accurate results comparable to those of
Ref. [18], to be discussed later on. Next, we shortly review the
actual computational strategy for the above mentioned wave
functions.

E. Computational aspects

In this section we propose a novel efficient algorithm
for the evaluation of expectation values on the combined
vCCD(w)

sep PBCS wave function (17). It is based on a repre-
sentation of the PBCS (7), vCCDsep (19), and vCCD(w) (16)
terms as disentangled particle and hole gauge-angle-rotated
BCS states.

We start from the discrete exact representation for the
particle-number projection operation and decompose the

PBCS ansatz using the definitions of Eqs. (7) and (8):

|PBCS〉 =
L∑

n=0

exp[�†
H (e−iθn x)] exp[�†

P(eiθn x)] |HF〉, (18)

where θn = 2πn/(L + 1). Note that we neglect the irrelevant
constant normalization factors throughout this section.

The collective pairs (for the particle and hole subspaces)
appearing in the vCCDsep operator,

vCCDsep =
M∑

�=0

1

�!
[�†

P(y)�†
H (y)]�, (19)

are also expanded as superpositions of gauge-angle-rotated
BCS operators,

[�†
P(y)]�

�!
=

L−M∑
k=0

e−iφk� exp[�†
P(eiφk y)],

[�†
H (y)]�

�!
=

M∑
k=0

e−iϕk� exp[�†
H (eiϕk y)], (20)

with φk = 2πk/(L − M + 1) and ϕk = 2πk/(M + 1). Finally
we obtain the representation,

|vCCDsepPBCS〉 =
L−M∑
kp=0

M∑
kh=0

L∑
n=0

gkpkh

× BCSP(kp, n) BCSH (kh, n) |HF〉, (21)

in terms of the gauge-angle-rotated BCS operators,

BCSP(kp, n) = exp[�†
P(eiθn x + eiφkp y)],

(22)

BCSH (kh, n) = exp[�†
H (e−iθn x + eiφkp y)],

with expansion coefficients,

gkpkh =
M∑

�=0

�! exp[−i(φkp + ϕkh )�]. (23)

We are interested in the expectation values of generic
particle-number-conserving ph-factorized operators O =
O(P)O(H ) on the vCCDsepPBCS state (21). As the particle-
number projection operation needs only to be performed once
on the mean-field BCS wave function, we obtain

〈O〉 = 〈vCCDsepBCS|O(P)O(H )|vCCDsepPBCS〉

=
L−M∑

kp,k′
p=0

M∑
kh,k′

h=0

g∗
kpkh

gk′
pk′

h

L∑
n=0

O(P)
kp,k′

p,n
O(H )

kh,k′
h,n

, (24)

involving the matrix elements between particle and hole BCS
states (22),

O(P)
kp,k′

p,n
= 〈BCSP(kp, 0)|O(P)|BCSP(k′

p, n)〉,
O(H )

kh,k′
h,n

= 〈BCSH (kh, 0)|O(H )|BCSH (k′
h, n)〉. (25)

By considering all terms in Eq. (4), the expression (24) may
be directly employed to compute the energy expectation value
E = 〈H〉/〈I〉 on the vCCDsepPBCS wave function.
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To include the effects of the nonseparable vCCD(w)

excitations of Eq. (17) we use a Hubbard-Stratonovich trans-
formation [45] and pass to a disentangled BCS representation
of the vCCD operator,

vCCD(z) = exp

⎛
⎝∑

p,h

zphP†
p P†

h

⎞
⎠

=
∫

dLξ exp

(
−1

2
ξT Z−1 ξ

)

× exp[�†
P(ξ ) + �

†
H (ξ )], (26)

with

Z =
(

0 z
zT 0

)
. (27)

This BCS representation allows us to generalize the above
Eq. (24) to the expectation values of ph-factorized operators
on the vCCD(w)

sep PBCS wave function (17). In practice the
matrix elements on the resulting BCS wave functions which
generalize Eq. (25) are to be treated as polynomials in the
integration variables ξ . Only specific terms corresponding
to the various nonzero Wick contractions are to be selected
according to∫

dLξ exp

(
−1

2
ξT Z−1 ξ

)
ξiξ j . . . ξkξl =

∑
Wick

Zab . . . Zcd ,

(28)

the set of indices {a, b, ..., c, d} representing a permutation of
{i, j, ..., k, l} [46].

With the nonseparable CCD excitations restricted to a
small window of w levels around the Fermi level as in
Eq. (15), the matrix elements of the relevant operators on
generic vCCD(w)BCS states may be computed analytically
(the notebook in CADABRA2 [47] is available upon request
from the authors). Their subsequent coupling to the separa-
ble subspace (i.e., the complement of the w-level window)
leads to the final vCCD(w)

sep PBCS results presented in the next
section.

III. NUMERICAL RESULTS

In this section we benchmark the variational calculations
for the various wave functions presented above against the
exact solution [28] for a constant pairing Hamiltonian [Vi, j =
−G in Eq. (1)] of equally spaced single-particle levels with
energies εk = kε, k = 1, . . . , L. To avoid the singularities in
the equations that solve exactly the picket fence model we use
the same algorithm proposed by Richardson in [28].

The numerical code used to compute the expectation value
of the Hamiltonian (4) on the various derivatives of the vCCD-
PBCS wave function is freely available upon request from the
authors. The minimization procedure for the energy function
(12) is performed using the e04ucf routine of the NAG library
[48].

We present in Fig. (1) the errors for the correlation energy,

Ec = 〈ψ |H |ψ〉
〈ψ |ψ〉 − EHF, (29)

relative to its exact value for L = 12 at half filling. On the
one hand, notice how PBCS (6) and CCDsep (9) are limited in
the weak pairing regime by their common separable structure,
both reducing to (1 + �

†
P�

†
H )|HF〉 at |G|/ε � 1. On the other

hand, the full generality of the structure matrix of the vCCD
wave function (10) allows it to capture precisely all the cor-
relations in this regime: to leading order the exact correlation
energy is Ec,exact = −∑

ph(G2/2)/(εp − εh) and corresponds
to the amplitudes zph = (G/2)/(εp − εh). Beyond the critical
value Gcr of the HF to BCS transition, however, the vCCD
ansatz quickly loses its ability to describe the stronger attrac-
tive pairing correlations, becoming indistinguishable from its
separable version vCCDsep for G/ε > 1 (see also the discus-
sion around Fig. 4 of Ref. [8]).

The situation changes in the repulsive pairing regime with
vCCD performing well while the PBCS errors increase dra-
matically from weak to strong coupling. Interestingly, starting
at a moderate repulsive coupling the CCDsepPBCS ansatz is
able to improve upon the vCCD energetics, the latter wave
function being limited by its rigid exponential structure.

As indicated by the thick green line next to the horizontal
axis of Fig. 1, the combined vCCDsepPBCS wave function
(13) leads to very accurate energetics across all regimes with
the relative errors in the correlation energy not exceeding
3 × 10−4 for attractive pairing. Note, however, that it is essen-
tial to enable all parameters to vary freely in the minimization
process as to retain the full flexibility of the wave function and
thus recover all available dynamical correlations. Indeed, by
considering a variational CCDsep on top of the frozen optimal
PBCS reference (or vice versa) we find significant improve-
ments only in the weak pairing regime, as indicated by the
dashed lines in Fig. 1. In particular, by varying in this way just
the PBCS amplitudes within vCCDsepPBCS while keeping
fixed the optimal CCDsep structure (computed beforehand) we
find no improvement over the full vCCD results for G > Gcr.
At |G|/ε � 1, the results differ because of the limitations
discussed around Eq. (14).

The relative errors for the correlation energy (29) relative
to its exact value are shown in logarithmic scale in Fig. 2 for a
slightly larger system of L = 20 levels at half-filling. Note that
the vCCDsepPBCS errors have slightly increased with respect
to the L = 12 case, but are still respectably accurate when
compared to PBCS. The limitations of the vCCDsepPBCS
wave function in the weak pairing regime originate in the
approximate form of its structure matrix, as remarked around
Eq. (14).

This weak pairing behavior may be improved at a
reasonable computational cost by including additional non-
separable CCD excitations on top of vCCDsepPBCS. The
vCCD(w)

sep PBCS ansatz (17) already provides more than an or-
der of magnitude lower errors with respect to vCCDsepPBCS
at weak pairing even for the modest w = 4. A larger nonsepa-
rable CCD excitation window w = 6 naturally accounts for an
additional amount of correlations, further reducing the errors
at weak pairing. Beyond the critical value Gcr, however, there
is no significant benefit of the supplementary nonseparable
excitations. This is also the situation for the vCCD(w)PBCS
ansatz (15) which displays the same strong pairing behavior
as the plain PBCS. With the Fermi sea being washed out at
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FIG. 2. Error in the correlation energy (29) relative to its exact
value (in percentages) versus the pairing strength G (in units of the
level spacing ε) for the fully variational PBCS (6), vCCDsepPBCS
(13), vCCD(w=6)PBCS (15), and vCCD(w=4,6)

sep PBCS (17) wave func-
tions in the case of an L = 20 level system at half filling.

strong pairing, only a global deformation of PBCS such as
vCCDsepPBCS is able to bring substantial improvement to
the energetics, as opposed to any local deformation such as
vCCD(w)PBCS (15).

The numerical values for the optimal nonseparable struc-
ture matrix elements zph are typically found to be very small,
of the order 10−2–10−3 upon the full vCCD(w)

sep PBCS energy
minimization. In practice, within the vCCD(w)

sep PBCS approach
we chose to limit the nonseparable CCD excitations to linear

order,

vCCD(w)(z) = 1 +
M+w/2∑
p=M+1

M∑
h=M+1−w/2

zphP†
p P†

h , (30)

which allows for a decrease in the computational complexity
without any noticeable loss in precision with respect to the full
form of Eq. (15).

An additional computational speed-up is enabled by lim-
iting the action of the particle number projection operations
in Eqs. (18) and (20) to a reduced subspace of particle and
hole collective pairs. For the moderate values of the pairing
strength G considered here (2 to 3 times the value of Gcr) this
still allows for an exact particle-number conservation (within
the numerical accuracy). This key computational aspect is
ensured by the negligible contributions of the high order terms
within the PBCS (6) and vCCDsep (19) expansions, because of
the small (subunitary) numerical values of their corresponding
collective pair amplitudes. All results presented below for L =
60 and L = 100 were obtained upon projecting the particle
number only within a C1 = 15 ph-pair subspace for PBCS in
Eq. (18) and within a C2 = 10 ph-pair subspace for CCDsep

in Eq. (20). The gauge angles were adjusted accordingly, i.e.,
θn = 2πn/(C1 + 1), φk = ϕk = 2πk/(C2 + 1). We also note
that for all considered systems it was sufficient to restrict the
amount of CCDsep excitations by imposing an upper bound at
�max = 7 in the � sum of Eq. (23), as to avoid the numerical
errors originating from the combination of large factorials and
rapidly oscillating phases and, at the same time, preserving the
numerical precision.

We present in Fig. 3 the relative errors in the corre-
lation energy (29) relative to its exact values for L = 60
(left panel) and L = 100 (right panel) at half filling. The

FIG. 3. Error in the correlation energy (29) relative to its exact value (in percentages) versus the pairing strength G (in units of the level
spacing ε) for the fully variational vCCDsepPBCS (13) and vCCD(w)

sep PBCS (17) wave functions, in the case of an L = 60 level system (left
panel) and for an L = 100 level system (right panel) at half filling. The red squares indicate the results of the particle-number-projected
Bogoliubov-coupled-cluster theory of Ref. [18]. Note also that for L = 100, the errors for the pure PBCS (6) reach a maximum of about 22%
at G/ε = 0.24 and decrease down to 6% at very small G (see also Fig. 1 of Ref. [18]).
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FIG. 4. Error in the correlation energy (29) relative to its exact
value (in percentages) versus the filling fraction M/L of an L = 100
level system for the fully variational PBCS (6) and vCCDsepPBCS
(13) wave functions. The pairing strength is G = 1.5Gcr, with Gcr

the critical strength at half filling. The blue diamonds indicate the
results of the particle-number-projected Bogoliubov-coupled-cluster
theory of Ref. [18].

vCCDsepPBCS wave function remains surprisingly accu-
rate given that its doubly separable structure matrix (14)
at weak coupling involves only L independent parameters
(down from a total of 2L parameters because of the present
ph symmetry) as compared to the fully nonseparable CCD
structure matrix that requires L2/8 independent parameters
(still for the present ph-symmetric systems). More pre-
cisely, the vCCDsepPBCS errors at weak coupling are 0.3%
and 0.5% for L = 60 and L = 100, respectively, increasing
slightly until G ∼ Gcr and then rapidly decreasing at stronger
couplings.

While the inclusion of nonseparable local CCD excitations
within the vCCD(w)

sep PBCS ansatz (17) significantly improves
the error at weak coupling even for relatively very small
values of w, perfectly accurate energetics would still re-
quire a set of global ph excitations on top of vCCDsepPBCS.
Nevertheless, the overall quality of the vCCD(w=6)

sep PBCS
results is at the level of the more involved particle-number-
projected Bogoliubov-coupled-cluster theory of Ref. [18],
while consistently providing an energy upper bound across
all regimes.

The situation is similar away from half filling, as shown in
Fig. 4. To provide a comparison with the results of Ref. [18],
we consider the L = 100 case at an interaction strength of
G = 1.5Gcr. For this value the particle-number symmetry is
broken for all filling fractions. Both PBCS and vCCDsepPBCS
are most accurate for small (or large) filling fractions, but their
errors live on different scales (0.5% vs 20% at half filling).
As seen in Fig. 3, in the considered regime the nonsepara-
ble local CCD(w) excitations bring no improvement over the
vCCDsepPBCS results, which are well matched against those
of Ref. [18].

FIG. 5. Error in the canonical gap (31) relative to its exact
value (in percentages) versus the pairing strength G (in units of the
level spacing ε) for the fully variational PBCS (6), vCCDsep (9),
vCCDsepPBCS (13), and vCCD(w=6)

sep PBCS (17) wave functions in the
case of an L = 60 level system at half filling.

Finally, we consider the behavior of the canonical gap,

� = G
L∑

i=1

√
ni(1 − ni ), (31)

where ni = 〈c†
i ci + c†

ī
cī〉/2 indicates the occupation probabil-

ity of each level i. This quantity exhibits a more pronounced
sensitivity to the structure of the wave function than the
correlation energy from its dependence on the occupation
probabilities.

We show in Fig. 5 the error for the canonical gap � rel-
ative to its exact value for L = 60 at half filling. Improving
on both individual PBCS and vCCDsep wave functions, their
combination vCCDsepPBCS only shows visible ∼1% errors
in the G < Gcr region. These are further reduced within the
vCCD(w)

sep PBCS approach which exhibits highly accurate oc-
cupations across all regimes.

IV. SUMMARY AND CONCLUDING REMARKS

In this work, we considered a variational approach for
the ground state of finite paired systems based on a com-
bined coupled-cluster and particle-number-projected BCS
wave function. We benchmarked our results against the exact
solution for a picket-fence model involving a pure pairing
force acting on a space of doubly degenerate, equally dis-
tanced levels. The analyzed systems range from small (L =
M = 12) to relatively large (L = M = 100).

We confirmed within the variational context that the
combination of symmetry-restored mean-field theory and
coupled-cluster theory leads to a wave function that is signif-
icantly better than either of the two taken separately, which
is also the main conclusion of Ref. [18]. By incorporating
pure four-body correlations, our vCCD(w)

sep PBCS (17) is able to
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reproduce well the physics at weak pairing while also offering
orders of magnitude smaller errors relative to the standard
pair-only PBCS (6) across all other regimes. Our results match
the high level of precision of the particle-number-projected
Bogoliubov-coupled-cluster theory of Ref. [18], while consis-
tently providing an energy upper bound.

Computational limitations include the restriction of the
beyond-pair correlations to a relatively small window around
the Fermi level (discussed in detail in the main text) and also
the need for a restricted space for particle-number projec-
tion. While the latter does not spoil the exact particle-number
conservation (within the numerical accuracy) for moderate
values of the pairing strength, alternative approaches need to
be considered for the very strong pairing regime G � Gcr.
One possibility would involve limiting the separable CCD
excitations to linear order within the vCCDsepPBCS approach.
Computations with this simpler wave function could then be
performed efficiently without resorting to any approximations
for an improvement over the already very good PBCS results
for this regime.

The vCCD(w)
sep PBCS (17) wave function was shown to be

quite flexible but it is still affected by structural limitations
leading to a visible maximum in the energy error around
G ∼ 1.5Gcr in all analyzed cases. Attempts at mitigating
these effects have included treating as independent variational
parameters the factorials in Eq. (23) originating from the
vCCDsep expansion (9), with only marginal benefits.

Possible avenues to explore could involve the variational
treatment of beyond-ph CCD excitations on top of the

symmetry-restored mean-field state as in

|�〉 = exp

(
L∑

i, j=1

zi j c†
i c†

ī
c j̄c j

)
|PBCS〉, (32)

which would act as a more natural choice (albeit more com-
putationally challenging) for a regime lacking a well-defined
Fermi sea. As a first step one could envision building a mul-
tiseparable beyond-ph CCD excitation operator which could
be optimized with the very recently developed methods for
constructing linearly independent PBCS states [19].

Finally, we leave to future studies extensions of the theory
presented in this work that could incorporate the effect of
seniority breaking terms within a generalized variational wave
function.
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