2*n* transfer and *E*2 strengths in 154 Sm

H. T. Fortune

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 30 January 2021; revised 7 April 2021; accepted 10 May 2021; published 20 May 2021)

Two separate analyses of E2 strengths among the first two bands in ¹⁵⁴Sm are consistent. They indicate that mixing is small and decreases with increasing J.

DOI: 10.1103/PhysRevC.103.054316

I. INTRODUCTION

A generalized coexistence model [1,2] was developed for use in an analysis of 2n transfer data in a series of isotopes in which an intruder 0^+ state mixed with the normal ground state (g.s.). Experimental cross-section ratios for 2n stripping and pickup leading to the two experimental 0^+ states provided mixing amplitudes for all the isotopes in terms of a single dimensionless parameter, which was of order unity. An alternative view of the analysis was the derivation of mixing amplitudes for all nuclei in terms of that for any one. The model turned out to be useful also for proton [3] and α [4] transfer and E2 strengths [5,6] in such coexistence nuclei. The model was initially applied to Ge [7] and Zn [6] nuclei and more recently to Zr [8] and Mo [9].

Earlier, I examined results for 2n transfer and E2 strengths in 150,152 Sm [10]. That 2*n*-transfer analysis provided 0⁺ mixing amplitudes for 150,154 Sm in terms of the mixing in 152 Sm. A separate band-mixing analysis [11] of the E2 strengths in ¹⁵²Sm [12] selected one value of this mixing for that nucleus $(0^+$ mixing intensity of 0.341 [11]). It turned out that the 150 Sm 0⁺ mixing that resulted from the 2*n* analysis with that value of 152 Sm mixing was in agreement with the 0⁺ mixing that emerged from a band-mixing analysis of E2 strengths in 150 Sm [10]. I did not include the E2 strengths in 154 Sm in that analysis because only three of the four strengths needed were available. I address the ¹⁵⁴Sm case here.

II. ANALYSIS

A great deal of information is available concerning the structure of ¹⁵⁴Sm. Here, I am interested only in the first two rotational bands. Values of E2 transition strengths for $2 \leftrightarrow 0$ and $4 \leftrightarrow 2$ transitions in ¹⁵⁴Sm are listed in Table I [13,14]. Energies of the first two bands are plotted in Fig. 1. Strengths of $J \rightarrow J-2$ transitions within the ground-state band are plotted in Fig. 2, compared with predictions for a deformed rotor. Agreement is good. Long ago, Fraser et al. [15] measured transition matrix elements between states in the ground-state bands of 152,154 Sm with J up to 10. They observed large deviations from rotational-model predictions in ¹⁵²Sm but not in ¹⁵⁴Sm. Their conclusion for ¹⁵⁴Sm agrees with Fig. 2.

Takemasa et al. [16] analyzed 2n transfer data in the Sm isotopes with a two-state mixing model. They assumed the ground states of $^{148}\mathrm{Sm}$ and $^{154}\mathrm{Sm}$ were spherical and deformed, respectively, and that both ¹⁵⁰Sm and ¹⁵²Sm were mixtures of the two structures.

Kumar [17] found ¹⁵⁴Sm to be "a well-deformed nucleus." with weak mixing between low-energy rotations and vibrations. Bhardwaj et al. [18] considered mixing of ground, β , and γ bands in several so-called transitional nuclei and selected ¹⁵⁴Sm as "a representative of well deformed nuclei."

The conventional picture of the band head of the excited 0^+ band is that it is a so-called β vibration [13,19]. Krücken et al. [19] measured lifetimes of the 0_2 and 2_{ν} states in ¹⁵⁴Sm following Coulomb excitation. They stated that "154Sm was identified as one of the few deformed nuclei where the first excited 0^+ state is the β vibration of the ground state." Quite recently, Otsuka et al. [20] have performed Monte Carlo shellmodel calculations for ¹⁵⁴Sm and concluded that "the present calculation indicates a coexistence between prolate and triaxial shapes in a stark contrast to the conventional picture of the β and γ vibrations." General and specific details of coexistence are discussed in an excellent review [21]. Perhaps surprisingly, this review does not mention ¹⁵⁴Sm.

Here, I undertake a two-state mixing analysis of members of the first two bands without needing to specify anything about the structure of the underlying basis states.

As elsewhere, I write for ¹⁵⁴Sm,

$$0_1 = a \, 0_g + b \, 0_e, \quad 0_2 = -b \, 0_g + a \, 0_e,$$

$$2_1 = A \, 2_g + B \, 2_e, \quad 2_2 = -B \, 2_g + A \, 2_e$$

and

$$4_1 = C 4_g + D 4_e, \quad 4_2 = -D 4_g + C 4_e$$

define $M_g = \langle 0_g || E2 || 2_g \rangle, M_e = \langle 0_e || E2 || 2_e \rangle, M'_g =$ Ι $\langle 2_{\mathfrak{g}} \| E2 \| 4_{\mathfrak{g}} \rangle, M'_{\mathfrak{g}} = \langle 2_{\mathfrak{g}} \| E2 \| 4_{\mathfrak{g}} \rangle.$

Furthermore, I assume the g states are not connected to the *e* states by the *E*2 operator. No other assumptions are necessary. Whenever all four of the relevant E2 transition matrix elements are available, the solution of a mixing fit is unique. Central values of the fit parameters reproduce the

 2_e ,

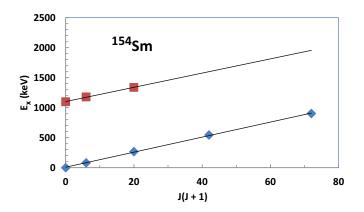


FIG. 1. Energies of members of the first two bands in 154 Sm are plotted vs J(J + 1).

central values of the experimental M's, and uncertainties in the fit parameters are computed from uncertainties in the experimental numbers. If only B(E2)'s and not the M's are known, a sign ambiguity can exist. Because of destructive interference, M_1 and M_2 can have either sign; M_0 and M_3 are positive by definition. In the present case, preferred signs emerge from the mixing analysis.

In the 2*n* transfer analysis mentioned above, the combination of 2*n* and *E*2 strengths in ¹⁵²Sm selected a 0⁺ mixing intensity of 0.341 in that nucleus. From 2*n* transfer data alone, this mixing in ¹⁵⁴Sm corresponds to a 0⁺ mixing *amplitude* of 0.245 in ¹⁵⁴Sm. I have first attempted to reproduce the *E*2 matrix elements of Table I with this value of 0⁺ mixing. Results of the fit for the transition matrix elements are listed in Table I (Fit 1). The fitted parameters are listed in Table II. It can be noted that mixing is small for each *J* and appears to decrease as *J* increases. (see also Fig. 3.)

Without the input from 2n transfer, there is not enough experimental information to determine the seven unknown parameters: mixing in 0^+ , 2^+ , and 4^+ states, together with the four basis-state transition matrix elements. With only six

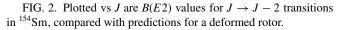


TABLE I. *E*2 Transition strengths *B* [in Weisskopf units (W.u.)] and matrix elements $M[(W.u.)^{1/2}]$ for $2 \leftrightarrow 0$ and $4 \leftrightarrow 2$ transitions in ¹⁵⁴Sm.^a

Label	Init.	Fin.	B ^b	unc	М	unc	Fit 1	Fit2
M_0	2_{1}	0_1	176 °	(1)	29.66	(0.08)	29.66	29.66
M_1	0_{2}	2_{1}	11.2	(2.1)	± 3.35	(0.31)	3.35	3.11
M_2	2_{2}	0_1	0.32	(0.04)	± 1.26	(0.08)	-1.26	-1.47
M_3	2_2	0_2	Unknown				24.8	25.2
M'_0	41	2_{1}	245 °	(6)	46.96	(0.57)	46.96	46.96
M_1'	2_{2}	41	1.32	(0.15)	± 2.57	(0.15)	3.19	3.16
M'_2	42	2_{1}	0.32	(0.11)	± 1.68	0.29	-0.93	-1.56
$M_3^{\tilde{i}}$	42	2_2	Unknown				39.0	39.7

^aInit. stands for initial, Fin. for final, and unc for uncertainty. ^bFrom Ref. [13] unless noted otherwise. ^cFrom Ref. [14].

TABLE II. Fit parameters in ¹⁵⁴Sm.

	Fit	1 ^a	Fit 2 ^b		
J	g	е	g	е	
0	0.245(15)	0.970	0.216(13)	0.976	
2	0.162(13)	0.987	0.134(11)	0.991	
4	0.115(30)	0.993	0.0801(20)	0.997	
$M[(W.u.)^{1/2}]$	24.7(3)	30.0(5)	25.2(3)	29.9	
$M'[(W.u.)^{1/2}]$	38.9(13)	47.2(15)	39.6(13)	47.1(15)	

^a0⁺ mixing solely from 2n transfer analysis [10], others from M(E2) from Table I.

^bUsed only *E*2 strengths from Table I, plus the assumption $M_g/M_e = M'_o/M'_e$.

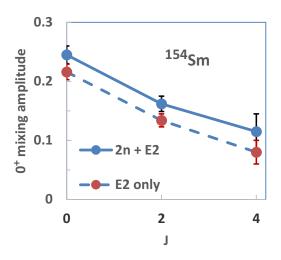


FIG. 3. Mixing amplitudes for J = 0, 2, and 4 from the present analysis.

TABLE III. Mixing matrix elements (keV) for Fit 2 of Table II.

J	V	
0	232(14)	
2	232(14) 146(12) 86(22)	
4	86(22)	

experimental quantities known, one additional constraint is needed to enable a fit. I have chosen to assume the relationship $M_g/M_e = M'_g/M'_e$. If either of the two missing E2 strengths ever becomes available, the analysis can be repeated with this constraint removed. The results of this fit are also listed in Table I, and the fitted parameters are given in Table II (Fit 2). Note that $M'_g/M_g = 1.57$, very close to the ratio of 1.60 expected for a 0⁺ rotational band. The similarity of the results of the two fits is apparent. Both fits allow predictions for the two missing matrix elements as given also in Table I. Thus, the mixing in the g.s. of ¹⁵⁴Sm, which is frequently assumed to be zero, is indeed small, but definitely not zero.

The potential matrix elements responsible for the mixing in Fit 2 are listed in Table III for each J. The difference for J = 0 and J = 2 is a 4.7 σ effect; for J = 2 and 4, the difference is 2.4 σ .

As mentioned above, the pattern of E2 strengths in ¹⁵⁴Sm is considerably different from that in ¹⁵²Sm. And yet, the basis-state matrix elements that emerge from the mixing are very similar in the two nuclei as noted in Table IV. Thus, the properties of the basis states are about the same in the two nuclei. The differences in experimental quantities are due to

- [1] M. Carchidi, H. T. Fortune, G. S. F. Stephans, and L. C. Bland, Phys. Rev. C 30, 1293 (1984).
- [2] M. Carchidi and H. T. Fortune, J. Math. Phys. 27, 633 (1986).
- [3] G. S. F. Stephans, H. T. Fortune, L. C. Bland, M. Carchidi, R. Gilman, G. P. Gilfoyle, and J. W. Sweet, Phys. Rev. C 35, 2033 (1987).
- [4] M. Carchidi and H. T. Fortune, Phys. Rev. C 31, 853 (1985).
- [5] H. T. Fortune and M. Carchidi, Phys. Rev. C 36, 2584 (1987).
- [6] M. Carchidi and H. T. Fortune, Phys. Rev. C 37, 556 (1988).
- [7] S. Mordechai, H. T. Fortune, M. Carchidi, and R. Gilman, Phys. Rev. C 29, 1699 (1984).
- [8] H. T. Fortune, Phys. Rev. C 100, 034303 (2019).
- [9] H. T. Fortune, Phys. Rev. C 100, 064322 (2019).
- [10] H. T. Fortune, Nucl. Phys. A 984, 1 (2019).
- [11] H. T. Fortune, Nucl. Phys. A 966, 47 (2017).
- [12] R. M. Clark, M. Cromaz, M. A. Deleplanque, R. M. Diamond, P. Fallon, A. Görgen, I. Y. Lee, A. O. Macchiavelli, F. S. Stephens, and D. Ward, Phys. Rev. C 67, 041302(R) (2003).

TABLE IV. Basis-state E2 matrix elements $[(W.u.)^{1/2}]$ in 152 Sm ^a and 154 Sm.

A	M_g	M_e	M_g'	M'_e
152	29.5(13)	21.0(9)	49.4(22)	37.1(17)
154	30.0(5)	24.7(3)	47.2(15)	38.9(13)

^aReference [11].

the difference in mixing intensities: 0.341 in ¹⁵²Sm [11] and 0.060 in ¹⁵⁴Sm (present) for the 0⁺ states. Concerning the *E*0 strength, because $\rho^2(E0)$ scales as a^2b^2 , and given the value of 56(8) × 10⁻³ in ¹⁵²Sm [22], I expect $\rho^2(E0)$ to be about 14×10^{-3} in ¹⁵⁴Sm.

III. SUMMARY

I have performed two separate band-mixing analyses of strengths for $2 \leftrightarrow 0$ and $4 \leftrightarrow 2$ transitions in ¹⁵⁴Sm for which a full data set is incomplete. The first analysis used 0⁺ mixing from an earlier analysis of 2n transfer data, whereas the second used only E2 information (plus the assumption of one additional constraint). Results of the two fits are consistent at approximately the 1σ level and indicate small mixing, with a small decrease with increasing J. It is significant that the E2 and 2n transfer analyses are in agreement. Although the mixing is small, it is distinctively different from zero. The smallness of the mixing agrees with several earlier works but disagrees with those that assumed zero mixing. The present analysis confirms that ¹⁵⁴Sm is an excellent example of a deformed collective nucleus.

- [13] T. Moller et al., Phys. Rev. C 86, 031305(R) (2012).
- [14] C. W. Reich, Nucl. Data Sheets 110, 2257 (2009).
- [15] I. A. Fraser, J. S. Greenberg, S. H. Sie, R. G. Stokstad, and D. A. Bromley, Phys. Rev. Lett. 23, 1051 (1969).
- [16] T. Takemasa, M. Sakagami, and M. Sano, Phys. Lett. B 37, 473 (1971).
- [17] K. Kumar, Nucl. Phys. A 92, 653 (1967).
- [18] S. K. Bhardwaj, K. K. Gupta, J. B. Gupta, and D. K. Gupta, Phys. Rev. C 27, 872 (1983).
- [19] R. Krücken, C. J. Barton, C. W. Beausang, R. F. Casten, G. Cata-Danil, J. R. Cooper, J. Novak, L. Yang, M. Wilhelm, N. V. Zamfir, and A. Zilges, Phys. Lett. B 454, 15 (1999).
- [20] T. Otsuka, Y. Tsunoda, T. Abe, N. Shimizu, and P. Van Duppen, Phys. Rev. Lett. **123**, 222502 (2019).
- [21] K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).
- [22] J. L. Wood, E. F. Zganjar, C. De Coster, and K. Heyde, Nucl. Phys. A 651, 323 (1999).