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Exotic toroidal and superdeformed configurations in light atomic nuclei: Predictions
using a mean-field Hamiltonian without parametric correlations

A. Gaamouci ,1 I. Dedes ,2,3 J. Dudek ,3,4 A. Baran,3 N. Benhamouda,1 D. Curien ,4 H. L. Wang ,5,4 and J. Yang 3

1Laboratoire de Physique Théorique, Faculté de Physique, USTHB, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria
2Institute of Nuclear Physics Polish Academy of Sciences, PL-31 342 Kraków, Poland
3Institute of Physics, Marie Curie-Skłodowska University, PL-20 031 Lublin, Poland

4Université de Strasbourg, CNRS, IPHC UMR 7178, F-67 000 Strasbourg, France
5School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China

(Received 31 December 2020; revised 11 April 2021; accepted 6 May 2021; published 19 May 2021)

Mean-field calculations in multidimensional deformation spaces are performed and the shape coexistence and
isomers generated by exotic nuclear configurations and toroidal and superdeformed ones are addressed. We use
a phenomenological mean-field Hamiltonian of Woods-Saxon type with its universal parametrization involving
eight parameters fixed once for all for the full periodic table. Original parametric correlations existing in this
type of Hamiltonians are removed using methods of inverse problem theory of applied mathematics. Stochastic
analysis of uncertainties of the final nuclear energy predictions with the obtained correlation-free parametrization
is performed and the viability tests are illustrated and discussed. Prediction capacities of resulting model related
to the description of the nuclear shape properties are cross-checked using the experimental information available,
revealing full coherence. Presented results encourage experimental verification of predicted exotic structures;
suggestions related to identification possibilities are formulated and discussed.
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I. INTRODUCTION

The notions of shape coexistence and of exotic shapes in
atomic nuclei have long traditions in nuclear structure lit-
erature even though, especially the issue of exotic shapes,
underwent a significant evolution in view of the progress in a
more recent research of exotic nuclei. It is worth emphasizing
that nuclear shapes in general and the exotic ones in particular
are ultimately related to the symmetry properties of the nu-
clear mean-field Hamiltonian, which are at the very basis of
their understanding.

At the most general level of the symmetry discussion, one
may evoke the unitary group, U(n), and the implied symme-
tries at the many-body level of the description of the nuclear
systems followed by the formal subgroup chains which lead,
at certain stage, to the symmetries such as, e.g., SU(3) and
pseudo-SU(3), down to the point groups describing geometri-
cal aspects of the symmetry—to mention just a few selected
keywords on the longer list. In particular, it has been pointed
out in Refs. [1,2], that SU(3) appears as an elementary sym-
metry of the nuclear shell model, with the consequences that
the underlying Hamiltonians combine the independent parti-
cle picture with collective rotation and/or collective effects
induced by the quadrupole-quadrupole interactions inherent
to the SU(3) generator structure. Nuclear structure mecha-
nisms discussed in this article can be seen as manifestations
of group-chain generated symmetries and symmetry-breaking
phenomena. They can be studied via nuclear structure con-
cepts such as single nucleon energies, total potential energies,

and implied noncollective phenomena, e.g., in the form of K
isomers built on axial-symmetry configurations or collective
effects, as, e.g., collective vibrations or nuclear rotational
bands built on various nonspherical-equilibrium configura-
tions.

Historically, one of the first nuclear geometries which was
considered unusual—thus exotic in the context of the present
article—was associated with very elongated axial symmetry
(ellipsoidal) shapes with the axis ratio approaching 2:1. The
latter became of particular interest with the arrival of the first
experimental discoveries of fission isomers and the underly-
ing, so-called double-hump fission barriers. Interested readers
may consult an early review in Ref. [3] for this part of the
evolution. The focus on this particular geometry has been
strengthened by the discovery of the nuclear superdeformation
at high angular momenta in 152Dy nucleus, first evidence in
Ref. [4], one year after the theory predictions based on the nu-
clear mean-field approach with the cranking approximation,
Fig. 2 of Ref. [5]. Numerous other cases of superdeformation
at high spins were found experimentally in many other nuclei
in the following years.

In the meantime, an adaptation of the original SU(3)
considerations to the description of relatively heavy nuclei
gave rise to introducing the so-called pseudo-SU(3) sym-
metry group, Refs. [6–9], which was known already at the
time of the first superdeformation discovery. The pseudo-
SU(3) symmetry considerations have been applied, cf. Figs.
1 and 2 of Ref. [10], to predict dozens of yet unknown
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superdeformation cases and equally significantly to predict
the nuclei in which this mechanism was not expected to
take place. These predictions were fully confirmed exper-
imentally during the years to come both in terms of the
presence and absence of superdeformed configurations in
agreement with predictions, cf. Ref. [11] and references
therein. This discussion, focused on superdeformed nuclear
configurations, strongly accentuates the importance of the
symmetry arguments in construction of the modeling methods
with manifested predictive power.

Early model arguments evoked in interpreting quantum
effects behind the superdeformation employed shell structures
produced by a deformed harmonic oscillator. Introducing ax-
ially symmetric harmonic-oscillator (HO) with frequency ω3

representing particle oscillations along the O3 axis and ω⊥
representing oscillations in the directions perpendicular to O3,
one demonstrates directly (cf. Figs. 6–48 in Ref. [12]) that for
frequency ratios satisfying ω⊥ : ωz = 2 : 1, the HO eigenval-
ues form specific degeneracies at certain energies with strong
gaps in between. As is well known today, strong gaps in the
single-particle spectra imply an increase in nuclear binding,
via strong negative so-called shell (or shell-correction) con-
tributions to the total nuclear energies and thus a possible
appearance of secondary, ternary, etc., potential energy min-
ima, leading to various forms of shape coexistence.

Following the same search principles, an “inverted” har-
monic oscillator frequency ratio ω⊥ : ωz = 1 : 2, rather than
2:1, another series of degeneracies of the oscillator single-
particle levels is obtained favoring strongly deformed oblate
shape configurations with the shell gaps differing from those
associated with the prolate shapes, thus encouraging the re-
search of “superoblate” nuclear deformations. In this article,
we focus on relatively light nuclei approximately in the mass
range A ≈ (30–50). Many of them attracted attention from
both theoretical and experimental viewpoints in the past.
While selected aspects of the experimental progress will be
pointed out in the article, here let us mention the arguments
of Ref. [13] suggesting possibly significant oblate-shape shell
-effects at Z, N = 14, 28, 36. Significantly earlier, Ref. [14],
experimental arguments based on the in-beam spectroscopy
and fragmentation reaction methods were obtained in favor
of very strong gaps at N = 14 and N = 16; cf. also Fig. 9 in
Sec. V.

We will discuss and illustrate in particular exotic nuclear
shape coexistence and competition, likely leading to isomers
which can be used to identify such structures. We believe
that exotic symmetries and isomers generated by them are
going to strongly impact our studies of nuclear structure
and influence experimental and instrumental methods lead-
ing to their manifestations. We will show that, in particular
at the large gaps in the single-nucleon spectra produced by
the strongly oblate quadrupole-deformed configurations the
underlying gaps can even be strengthened by superposing
higher order multipole deformations, such as the hexade-
capole one, αλ=4,μ. Among the latter ones, a significant impact
from the extremely large axial symmetry α40 deformation is
shown to lead to yet another exotic class of shapes resem-
bling closely the toroidal structures as discussed in detail
below.

The latter exotic structures may parallel the recently
identified tetrahedral and octahedral (so-called high-rank)
symmetries in subatomic physics, Ref. [15], predicted to gen-
erate rotational bands, yet with neither electric quadrupole
nor dipole transitions populating or depopulating those band-
member states. Thus, the lowest order electromagnetic-decay
transitions allowed are of the order of λ = 3 (octupole) or
λ = 4 (hexadecapole), implying hindrance of several orders
of magnitude. For all these reasons, identification of the high-
rank symmetries remains challenging; they are sometimes
referred to as hidden symmetries. It is worth emphasizing
that because of the high-rank symmetry hindrance, rota-
tional bands in question are composed of isomers, the latter
detectable with the help of the modern high-resolution mass-
spectrometry methods. Thus, the mass spectrometry can be
seen as an encouraging technique of detection of both toroidal
and high-rank symmetry isomers.

II. NUCLEAR ENERGY MODELING: TECHNIQUES
AND RELATED CHALLENGES

We employ the macroscopic-microscopic method us-
ing phenomenological realization of the nuclear mean-field
Hamiltonian with the deformed Woods-Saxon potential. We
follow the concept of the “universal parametrization” intro-
duced by other authors, Ref. [16], according to which one
single set of parameters of such a Hamiltonian is applicable to
all nuclei within the mass table. This idea has been in use over
many years and numerous application examples can be found
in contemporary literature as illustrated, e.g., in Ref. [17].

A. Mean-field Hamiltonian and total nuclear energy:
Calculation technique

Our numerical calculations are performed with the stan-
dard nuclear mean-field Woods-Saxon Hamiltonian:

Ĥ = T̂ + V̂WS + V̂ so
WS + [V̂Coulomb for protons]. (1)

Above, T̂ represents kinetic energy operator and V̂WS is the
central Woods-Saxon potential,

V̂WS(�r, α;V c, rc, ac) = V c

1 + exp[dist� (�r, Rc; α)/ac]
, (2)

where V c denotes the central potential depth parameter and
rc in Rc = rcA1/3 is the central radius parameter. Similarly
ac is referred to as central diffusivity parameter. Position-
vector-dependent function dist� (�r, Rc; α) is defined as the
geometrical distance between current point position in space,
�r ≡ {x, y, z}, and the nuclear surface �. The latter is repre-
sented in terms of the spherical-harmonic basis expansion as

� : R(ϑ, ϕ) ≡ C(α)Rc

[
1 +

∑
λ

∑
μ

αλμYλμ(ϑ, ϕ)

]
, (3)

where ensemble of all the deformation parameters used,
{αλμ}, is abbreviated to α. Above, C(α) assures the constant
volume condition, i.e., the property that the volume enclosed
by � is independent of the actual shape and equal to the
volume of the corresponding spherical nucleus.
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The spin-orbit potential is defined as usual as

V̂ so
WS(�r, p̂, ŝ, α; λso, rso, aso) = 2h̄λso

(2mc)2

[( �∇V so
WS

) ∧ p̂
] · ŝ,

(4)
where

V so
WS(r, α;V c, rso, aso) = V c

1 + exp[dist� (�r, Rso; α)/aso]
. (5)

By convention, λso is a dimensionless spin-orbit strength-
scaling factor, rso in Rso = rsoA1/3 is the spin-orbit radius, and
aso is the spin-orbit diffusivity-parameter.

This traditional definition of the deformed Woods-Saxon
potentials and Hamiltonian depends on two sets of six param-
eters each, {

V c
π,ν, rc

π,ν, ac
π,ν ; λso

π,ν, rso
π,ν, aso

π,ν

}
, (6)

one for protons, π , and one for neutrons, ν, respectively.
The issues of parameter optimization, parametric correlations,
prediction capacities, and stabilization are addressed in the
following sections.

Schrödinger equation with the Hamiltonian of Eq. (1)
is solved using standard diagonalization methods employ-
ing matrix representations of the Hamiltonian with Cartesian
harmonic oscillator (HO) basis. We introduce broad nuclear
deformation ranges trying to assure in this way that all the
low-lying potential energy minima which compete energeti-
cally are taken care of, including shapes referred to as prolate
or oblate hyperdeformed. Employing such broad shape vari-
ations imposes relatively severe constraints on the adaptation
of the harmonic oscillator basis in order to assure the stability
of the final results. We consider basis choice acceptable if at
any deformation point the least bound nucleonic levels vary
with the variation in the basis cutoff not stronger than at the
third decimal place.

To achieve the required stability of the mean-field solu-
tions, we introduce the HO basis cutoff parameter Nmax; we
also allow for anisotropy of the HO potential. The anisotropy
is controlled with the help of three harmonic oscillator fre-
quencies (ωx, ωy, ωz) adjusted as usual by maximizing the
volume overlap between the deformed potential and the de-
formed basis. We have verified that with Nmax = 18, i.e., with
1330 HO states contained in N � 18 HO main shells, we
arrive at stabilizing all of the few dozens of the nucleonic
bound states according to the criterion specified above for all
nuclei and at all deformations considered in this article.

Total nuclear energies are calculated according to the
standard macroscopic-microscopic method of Strutinsky,
Ref. [18], as

Etotal = Emacro + δEπ
micro + δE ν

micro, (7)

where the first term represents the classical macroscopic
liquid-drop model contribution and each of the microscopic
terms have the form of the sums of the so-called shell correc-
tion, Ref. [18], and pairing correction terms.

In this article, macroscopic energy realization known as
finite-range liquid-drop model (FRLDM) is chosen. It con-
tains the so-called modified surface-energy term given by
the Yukawa-plus-exponential finite-range model of Ref. [19]

within the formulation of Refs. [20,21]. The final macro-
scopic energy expression used here coincides with Eq. (62)
of Ref. [22].

Whereas Strutinsky shell-correction energy expression is
used in the majority of published articles in the form which
can be considered standard, cf., e.g., Eq. (8) of Ref. [23], the
latter one used also by us, the pairing-energy contribution in
Eq. (7), appears in the literature in a number of phenomeno-
logical variants as a part of the microscopic-energy term

δEmicro = δEshell + δEpairing. (8)

Even though the pairing energy expressions can also be
considered as well established and used by various authors,
the existence of various variants may render confusions likely.
To avoid the danger, we provide here the minimum precision
without attempting any review-type descriptions.

It is fair to say that four types of the phenomenological
pairing energy expressions dominate in the applications of the
macroscopic-microscopic approach. They are usually referred
to as pairing correlation and pairing correction energies.
Both may appear in realizations employing (or not employing)
particle number projection technique within Bardeen-Cooper-
Schrieffer (BCS) formulation of the nuclear monopole-pairing
problem. It follows that any of the four terms below,

δEpairing ↔ δEcorrec, δEcorrel, δEPNP
correc, δEPNP

correl, (9)

may appear as an acceptable alternative in place of δEpairing in
Eq. (8), assuring nearly the same predictions.

These pairing energy expressions are simplest to present
beginning with pairing correlation term defined as the differ-
ence between BCS energy of the system at “paired solution”
(pairing � 	= 0) and its partner expression corresponding to
“no-pairing solution” (� = 0):

δEcorrel =
Np∑

ν=1

(
2ενv

2
ν − Gv4

ν

) − �2

G︸ ︷︷ ︸
� 	=0

−
Np/2∑
ν=1

(2εν − G)

︸ ︷︷ ︸
�=0

,

(10)

according to standard definitions and notation; cf. Eq. (9) of
Ref. [23] for details. Construction of the pairing-correction
term can be seen as analogous to Strutinsky shell-correction
term. It is defined as the difference between the nuclear single-
particle contribution and the corresponding “average” or
“smoothed out” image. The corresponding pairing-correction
partner expression is defined as the difference between the one
above and its Strutinsky-type smoothed out partner; interested
readers will find all details in Sec. V C of Ref. [23].

In our project, we calculate the nuclear energies according
to all the four variants in Eq. (9), thus controlling the possible
differences implied by the physicist’s arbitrary choice of a
phenomenological variant. Our calculations for all the nuclei
in the considered mass range and all deformations show that
the total energy results remain in excellent structural corre-
spondence, the differences being very well approximated by
small constants shifts. In what follows, we limit our illustra-
tions to the pairing-correction variant.
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The microscopic total energy expression depends on two
terms in the full Hamiltonian: the mean-field term, Eq. (1),
with parameters listed in Eq. (6), which describe the single-
nucleon energies, and the monopole pairing Hamiltonian,

Ĥpair. = −G
∑
μν

c+
ν c+

ν̄ cμ̄cμ, (11)

following the standard definition and notation, the latter
depending on the so-called pairing-strength constant, G ↔
Gπ or Gν , for protons and neutrons, respectively. Functioning
of Ĥpair can be controlled experimentally via BCS pairing
gaps, �, with the help of the nuclear binding energies using
the double difference expression:

�(3)(N ) ≡ (−1)N

2
[B(N − 1) + B(N + 1) − 2B(N )], (12)

with B(N ) denoting the (negative) binding energy of the sys-
tem with N particles; cf. Eq. (1) in Ref. [24]. Indeed, one
can argue that for odd-N we have, approximately, �(3)(N ) ≈
�qp ≈ �, where �qp is the lowest quasiparticle energy and
� is the BCS paring gap energy. Thus, extracting the ex-
perimental information about �, from now on referred to as
�exp, we have adjusted pairing strengths in such a way that
�exp ≈ �BCS at the ground-state equilibrium deformations;
see below.

In the present project, the strength constants G are treated
with the help of a simplified but proven realistic prescription

1

G
= ρ̄ ln

{[(
Np

2ρ̄�̄

)2

+ 1

]1/2

+ Np

2ρ̄�̄

}
(13)

of Ref. [23]. According to the latter reference, Np is the num-
ber of pairs taken when solving the BCS equations, whereas
ρ̄ and �̄ are, respectively, the average density of levels at
the Fermi level treated with the help of the Strutinsky pre-
scriptions and �̄ is the so-called average pairing �, in the
past usually approximated by an average empirical trend with
�̄ = 12 MeV/

√
A. Interested readers will find the relevant

details in the text preceding Eq. (13) in Ref. [23].
To assure possibly realistic phenomenological prescription

for the pairing strength constants, we performed the calcu-
lations for all the even-even nuclei with 14 � Z � 46 for
α20 ∈ [−0.6,+0.6] and α22 ∈ [−0.4,+0.4] [for reasons of
compatibility with the point-group theory symmetry require-
ments, we are not using the (β, γ ) notation at the level of
the mesh definitions] and α40 ∈ [−0.3,+0.3]. We arrive at
reproducing the criterion of the correspondence �

equil
BCS ≈ �exp

at the ground-state equilibrium deformations for the great
majority of the nuclei for which �exp can be extracted in the
considered mass region with the discrepancies of the order of
±100 keV by replacing the constant of 12 MeV in �̄ above by
αZ = 11.2 MeV and αN = 9.1 MeV for protons and neutrons,
respectively.

B. Inverse problem, parametric correlations, and their impact
on modeling uncertainties

Inverse problem theory belongs to the most actively devel-
oping fields of applied mathematics today. It enters various

domains of applied research, information, and statistics, as
well as estimates of modeling uncertainties in physics and
some branches of fundamental research. An interested reader
will find subjects of importance in specialized journals of
inverse problem theory, Ref. [25], or monographs such as
Refs. [26–30], and many others.

There is an increasing number of publications which ad-
dress the issues of modeling uncertainties and statistics and
which focus specifically on nuclear physics. However, review-
ing this evolution here would go beyond the scope of the
present article. Recurrent related issues of actuality can be
found, e.g., in Refs. [31–33] and references therein. Below we
limit ourselves to reminding the reader about a few standard
notions from vocabulary of the inverse problem theory, focus-
ing on the issue of parametric correlations and their relation
to prediction uncertainties. Rather extensive elementary-level
discussion linking the nuclear many-body problem with the
inverse-problem theory methods can be found in Ref. [34].

In applied mathematics, it is customary to use a single sym-
bol M̂ representing, e.g., a physical model, which depends on
adjustable parameters {p1, p2, . . . , pn} ≡ p. In our quantum-
mechanics modeling, we write Ĥ = Ĥ (p) and address the
solution taking the form of an eigenvalue problem Ĥψν =
eνψν . In the jargon of applied mathematics, one expresses
the same by saying that M̂ acts upon the set of optimized
parameters popt, providing results e ↔ {eν}, or, that one is
solving a direct problem:

M̂ popt = e, (14)

under the condition that the optimal parameters of the model
are known. If the optimal parameters are not yet known, they
are obtained by solving the inverse problem

M̂−1 e = popt, (15)

under the condition that the inverse, M̂−1, exists; otherwise,
we say that the inverse problem is ill posed. Construction of
Ĥ−1 ↔ M̂−1 in realistic cases, even for nuclear mean-field
theory Hamiltonians considered relatively simple, does not
exist and the issue of the formal ill posedness and its possible
practical implications remains open.

Whereas the notion and properties of M̂−1 are funda-
mental in formalizing the issue of instabilities of a model in
applied mathematics, the present-case parameter optimization
is accomplished via χ2 minimization ignoring a possible for-
mal ill posedness of the inverse problem. It turns out that
overparametrized models, i.e., the ones in which parameter
optimization leads to solutions with certain parameters being
functions of some others, lead to ill posedness of modeling
and destabilization of the prediction capacities both in the case
of the formal solving of the inverse problem as well as the χ2

minimization.
The issues of overparameterization can be treated rela-

tively straightforwardly with the help of the so-called singular
value decomposition theorem, which allows us to detect and
quantify the model prediction instabilities (cf., e.g., Sec. 5
of Ref. [37] for illustrations very close to the present con-
text, yet manifesting certain shortcomings discussed there).
Alternatively, parametric correlations one can be detected
and consecutively eliminated with the help of Monte Carlo
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techniques. There exists a number of published illustrations
of such approaches, which we refer to as pilot projects. They
discuss parametric-correlation detection and implied predic-
tion instabilities in a series of simplified illustrations using
nuclear mean-field theoretical methods very close to ours and
are briefly overviewed in the following section.

C. Earlier pilot projects addressing parametric correlation
problem: An overview

We believe that it will be instructive to present for compar-
ison a short overview of the pilot projects mentioned before
addressing our results. In particular, Refs. [35,36] illustrate
the effects of varying numbers of experimental data points
on the adjustment of parameters using as an illustration the
neutron experimental levels of 208Pb. The authors detect the
presence of parametric correlations within the Hamiltonian
tested while comparing the correlation-matrix and Monte
Carlo techniques, but the discussion is limited to a single nu-
cleus. Tests in a similar style are discussed in Ref. [37], where
the single-nucleus type adjustments for 208Pb are employed to
test predictive power for the levels in the neighboring doubly
magic nucleus 132Sn. Singular-value decomposition theorem
is discussed in the context of the parametric correlation analy-
sis as an alternative to the Monte Carlo approach and a number
of open problems are indicated.

A physics argument (rather than that employing applied
mathematics techniques alone) leading to a decrease in the
number of the model parameters—at a comparable quality
performance—has been discussed and illustrated in Ref. [38]
in the case of the Woods-Saxon mean-field Hamiltonian. The
authors at the same time decrease the number of the spin-orbit
potential parameters replacing the traditional form by more
microscopic density-dependent analogs; cf. Eqs. (20)–(22) of
the above reference.

Discussion of alternative methods possibly leading to an
increase of the modeling stability is presented in Ref. [39]
by employing a powerful technique of exact modeling. The
latter uses known solutions of realistic Hamiltonians in order
to study the structures of parametric correlations and single-
nucleon energy sensibility to various parameters.

As it turns out, the issue of the parametric correla-
tions more strongly impacts the microscopic realizations of
the nuclear mean field theory such as Hartree-Fock and/or
Hartree-Fock-Bogolyubov, compared to more phenomeno-
logical Woods-Saxon type realizations. These issues are
addressed in Ref. [40] using correlation-matrix and singular-
value decomposition techniques. The reader may also consult
Sec. 6 of the above article referring to certain general pub-
lications related to inverse problem as related to physics
applications of interest in our case.

Monte Carlo parameter adjustment techniques provide rel-
atively direct manners of detecting mathematical forms of
the parametric correlations. In Ref. [41], the authors address
systematically correlations among all Woods-Saxon potential
parameters. They find in particular that the diffusivity pa-
rameters do not correlate either with the radius or the depth
(strength in the case of the spin-orbit term). At the same
time, the potential radius and depth (strength) parameters

form approximately parabolic functional dependencies. They
were determined for the 208Pb case and their impact on the
uncertainty probability distributions for single-nucleon levels.

Considerations introduced in Ref. [38] are developed
further in Ref. [42], addressing in detail the nucleonic-
density-dependent spin-orbit potential parametric correlations
showing that the parametric freedom of the original phe-
nomenological formulations, where spin orbit depends on six
parameters, is reduced to a single independent one.

In the present article, in contrast to the pilot-project studies
just cited, the mean-field model parameters are adjusted for
the first time to eight doubly magic spherical nuclei listed in
Eq. (16) using Monte Carlo methods, and the parametric cor-
relations are systematically studied, detected, and eliminated.
We believe that by selecting this approach, which follows the
recommendations of the inverse problem theory of applied
mathematics, we increase stabilization of predictions obtained
in this article.

III. PARAMETER OPTIMIZATION

The mean-field Hamiltonian parameters are adjusted using
the χ2 test to the experimental values of single-nucleon level
energies in doubly magic spherical nuclei

16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn, 146Gd, 208Pb; (16)

the corresponding energies were extracted in Ref. [37]. In the
case of adjusting Hamiltonian parameters to the data of more
than one nucleus (eight nuclei simultaneously in the present
case), it is customary to introduce explicitly the isospin de-
pendence in the strength parameters of central and spin-orbit
potentials in the forms

V c
π,ν = V c

0

(
1 ± κc N − Z

N + Z

)
(17)

and

λso
π,ν = λso

0

(
1 ± κso N − Z

N + Z

)
, (18)

correspondingly, with the plus sign for the protons and the
minus sign for the neutrons. Above, V c

0 , λso
0 , and κc and κso

are new adjustable constants, so that symbols{
V c

0 , κc; λso
0 , κso} ↔ {

V c
π ,V c

ν ; λso
π , λso

ν

}
(19)

appear interchangeably with the symbols introduced in
Eq. (6), but the new parameter set is better adapted when
adjusting parameters for several nuclei simultaneously thanks
to the built-in specific Z and N dependence.

A. Comments about definition of χ2(p) function

The parameter set p used in the present article has been
obtained by minimizing the distance between the sets of ex-
perimental {eexp

i } and model energies {eth
i }. This distance is

defined as usual by

χ2(p) =
nd∑

i=1

wi

[
eexp

i − eth
i (p)

]2
. (20)
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The summation limit in Eq. (20) represents the total number
of experimental data points, the energy levels in all eight
nuclei listed in Eq. (16). The adjustable parameters are de-
noted by p. According to the usual rules of application of
the χ2-minimization techniques, definition of the ensemble of
the weight factors {wi} is left to a subjective judgment of the
constructor of the model. Since we are using the experimental
data on spherical nuclei, each of the single-particle levels can
be characterized, among others, by the angular-momentum
quantum number j → ji so that our natural choice of the
weight factors, taking into the account spherical degeneracy,
is

wi = (2 ji + 1). (21)

Summation in the χ2 definition, Eq. (20), accounts for
all the nuclei of interest at the same time. It then follows
that according to Eqs. (20) and (21), certain nuclei can be
overrepresented as compared to the others. For instance, the
highest j value in 16O is j = 5/2, whereas the highest one in
208Pb is j = 13/2 with the result that the χ2 definition as it
stands privileges heavy nuclei. This, however, is not necessar-
ily desirable for the optimal functioning of the model since
the concept of universal parametrization involves implicitly
two requirements:

(1) The mean-field parameters are fixed once for all the
nuclei in the mass table and

(2) the quality of the description of single-nucleon prop-
erties should be comparably satisfactory without
(de)privileging certain subensembles of nuclei.

To enable a certain control of the above concept of uni-
versality, we introduce extra weight factors, w̃k , for k =
1, 2, . . . , 8; cf. Eq. (16). We define them as dependent on the
mass numbers Ak of intervening nuclei relative to the mass
number of 208Pb treated as reference:

w̃k = 208/Ak . (22)

Thus, the final expression for χ2(p) takes a new form:

χ2(p) =
∑N

k=1w̃k
∑nk

i=1

{
(2 ji,k + 1)

[
eexp

i,k − eth
i,k (p)

]2}∑N
k=1w̃k

. (23)

Within this new notation, N = 8 is the number of all nu-
clei considered in the experimental sampling and nk are
the numbers of available experimental energy levels in each
nucleus k, whereas eexp

i,k and eth
i,k (p) are, respectively, the ex-

perimental and theoretical single nucleon energy levels with
i = 1, 2, . . . , nk for k = 1, 2, . . . ,N . With the single-particle
energies eth

i,k (p) obtained as solutions of the Schrödinger equa-
tion with the Hamiltonian of Eq. (1), the resulting χ2(p) has
been minimized. In the present article, we employ the standard
Levenberg-Marquardt minimization algorithm.

B. Monte Carlo simulations: Selected issues

Our analysis of parameter adjustment and of the para-
metric correlations takes into account the experimental error
bars. This is straightforward via application of the Monte
Carlo techniques which provide information in the form of

probability distributions rather than fixed numerical values of
optimal parameters. In calculations of the nuclear-potential
energy surfaces, the most probable values of the Hamiltonian
parameters have been used.

To describe briefly the applied Monte Carlo treatment, it
will be convenient to employ a simplified notation often used
in this context. For this purpose, we express the experimental
energies, previously denoted {eexp

i,k }, with the help of one-index
notation as {

eexp
i,k

} → {
d1, d2, d3, ..., dnd

}
(24)

with d for datum, and the uncertainties resulting from experi-
mental error bars by corresponding Gaussian widths{

σ1, σ2, σ3, ..., σnd

}
. (25)

In analogy, let the sequence of parameters originally intro-
duced in Eq. (6) be redefined as{

p1, p2, p3, ..., pnp

}
, (26)

where np = 12; cf. Eq. (6) and compare with Eq. (19). We in-
troduce the Gaussian noise distributions N (di, σi ), also called
“normal,” with centers di and widths σi.

We are interested in discovering the possible presence of
correlations between parameters, say, pi and p j , treated as
random variables. For this purpose—as a convenient auxiliary
step on top of the Monte Carlo simulations—we will use
the correlation matrix (Pearson coefficients). For the reader’s
convenience, we recall its definition. Again, avoiding multi-
index notation and without loosing generality, let us consider
explicitly two random variables only, say x and y. With the
associated random sampling which involves α = 1, 2, . . . , n
repetitions, one defines Pearson coefficient as

Px,y ≡
∑n

α=1(xα − x̄)(yα − ȳ)√∑n
α=1(xα − x̄)2

n∑
α=1

(yα − ȳ)2

, (27)

where x̄ and ȳ denote the corresponding sample means. This
definition can be applied to any combination of parameters,
e.g., x ↔ pi and y ↔ p j , leading more generally to diagonal
and nondiagonal combinations such as Ppi,pi , Pp j ,p j , Ppi,p j ,
e.g., Prc

π ,V c
0
. The numerical values of these coefficients lie in

the interval [−1,+1]. In particular, the nondiagonal values of
the Pearson coefficient close to 0 (or vanishing), e.g., Pac

π ,V c
0

≈
0, would signify that the central-potential proton diffuseness
and the depth parameters are uncorrelated, whereas Prc

π ,V c
0

≈
±1 would imply strong linear correlations between the two.

In the present Monte Carlo simulations, we generate nu-
merically NMC ≈ 105 times the NMC nd -tuples of the input
data sets according to N (di, σi ) for i = 1, 2, . . . , nd . We
perform each time the χ2 minimization and define in this
way the NMC np-tuples of parameters. It is then convenient
to illustrate the so-obtained results in the form of projection
diagrams shown in Figs. 1 and 2, which represent graphically
the number of occurrences for each parametric solution as
the result of the χ2 minimization. This representation is more
indicative compared to Pearson coefficient approach since it
provides explicitly a functional dependence not limited to
linear correlations.
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FIG. 1. Parametric correlations between the central potential ra-
dius and depth parameters for protons suggestive of approximately
linear dependence. Pearson coefficient is very close to 1, confirming
strong correlations; for details, see the text. For this illustration, we
arbitrarily select a color scale composed of 25 colors.

Results for protons projected on the plane (rc
π ,V c

0 ) in Fig. 1
show clearly an approximately linear correlation between
these two parameters. Results for the neutrons are very similar
and are not shown. The corresponding Pearson coefficient is
close to unity, confirming independently the strong correla-
tion between these parameters. Analogous analysis reveals
that there are no correlations between V c

0 and ac
π,ν and thus

between rc
π,ν and ac

π,ν , nor correlations involving κc, all with
Pearson coefficients close to 0. We conclude that among the
six parameters of the central Woods-Saxon potential orig-
inally treated as independent, there are two two-parameter
correlations, one pair for the protons and one for the neutrons.
Thus, without loosing generality, we select as independent V c

0 ,
κc, ac

π , and ac
ν , which are then effectively optimized.

The spin-orbit potential manifests strength versus radius
(rso

π,ν versus λso
0 ) parametric correlations as well. They reveal a

characteristic form shown in Fig. 2 for protons: double valued
rather than a single functional relation. The possibility of
revealing multivalued dependencies is a significant advantage
of the Monte Carlo techniques over the single-point Pearson

FIG. 2. Parametric correlations for the spin-orbit potential reveal
two approximately linear dependencies as discussed in the text; ob-
serve the double-valued functional relation.

TABLE I. Woods-Saxon parameter values adopted in this
project. Upper row: proton parameters; lower row: neutron pa-
rameters. The dependent parameters resulting from the linear
dependencies discussed and corresponding to V c

0 and λso
0 : rc

π =
1.278 fm, rc

ν = 1.265 fm, rso
π = 0.830 fm, rso

ν = 0.890 fm. For the
choice of diffusivities, aso

π = aso
ν = 0.700 fm; see text.

V c
0 (MeV) κc ac

π,ν (fm) λso
0 κ so

0.594
Mean values −50.225 0.624 26.210 −0.683

0.572
0.010

Standard error 0.142 0.013 0.513 0.139
0.011

correlation test. The results for the neutrons are similar and
are not shown.

The peculiarity in the form of the double-valued depen-
dence of the radius parameter rso

π,ν as function of λso
0 brings

us to the conclusion that the Woods-Saxon spin-orbit Hamil-
tonian leads to two variants of parametrizations differing
from one another in terms of the two characteristic spin-orbit
radii: a smaller parameter value, rso

π,ν < 1 fm, referred to as
compact, and the larger one, rso

π,ν > 1 fm, referred to as
noncompact.

This type of behavior is not unusual when working with
strongly nonlinear modeling like in our case. Generally, non-
linear modeling may lead to more than just one minimum of
the χ2-test function and this is up to the constructor of the
model to decide which of the competing minima (the global or
a local one) should be privileged. For instance, in the nuclear
structure mean-field parameter adjustment, we may attribute
high priority to reproducing the experimental level ordering,
the condition which may not accord with the simultaneous
absolute minimum in terms of the χ2. Therefore, depending
on the context, in the presence of the multiple minima of the
χ2 function we may formulate arguments for not selecting
the absolute one. In this article, we have selected the compact
solution since it has been verified that—at comparable quality
of the correspondence between theoretical and experimental
single-nucleon energies—such a choice leads on average to
slightly better description of the rotational properties of many
nuclei.

Relations like the ones illustrated in Figs. 1 and 2 allow
us to chose one of the two parameters for playing the role
of the independent variable. By doing so, we were able to
reduce the number of independent parameters from originally
12 to 8. These are {V c

0 , κc} as well as ac
π and ac

ν for the
central potential and {λso

0 , κso} as well as aso
π and aso

ν for
the spin-orbit one. Since the spin-orbit diffuseness parameter
influences the single-nucleon spectra in a very regular and/or
smooth manner, in this project we have set aso

π and aso
ν equal

to 0.7 fm, the value adapted long ago within the traditional
universal Woods-Saxon parametrization of Ref. [16].

Table I summarizes the values adopted in this project.
In the rest of this article, we will focus the discussion

on the mean-field predictions of the shape coexistence in
the light-mass range of the nuclear mass table with the
proton number Z varying between 14 and 46 charge units.
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Illustrations which will be presented were selected from the
full set of total energy calculations including over 240 even-
even nuclei for which experimental-existence indications can
be found in the National Nuclear Data Center (NNDC)
database as well as for a number of very exotic proton-rich
and neutron-rich nuclei.

IV. PARAMETRIC UNCERTAINTIES: IMPACT ON
CALCULATED NUCLEAR ENERGIES

We discussed the forms of parametric correlations which
result from the Hamiltonian optimization in Sec. III B, Figs. 1
and 2. They are very characteristic in the case of the
Woods-Saxon phenomenological mean-field Hamiltonian. In
particular, diffusivity parameters both for the central potential,
ac

π,ν , and for the spin-orbit potential, aso
π,ν , do not couple with

the other parameters via parameter optimization process. In
contrast, the central radius and central potential-strength pa-
rameters, rc and V c

0 and independently rso and λso
0 , do couple,

forming approximately linear relations of the form

rc = f c
(
V c

0

)
and rso = f so

(
λso

0

)
, (28)

for the protons and for the neutrons, independent from one
another.

Since Monte Carlo simulations allow determining the
above relations beforehand, i.e., within the original space of
12 parameters, six for the protons and six for the neutrons,
the four relations in Eq. (28) were predetermined before pro-
ceeding to optimize the eight free parameters remaining after
the correlation removal. This step leads via eight-parameter
Monte Carlo simulation not only to the optimal values of
parameters, i.e., eight numbers but, importantly, to the prob-
ability distributions in eight-dimensional space resembling
eight-dimensional Gaussian distributions. The latter allow ob-
taining the new set of projected one-dimensional distributions
for each parameter of interest.

We will present distributions like the one in Fig. 3 for
selected parameters of interest, assuming that all the remain-
ing seven parameters take their maximum probability values.
These distributions closely resemble Gaussian forms. They
were constructed producing the relevant histograms and fit-
ting the Gaussian dependencies whose parameters will be
displayed in the figures which follow. Figure 3 represents the
Gaussian uncertainty probability distribution for the central
potential depth parameter.

There is no unique way of illustrating the effects of the
uncertainties of the parameters of the nuclear mean-field
Hamiltonian, which are represented by continuous probability
distributions. Expression of the total nuclear energy, which is
the main interest in the present test, involves among others
macroscopic energy, the latter independent of the mean-field
Hamiltonian. Therefore, we propose illustrating the variation
of the Strutinsky shell energy with the Hamiltonian parame-
ters as a measure of parametric sensitivity in the context of
total energy calculations. Illustrations shown below display
the differences between shell energies obtained with the po-
tential depth parameter corresponding to the mean value of
V c

0 and the value increased by the amount of FWHM (full

FIG. 3. Uncertainty probability distribution for the central poten-
tial depth parameter V c

0 . Fitting for eight nuclei listed in Eq. (16)
involves 45 experimental data points for the protons and 60 data
points for the neutrons. The values of Gaussian mean μ and standard
deviation σ are given in the figure together with the full width at half
maximum relative to the mean, denoted FWHM.

width at half maximum); these numerical values are explicitly
displayed in the field of Fig. 4.

Since we explore rather extreme variations of nuclear de-
formations in the present article, investigating the evolution
of the discussed uncertainties as functions of nuclear shape
is of clear interest. Results in Fig. 4 indicate the presence of
fluctuations (rather than systematic increase) which limit the
impact of uncertainties and whose variations do not exceed
±50 keV interval.

As a final comment at this point, let us remark that within
the Strutinsky approach, the shell and the paring correc-
tion (correlation) energy contributions appear very often with

FIG. 4. Variation of Strutinsky shell energy for the nuclei dis-
played. They are represented as the differences between the values
corresponding to the potential depth equal V c

0 , the curve treated as
normalization, and the same quantity calculated at the shift by the
value corresponding to the FWHM value from Fig. 3, shortened to
V1. The deviations are interpreted as measures of uncertainties of
the final results; they vary within energy stripe defined by ±50 keV
limits.
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FIG. 5. Uncertainty probability distribution for the spin-orbit
strength parameter λso

0 ; for details cf. caption to analogous illustration
in Fig. 3.

opposite signs. This indicates that the uncertainties illustrated
above can be seen as upper limits and are very likely repre-
sentative for the actual uncertainty variations.

The uncertainty distribution for the spin-orbit strength pa-
rameter λso

0 , analogous to the one in Fig. 3, is given in Fig. 5.
The impact of those uncertainties for the Strutinsky shell-
energy dependence on quadrupole deformation is shown in
Fig. 6.

We finish by presenting analogous uncertainty effects im-
plied by the uncertainties of the central-potential diffusivity
parameters, cf. Fig. 7, and the implied impact on the calcu-
lated total potential energies, Fig. 8.

As expected, parametric uncertainties induce much
stronger effects on the calculated nuclear energies in the
case of the spin-orbit potential strength. Indeed, whereas the
single-nucleon energies vary with the central potential depth
in a very regular fashion, the spin-orbit term which controls
relative positions of various orbitals has a direct impact on the
shell gaps, the latter influencing directly the shell energies.
It is fair to say that the obtained uncertainties vary within an

FIG. 6. Variation of the shell-energy for nuclei displayed; cf.
caption to Fig. 4. The maximum at α20 ≈ 0 for 84Zr nucleus reflects
the presence of the strong gaps at Z = N = 40.

FIG. 7. Uncertainty probability distributions for diffusivity pa-
rameters for the Woods-Saxon potential for protons and neutrons.

interval approximately a factor of 10 larger as compared to
the central-potential case. The strongest effects are seen at the
spherical shapes where the shell effects are usually significant
and vary relatively strongly with nucleon numbers.

V. FROM ADJUSTMENTS AT SPHERICAL SYMMETRY
TO DEFORMATION EFFECTS

In the preceding sections, we have given the arguments
that the parameter optimization technique chosen should give
stable predictions when moving with the Z and N numbers
away from the fitting zone of the mass table. On the other
hand, before engaging in predictions of possibly new exotic
geometrical symmetries and/or extreme deformations, it is
natural to verify whether the correctly described spherical-
shell properties propagate equally satisfactorily into the (Z, N)
areas of nuclei which are deformed in their ground states.

The deformation dependence of single-particle energies
obtained with the parameters optimized in this article is shown
in Fig. 9 and it is important to test the implied ground-state
equilibrium deformations versus experiment. Many data exist

FIG. 8. Illustration analogous to the ones in Figs. 4 and 6 but for
the diffusivity parameters for protons and neutrons, here tested at the
same time.
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FIG. 9. Neutron single-particle energies as functions of the
quadrupole deformation α20, focusing on the negative α20 portion
(oblate shapes) of the quadrupole deformation axis. Full (dotted)
lines refer to positive (negative) parity. Analogous diagram for pro-
tons is nearly identical and is not shown.

today; cf., e.g., Refs. [43–45]. Therefore we first compare the
results for equilibrium deformations for specifically chosen
nuclei before passing to the discussion of exotic symmetries
or exotic-shape predictions, the central focus of this article.

Let us emphasize that nuclear deformations, and in par-
ticular the quadrupole ones, which are used below to relate
to experiment, are not observables and that the corresponding
experimental information can only be extracted indirectly. The
usual procedure consists in transforming the measured nuclear
lifetimes into reduced transition probabilities, the latter de-
pending on the quadrupole moments, which in turn can be
expressed by nuclear shape parameters—all this while em-
ploying a number of approximate steps. As the result, the
implied comparison theory-experiment should not be treated
as a strict one-to-one bijection. This being said, compila-
tions in Refs. [43,44] provide rich collection of rms average
quadrupole deformations 〈β2

2 〉rms ↔ 〈α2
20〉rms, with a disad-

vantage that the sign of quadrupole deformation parameters
is not determined. In contrast, Ref. [45] provides the distinc-
tion between the prolate and oblate configurations but for a
significantly smaller number of nuclei.

As is well known, the spherical geometry in relatively light
nuclei considered in this article is usually associated with the
combination of the proton-neutron spherical shell closures at
Zsph, Nsph = 40, 28, 20 down to 14; cf. Fig. 9 and compare

FIG. 10. Nuclear potential energy for 82Zr projected on the
quadrupole/hexadecapole plane of variables α20 and α40. The
ground-state minimum predicted at αth

20 = 0.38 remains in excellent
agreement with the experimental rms estimate of α

exp
20 = 0.368(+24

−10 )
from Ref. [44].

with Ref. [13]. Varying the Z and/or N numbers around the
above spherical shell closures, we find several transitional
nuclei with flat potential energy surfaces and no clearcut in-
dication of any preference for the well-defined equilibrium
deformation. Such cases are not well suited even for semi-
quantitative comparison of the equilibrium deformations with
the experimental ones, which we would like to obtain at
present. However, by varying the nucleon numbers still fur-
ther, one often obtains clearer indication of well-pronounced
equilibrium shape minima with the well-defined separating
barriers. Such nuclei will be chosen for quality test of pre-
diction capacities for nonspherical nuclei.

We begin by comparison for selected Z = 40 isotopes.
The predicted shape properties of the lightest zirconium iso-
tope for which we find the experimental information about
the equilibrium deformation, 82Zr, are illustrated in Fig. 10,
projection from {α20, α30, α40} space. The measured average
equilibrium deformation is α

exp
20 = 0.368(+24

−10 ) according to
Ref. [44]. It should be compared with αth

20 = 0.38; the two can
be considered as nearly coinciding, encouraging further tests.

The neighboring 84Zr has the experimental rms average α20

equilibrium significantly (by 38%) lower. Indeed, the experi-
mental average rms result from Ref. [44] is α

exp
20 = 0.251(+72

−63 )
as compared to the calculation result, here in the form of
a pronounced oblate/prolate shape coexistence with either
αth

20 = −0.28 or αth
20 = +0.31; cf. Fig. 11. Given the fact that

the sign of the experimental deformation parameter is under-
mined, comparison can be interpreted as satisfactory.

Note that the compared values in 84Zr are lower by about
38% in both theory and experiment as compared to the neigh-
boring 82Zr; again the result which can be seen as strongly
encouraging.

Experimental results for the ground-state equilibrium de-
formations for still larger neutron numbers, i.e., for 86Zr up
to 98Zr are characterized by significantly lower values α

exp
20 ,

varying typically between 0.1 and 0.05. This can be seen as the
reflection of the closeness to N = 50 spherical shell closure.
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FIG. 11. Similar to the preceding one for 84Zr. Experimental av-
erage equilibrium α

exp
20 = 0.251(+72

−63 ), after Ref. [44], compares quite
well up to the sign with either αth

20 ≈ 0.32 or αth
20 ≈ −0.29; see the

text for further comments.

Since theoretical results are fully coherent with this behavior,
they are not shown here.

Instead, we wish to verify the correspondence of theory
and experiment at the upper limit of this chain which is
characterized by a significant jump from α

exp
20 ≈ 0.03 for

98Zr to α
exp
20 = 0.356(+82

−57 ) for 100Zr (cf. Refs. [43,44]). The
corresponding theory results are, respectively, αth

20 ≈ 0 and
αth

20 = 0.32; cf. Fig. 12 illustrating the 100Zr case. This, in our
opinion, can be considered again as a strong confirmation of
the modeling shape-prediction capacities.

It is neither the place here nor our intention to discuss case
after case the evolution of the shape properties for over a cou-
ple of hundred even-even nuclei in the sector of the mass table
selected for this article. Instead we would rather like to select
a few nonoverlapping zones on the (Z, N ) plane and complete
our comparison addressing the nuclear combinations with

FIG. 12. Similar to the preceding ones but for 100Zr. The ex-
perimental result for the average quadrupole deformation, α

exp
20 =

0.356(+82
−57 ), compares very well with αth

20 ≈ 0.32 as seen from the
plot. Together with the characteristic jump from nearly zero defor-
mation in 98Zr to over 0.30 in 100Zr, the comparison gives strong
support for the prediction capacities of the model parametrization.

FIG. 13. Total energy projections on the standard (β, γ ) plane of
quadrupole axial and triaxial deformations for 56Ni (top) and 56Fe
(bottom) as discussed in the text. At each point, a minimization
over α40 has been performed. Whereas the doubly magic 56Ni is
predicted spherical, the 56Fe is predicted nonspherical with the axial
quadrupole deformation in good agreement with the experimental
value; see text.

strong jumps in terms of the equilibrium deformations from a
given nucleus to its near neighbor. We believe that this type of
a comparison offers possibly the most convincing arguments
in favor of (or against) the predictive power of modeling.

In this context, it will be instructive to compare the prop-
erties of the doubly magic Z = 28 and N = 28 nucleus 56Ni
appearing in our calculations as expected as spherical (cf.
Fig. 13, top) and its nearest neighbors, some of which are
known from experiment to be deformed. Such known de-
formed neighboring nuclei involve combinations of Z = 26,
30 and N = 26, 30.

We continue with 56
26Fe30, whose potential energy is illus-

trated in Fig. 13, bottom. Indeed the experimental equilibrium
deformation for 56Fe, after Ref. [44], is α

exp
20 = 0.239(2)

which should be compared with the calculated value αth
20 ≈

0.19 seen from the figure, in a good semiquantitative corre-
spondence given the flatness of the potential energy surface.
Unfortunately, continuation either with 56

30Zn26 or with 60
30Zn30
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FIG. 14. Similar to the preceding one but for 36Ar (top), showing
two valleys extending toward oblate-shape directions in the (β, γ )
plane with deformations of γ = ±60◦ and 44Ti (bottom) as discussed
in the text. In the latter case, the prediction of the superdeformed
triaxial secondary minimum deserves noticing.

turns out not to be possible because of the missing experimen-
tal information. Instead, the results for 52

26Fe26 are available.
We find the experimental value α

exp
20 = 0.230(14) compared

with αth
20 ≈ 0.22, a perfect correspondence.

To continue illustrations of prediction capacities of our
modeling with its universal parametrization, we focus here
on the nearest neighbors of the next doubly magic spher-
ical shell closure, Z = 20 and N = 20, 40Ca. We wish to
profit from the fact that for Z = 18 and N = 18 as well as
Z = 22 and N = 22, i.e., 36Ar and 44Ti nuclei, cf. Fig. 14,
both experimental equilibrium deformations are known and
are significantly different from zero. The total energy map for
the doubly magic 40Ca indicates spherical equilibrium; the
corresponding plot resembles the one for 56Ni, Fig. 13, top,
and is not illustrated here.

Remembering that Refs. [43,44] tabulate the rms estimates
of the quadrupole deformations, and thus that the results
are by definition positive, we find that for 36Ar, α

exp
20 =

0.2573(+87
−48 ), and for 56Fe, Fig. 13, bottom, α

exp
20 = 0.239(2),

compared with αth
20 ≈ −0.20, and αth

20 ≈ +0.19, respectively,
in a very encouraging correspondence.

Let us remark in passing that the results for 44Ti, Fig. 14,
bottom, suggest the presence of a triaxial large coexisting de-
formation (“superdeformation”) minimum at α20 ≈ 0.47 and
γ ≈ ±30◦.

In summarizing and concluding this part of the analy-
sis, let us underline the significance of the strong variations
(“jumps”) in the behavior of the equilibrium deformations
accompanying a small modification of the Z or N numbers,
rare as compared to the usually observed smooth (“continu-
ous”) behavior in heavy and very heavy nuclei. Consequently,
generating such structures by the model in which no element
was adjusted to reproduce them can be viewed as a strong
argument in favor of its prediction capacities. Our calculations
provide more evidence of this type; limitation is caused by
size constraints.

VI. TOROIDAL AND OTHER EXOTIC-SHAPE
CONFIGURATIONS IN A ≈ (30–50) NUCLEI

The results for single-particle energies of protons and
neutrons in the mass range discussed in this article, Fig. 9,
suggest possible presence of very strongly deformed oblate
and prolate equilibrium shapes. The strongest gaps correspond
to proton/neutron numbers Z, N = 14 and 16, which may
combine with the neutron/proton numbers N, Z = 26 and 28.

As mentioned earlier, the potential energy surfaces of the
relatively light nuclei discussed in this article vary in a re-
markably strong manner when the nucleon numbers change
even by a few (e.g., �N or �Z = 2) units. It will be practical
to adapt the presentation to this property.

A. Presenting extreme-shape coexistence scenarios:
A ≈ 30 mass range

Let us begin by illustrating potential energy surfaces for
the nuclei with the largest single-nucleon energy gaps visible
in Fig. 9, i.e., for Z, N = 14 and 16. It turns out that the
strongest shell versus deformation effects occur as the result
of the combination of the axial quadrupole and hexadecapole
deformations, α20 and α40; cf. Figs. 15–17.

There occur four types of competing minima with extreme
deformations, all typical for this mass range. We refer to these
minima as superdeformed prolate and superdeformed oblate
as well as toroidal and hyperdeformed. The implied shapes
(Figs. 18–21) can be characterized as follows:

(1) Extreme negative hexadecapole-deformation domi-
nated minima with α40 varying down to as much
as α40 ≈ −0.60 or so, combined with quadrupole
oblate shape deformation within the range α20 ∈
[−0.50,−0.25]; cf. maps for 28−30Si and 32S in
Figs. 15–17 and shapes in Fig. 18.

(2) Extreme prolate-shape dominated minima, often qual-
ified as superdeformed with α20 ∈ [0.60, 0.70]. Unlike
the analogous configurations in rare earth nuclei, this
elongation is accompanied by an extreme, negative
hexadecapole deformation at the level of α40 ≈ −0.40
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FIG. 15. Total energy α40 vs α20 projection for 28Si; observe
pronounced shape coexistence and strong separating barriers.

(cf. energy minimum for 28Si in Fig. 15), whereas the
corresponding nuclear surface is illustrated in Fig. 19.

(3) Strong positive hexadecapole deformation in the
range α40 ∈ [0.30, 0.40] superposed with oblate down
to superoblate quadrupole components with α20 ∈
[−0.50,−0.30] visible for 28Si and 32S in Figs. 15
and 17; a typical corresponding surface can be seen
in Fig. 20.

(4) Hyperdeformed elongated shapes corresponding to
relatively highly exited secondary minimum at α20 ≈
1 and some small α40 component; cf. the map for 32S
in Fig. 17 and nuclear surface illustrated in Fig. 21.

It turns out that due to the extreme similarity between the
proton and neutron single-nucleon energy spectra the potential
energy surfaces of 30

14Si16 and 30
16S14 are very similar as well and

thus the latter is not shown.

B. Nuclear toroidal geometry: About evolution
of concepts, methods, and goals

Since an important part of the discussion in this section ad-
dresses nuclear configurations which we call toroidal-like—or

FIG. 16. Similar to the preceding illustration but for 30Si.

FIG. 17. Similar to the preceding illustration but for 32S.

simply toroidal—it will be instructive to interrupt shortly the
presentation of our theoretical predictions related to the shape
coexistence in light nuclei by a brief account of the previously
published information on the subject.

Notice that combinations of extreme axially symmetric
quadrupole and hexadecapole deformations introduced here
are rather atypical and seldom illustrated in the literature but
at the same time lead to very exotic nuclear shapes. This is
also why we provide the corresponding geometrical represen-
tations in Figs. 18 to 21.

The hypothesis of existence in nature of toroidal nuclei
attracted attention of various authors for some time. The def-
inition of toroidal geometry used was usually different from
the one adopted in the present article, which is more relaxed.
Most often, toroidal geometry was introduced by parametriz-
ing the form of the torus (“ring-like shape”) with the help of
its inner and outer radii, alternatively the torus radius R. The
so-defined surface possesses a certain parametric freedom,
which in turn allows us to study some shape variations. These
can be used in applications in, e.g., macroscopic energy mod-
els or as constraining relations in the self-consistent iterative
approaches and constructing the potential energy surfaces.

FIG. 18. Nuclear shapes typical for negative super-hexadecapole
minima as in the case of 28–30Si and 32S of Figs. 15–17, here referred
to as toroidal.
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FIG. 19. Illustration of nuclear surface corresponding to the su-
perdeformed minimum of 28Si from Fig. 15.

This type of an approach, as any other approach involving
predefined surfaces treated as nuclear surfaces, can only be
seen as an approximation of a realistic nuclear geometry. Any
real many-nucleon system can hardly be expected to respect
strictly any predefined geometry. Moreover, let us emphasize
that the nuclear mean-field theory can only be treated as the
first-step approximation allowing us to calculate the static
nuclear potential energy surfaces as functions of deformation
parameters, the latter playing a role of (usually a few) collec-
tive variables representing all the A nucleons simultaneously.

Consequently, in order to obtain further experiment-
comparable observables such as collective excitations of
either vibrational or rotational character and related electro-
magnetic transition probabilities, the corresponding collective
theory (often referred to as “Bohr model”) should be applied.
This brings us to the notion of the collective wave functions
with the related notion of the zero-point oscillations and shape
probability distributions and thus the classes of nuclear ge-
ometries much richer than the originally predefined starting
shape geometry, e.g., that of the toroid defined as ringlike
object. At the same time, the density distributions obtained via

FIG. 20. Similar to the preceding one but typical for positive
strong-hexadecapole deformations as in the case of 28–30Si and 32S
of Figs. 15–17.

FIG. 21. Hyperdeformed shape expected to accompany an ex-
cited shape isomer in 32S; cf. Fig. 17.

self-consistent iterative methods might resemble the ringlike
distributions only to a very limited extent.

In this article, we use the notion of nuclear surfaces �,
defined through Eq. (3) by employing the basis of the spher-
ical harmonics. The latter allow—at least in principle—for
arbitrarily extended summations which may include infin-
ity of terms and thus any possible shape. Consequently, the
just-mentioned torus-shape definitions employing two specific
parameters can be seen (at least in principle) as a particular
case of the general relation (3). In the present article, we profit
from the fact that already two deformation parameters, α20 and
sufficiently large, negative α40, lead to ringlike geometry; cf.
Fig. 18. It should be emphasized that a variation of the two
parameters leads to a certain elasticity of the resulting toroid-
like shapes, which might resemble the ones in Fig. 18, but
may also deviate significantly while preserving the condition
of vanishing density near the symmetry axis and close to the
center of the nucleus.

Importantly, and thanks to the parametric freedom pro-
vided by the expansion in Eq. (3), we were able to test the
stability of the obtained toroid-like equilibrium shapes, which
correspond to the potential energy minima with strongly neg-
ative α40 visible in the illustrations of this article. This has
been done by introducing several 3D combination of the
deformation parameters including triaxiality parameter α22

with the corresponding 3D mesh spanned by the variables
{α20, α22, α40}, as well as the octupole-type instabilities of the
type {α20, α3,μ, α40} for μ = 0, 1, 2, 3 and hexadecapole-type
instabilities {α20, α40, α4,μ} with μ = 1, 2, 3, 4. The corre-
sponding results do not impact the conclusions of this article
about the presence of the toroid-like configurations, but enrich
the class of possible predictions, e.g., in terms of low-lying
collective vibrations; this type of effects will be published
elsewhere.

Finally let us mention that, semantics apart, the toroidal-
like axially symmetric nuclear shapes with the mass distri-
bution strongly lowered along the symmetry axis and close
to the nuclear center appear in the present calculations in
competition with other configurations, in particular the ones
with deformations comparable with the existing experimental
data, within common potential energy surfaces. This allows,
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for instance, performing the calculations of the probabilities of
transmission through the potential barriers separating various
minima in full analogy to the calculations of the fission prob-
abilities and advance the studies of the instability properties
and/or the issue of the partial lifetimes, etc.

Among the articles addressing specifically the physics of
nuclei with ringlike geometry, let us mention Refs. [46–48]
focusing on toroidal, toroidal and bubble, and rotating toroidal
nuclei, respectively, followed by an extended discussion of the
properties of the corresponding hot nuclei in Refs. [49,50].
Some studies addressed the issue of formation and decay
of toroidal nuclei, in particular via multifragmentation; cf.
Refs. [51,52]. Another direction of research addresses the
criteria of identification via rotational and/or isomer proper-
ties; cf., e.g., Refs. [53,54]. Argumentations formulated more
recently employ the idea of profiting from axial symmetry of
the configurations in question, expected to generate isomers
referred to as high-K isomers. Calculations of this type can be
found, e.g., in Refs. [55–57].

C. Nuclei in the A ≈ (40–50) mass range

The oblate shape gaps at Z = N = 14 and analogously at
Z = N = 26 discussed in relation to Fig. 9 can be consid-
ered huge in the scale of the whole mass table, given the
fact that they exceed by a couple of MeV the correspond-
ing spherical gaps, the latter usually considered dominating
the nuclear shell structure. These shell effects contribute to
the phenomenological macroscopic-microscopic total energy
formula together with the pairing corrections on top of the
macroscopic energy expression with a relatively complex de-
pendence on Z and N . In medium-heavy and heavy nuclei,
this complex dependence is often regular, generating potential
energy surfaces of considerable similitude. Fortunately, as
already noticed in the preceding sections, in the discussed
mass range, the differences from neighbor to neighbor are
significant and we keep emphasizing this mechanism in what
follows to strengthen the arguments in favor of predictive
power of the approach used.

We proceed discussing the effects of the oblate shape gaps
at Z = N = 14 and analogously at Z = N = 26 beginning
with 38,40Si. As illustrated in Figs. 22–25, strong negative hex-
adecapole deformation effects are present at N = 24, whereas
at N = 28 (not shown) the spherical shell-closure dominates.
It follows that in the potential energy surface of the nu-
cleus 38

14Si24, a normal-deformed ground-state minimum at
αth

20 ≈ 0.23 is accompanied by the secondary oblate toroidal
symmetry minimum with αth

20 ≈ −0.45. The latter nucleus is
the heaviest isotope of silicon for which the mean quadrupole
equilibrium deformation has been measured; cf. Ref. [43]. The
corresponding result α

exp
20 = 0.249(48) is in excellent corre-

spondence with the static minimum visible from Fig. 22.
Whereas the ground-state quadrupole deformation in 38Si,

αth
20 ≈ 0.23, can be considered normal, the result for 40Si,

Fig. 23, with αth
20 ≈ −0.45 can be qualified as superoblate.

The strongest similitude between two neighboring nuclei can
be seen by comparing total energy landscapes of 40S, Fig. 24,
and 42S, Fig. 25. The experimental value for the rms ground-
state deformation in 40Si, after Ref. [44], is α

exp
20 ≈ 0.37(5),

FIG. 22. Potential energy for 38Si with shape coexistence be-
tween a normal-deformed prolate ground-state minimum at αth

20 ≈
0.23 and αth

40 ≈ 0.10 and a superoblate toroidal symmetry minimum
at αth

20 ≈ −0.50 and αth
40 ≈ −0.50, the latter with the shape close to

the one illustrated in Fig. 18. Let us emphasize that the experimental
equilibrium rms average α

exp
20 = 0.255(47) is in excellent agreement

with the predicted value for the ground state with αth
20 ≈ 0.23.

in very close correspondence to the model prediction αth
20 ≈

−0.40, up to the sign of the experimental deformation which
remains unknown.

Let us emphasize that, compared to the preceding two
cases illustrated, the prediction for 40S excitation energy of
the toroidal isomeric minimum of only about 0.5 MeV above
the ground-state indicates that such a state is very likely easier
to populate experimentally.

The observed correspondence between experimental re-
sults and modeling encourages thinking that the pre-
dicted shape coexistence involving exotic toroidal symmetry

FIG. 23. Similar to the preceding one but for nucleus 40Si. The
ground-state minimum corresponds to superoblate shape at αth

20 ≈
−0.45 and αth

40 ≈ 0.20, whereas the secondary coexisting mini-
mum is predicted at αth

20 ≈ −0.45 and αth
40 ≈ −0.50, thus resembling

toroidal symmetry illustrated in Fig. 18. The experimental value for
the rms ground-state deformation after Ref. [44] is α

exp
20 ≈ 0.37(5) in

very close correspondence to the model prediction up to the sign of
the deformation which remains experimentally unknown.
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FIG. 24. Potential energy for 40S showing shape coexistence be-
tween a normal-deformed prolate minimum with αth

20 ≈ 0.23 and
αth

40 ≈ 0 and a superoblate toroidal symmetry minimum at αth
20 ≈

−0.60 and αth
40 ≈ −0.45, with separating barrier of the order of

2 MeV; cf. Fig. 18 for the shape illustration. After Ref. [44], the
rms ground-state deformation is α

exp
20 ≈ 0.284(15) compared with the

model prediction of αth
20 ≈ 0.23.

configurations in these and a few neighboring nuclei is
trustworthy, thus stimulating experimental identification ef-
forts. Detailed analysis of the corresponding properties is in
progress and will be presented elsewhere.

To complete the discussion of the extreme-oblate deforma-
tion structures, let us present two Z = N nuclei in the mass
A ≈ 50 range: 48

24Cr24 and 52
26Fe26, with the potential energy

surfaces illustrated in Figs. 26 and 27, respectively. Both
can be considered in a way unusual even though for totally
different reasons.

The nucleus 52Fe can, according to the present calculations,
be considered more magic than the doubly magic 56

28Ni28. This

FIG. 25. Similar to the preceding one but for 42S. The prolate
ground-state minimum is well pronounced, deformation αth

20 ≈ 0.25
compared to α

exp
20 ≈ 0.300(24), whereas the toroidal excited mini-

mum lies about 2.5 MeV higher, with the separation barrier between
the two of about 1 MeV; the barriers of this order of magnitude may
not be sufficient to stabilize the related minimum against zero-point
oscillations.

FIG. 26. Total energy projection on the (α20, α40 ) plane for Z =
N nucleus 48

24Cr24. Perhaps paradoxically, there are no significant
Z = N = 24 single-particle energy spacings in Fig. 9, for α22 < 0,
and yet the toroidal symmetry configuration is well pronounced due
to the α40-deformation impact. After Ref. [44], the experimental
average ground-state equilibrium deformation is α

exp
20 = 0.340(19).

For comparison, the static minimum deformation αth
20 ≈ 0.28.

phrasing is justified by the fact that the realistic mean-field
estimates give for the gap sizes δeZ,N=28 ≈ 4 MeV at spherical
shape compared with δeZ,N=26 ≈ 7 MeV at the super-(hyper)-
oblate shapes with α20 ∼ −0.75; cf. Fig. 9 and the shape
illustration in Fig. 28. The deformed shell effects of these
proportions are unique in the scale of the whole mass table.

The reason for considering the shape properties of 48Cr as
atypical, yet extreme, is the fact that its potential energy sur-
face, Fig. 26, manifests superoblate flattening at α20 < −0.50,
whereas there are no remarkable level spacing at all at Z =
N = 24 visible from Fig. 9. The underlying reasons for this
atypical relation are that, first, there is a significant shell struc-
ture evolution with hexadecapole deformation approaching

FIG. 27. Total energy projection on the (α20, α40 ) plane for Z =
N nucleus 52

26Fe26. After Ref. [44], the experimental average ground-
state equilibrium deformation is α

exp
20 = 0.230(14) in correspondence

with the static deformation αth
20 ≈ 0.25. The minima at deformations

α20 ≈ −0.7 and α40 ≈ 0 are sometimes qualified as hyperoblate; cf.
illustration in Fig. 28.
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FIG. 28. Illustration of the hyperoblate shape corresponding to
α20 ≈ −0.7, representative for the most extreme oblate configura-
tions 52Fe nucleus; see the text for further comments.

α40 ≈ −0.40, and second, that the Strutinsky shell energies
remain (sometimes significantly) negative in the direct neigh-
borhood of the strong shell gaps, here at Z = N = 26.

D. Remarks about toroidal yrast-trap and K isomers as means
of experimental identification

The fact that a toroidal symmetry configuration pos-
sesses axial symmetry implies that the projections mn of the
individual-nucleonic angular momenta jn on the symmetry
(say Oz) axis—as well as the projection K of the total angular
momentum I—are conserved. Since according to elementary
quantum mechanics principles, collective rotation about the
symmetry axis is not allowed, the corresponding excitation
E versus I pattern is determined by particle-hole excitations.
The excitation energies are constructed out of differences
among the single-nucleonic mean-field energies and, since the
latter form no specific regularities, the resulting total energies
are strongly irregular, in particular as functions of increasing
total angular momentum of the nucleus. As a result, the yrast-
line energies do not form monotonic sequences [in contrast to
rotational bands with regularly increasing EI ∝ I (I + 1)].

It follows that several specific spin values may occur (we
refer to them as Itrap), such that

EItrap−1 � EItrap and EItrap−2 � EItrap . (29)

In other words, the indicated sequence of three energies forms
a “spin pocket” usually called a yrast trap. Such a state could
decay via electric or magnetic octupole �I = 3 transitions,
under the condition that EItrap � EItrap−3. This in itself implies a
hindrance at the level of several orders of magnitude, with the
corresponding single-particle strength, and the corresponding
configuration would very likely become isomeric.

But the single particle-strength hindrance factors, already
very strong, are to be expected relatively seldom, and only
if the structural rearrangements corresponding to such transi-
tions are of the one-particle one-hole format. Indeed, due to
strong irregularity of the single-nucleon energy patterns, the
configurations underlying the states close in energy and spin

are often very different, involving n-particle n-hole rearrange-
ments, with n = 2, 3, 4 . . .. As a consequence, we should
expect the presence of numerous isomers with even higher
probability.

However, the just-mentioned mechanism of the hindrance
due to strong structural differences between the initial and
final states may cause isomerism even without the energy
pocket-type structures. Indeed, very different structures of
the states corresponding to the initial value Iin and the val-
ues I = Iin − 1, I = Iin − 2, etc., will result with very similar
retardation effects, thus encouraging even more strongly the
experimental verification of a presence of toroidal structures
in nature via isomer search.

Results of the present article indicate implicitly that em-
ploying K isomers and yrast traps as means of identification
of toroidal structures might be complicated by the fact that
toroidal structures are predicted to be accompanied by at
least one—and sometimes two—competing axial symmetry
minima. Each of those will generate its own family of trap or
K isomers with the corresponding competing decay schemes
and isomeric sequences and thus the experimental analysis
will need to be appropriately designed.

A helpful indication about how to refine experimental anal-
ysis in this context is provided by the fact that the shapes and
the implied nuclear density distributions in the toroidal versus
slightly oblate of prolate ones are significantly different. This
implies in turn that the toroidal decay scheme is not going
to “communicate” with, e.g., moderately oblate-configuration
decay schemes with transitions of strengths comparable to
the strengths of the intrasequence decay transitions. The jus-
tification of the last statement has to do with the potential
barrier penetrability and is analogous to the arguments used
to calculate the transition probabilities between the secondary
(fission isomeric) minima and the the ground-state minima.

In concluding this section, let us emphasize that exploit-
ing the axial symmetry of the toroidal structures which
necessarily generate the presence of the trap and other K
isomers encourages employing adapted instrumentation. Such
an instrumentation should optimally involve the contemporary
γ -detection systems as well as the high-resolution mass spec-
trometers.

VII. SUMMARY AND CONCLUDING REMARKS

In this article, we used the nuclear mean-field approach
in the realization employing phenomenological Woods-Saxon
Hamiltonian with the parametrization referred to as univer-
sal. The corresponding Hamiltonian depends a priori on 12
adjustable parameters, six for the protons and neutrons each.
In our parameter adjustment procedure, we used the experi-
mental single nucleon energies of the following eight doubly
magic spherical nuclei: 16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn,
146Gd, and 208Pb. The energies in question were determined
by other authors.

We employed the standard methods of the inverse problem
theory of applied mathematics with the help of which we
established the presence of parametric correlations among the
original 12 parameters. As it turns out, the central potential
radius parameter and the central potential depth parameter
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are to a good approximation linearly correlated, and inde-
pendently for the neutrons and protons. Similar independent
correlations exist between the spin-orbit radius and strength
parameters for protons and neutrons. In this way, we arrived
at determining four one-to-one correlations which decrease
the number of independent adjustment parameters from 12
originally to eight.

Having optimized the description of the single nucleon
energies in spherical doubly magic nuclei, we proceeded to
cross-checking the theory predictions for the ground-state
equilibrium deformations in numerous deformed nuclei in the
studied region, for which experimental data about average
quadrupole deformations exist in the literature. The credibility
of this type of test significantly increases due to the fact that in
the light nuclei studied, the experimental values of the equilib-
rium deformations often vary very irregularly when increasing
the nucleon number even just by two units—and this for no
obvious known reasons. Comparison shows an approximate
correspondence at the level of ±15% accuracy including ir-
regularities. Since no element in the parameter adjustment was
fitted to irregularities mentioned, a reproduction of this type of
jumps by the model can be interpreted as affirmative test of its
predictive power.

As the next step, we performed systematic calculations of
the potential energy surfaces primarily in the space including
quadrupole deformation parameters α20 and α22 [equivalently
(β, γ )] and hexadecapole deformation α40 and including
some extra stability tests engaging α4μ 	=0 as well as octupole
ones with α3μ for μ = 0, 1, 2, and 3.

Our calculations suggest the presence of the shell gaps
which appear at the superdeformed oblate shapes and are
2–3 MeV larger than the corresponding spherical shell gaps
usually considered dominating the nuclear shell structure. The
gaps in question correspond to the nucleon numbers N, Z =
14 (approximately 6 MeV at α20 ≈ −0.6 compared with
4.5 MeV at spherical shape) and N, Z = 26 (approximately
5 MeV at α20 ≈ −0.7 compared with the largest neighbor gap
at N, Z = 28 of about 3.5 MeV at spherical shape). These
structures result in well-pronounced superoblate and toroidal
potential energy minima in the corresponding nuclei in the
A ≈ 30 mass range but also in the vicinities of A ≈ 40 and
A ≈ 50 mass numbers as discussed in detail in this article.

The predicted exotic toroidal and superoblate configura-
tions mentioned are axially symmetric, which implies the
very likely presence of excited particle-hole configurations
leading to the mechanism of K isomers. The discussion of
the exotic symmetry properties in the present article was
limited, for reasons of space limitations, to even-even nuclei
only. Needless to say, the extension of those considerations
to the odd-even and odd-odd nuclei increases considerably
the number of candidate cases for the possible experimental
identification studies.

In our approach, we use consistently the expansion of
the nuclear surface in terms of the spherical harmonic ba-
sis and the toroidal-like axial symmetry minima appear as
a part of the shape competition and coexistence between at

least two, often three, axial symmetry minima. These minima
coexist within regular, continuous potential energy surfaces
which allows us to obtain simultaneously the potential energy
barriers between them and investigate the hindrance factors
accompanying interminimum transitions via barrier penetra-
tion mechanism.

This observation has very important consequences.
First, it implies that using the yrast trap and K isomers

built on top of the toroidal, axial symmetry structures for
identifying toroidal nuclei is complicated because these nu-
clei produce two or three families of isomeric and decay
sequences, each of which are associated with their original
shape-coexisting configuration.

Fortunately, one should expect that each of the discussed
shape configurations should produce its own decay sequence
with their isomers decaying preferentially within the sequence
(intrasequential decay) since the potential penetration mech-
anisms just mentioned should provide strong hindrances for
extrasequence transitions.

On the other hand, the isomeric configurations may give
rise to the collective rotational bands about an axis perpendic-
ular to the symmetry axis. Such a mechanism can become a
useful contribution on the way toward an identification of the
underlying distinct shapes under the condition that the corre-
sponding effective moments of inertia are sufficiently distinct.
From the modeling side, the mean-field theory tools are of-
ten realistic enough to provide some helpful indications, but
population of rotational bands on top of the toroidal-isomeric
configurations remains an experimental challenge.

Given expected experimental challenges with populating
the collective rotational bands in question, one should en-
visage population and identification of as many isomers as
possible together with their lifetimes, population, and decay
patterns. The decay of isomers within a given decay path
associated with a given underlying total energy minimum
could be analyzed using the usual techniques used to study
noncollective decay schemes and there exist powerful theory
methods to help in the interpretation of the results of this type.

The approach presented in this article allows us to calculate
potential barriers within realistic model conditions. All the
competing minima appear associated with the common po-
tential energy surface. This facilitates applying methods used
to calculate, e.g., the fission barrier penetrabilities and the
associated lifetimes, and we can envisage employing such an
approach in the context of an identification of toroidal states.
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