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Background: Precise measurements of atomic transitions affected by electron-nucleus hyperfine interactions
offer sensitivity to explore basic properties of the atomic nucleus and study fundamental symmetries, including
the search for new physics beyond the standard model of particle physics. In particular, such measurements,
augmented by atomic and nuclear calculations, will enable extraction of the higher-order radial moments of the
charge-density distribution in spherical and deformed nuclei. The new data impose higher precision requirements
on a theoretical description.
Purpose: The nuclear charge density is composed of the proton point distribution folded with the nucleonic
charge distributions. The latter induce subtle relativistic corrections due to the coupling of nucleon magnetic
moments with the nuclear spin-orbit density. Additional corrections come from the effect of center-of-mass
projection. We assess the precision of nuclear charge density calculations by studying the behavior of relativistic
and center-of-mass motion corrections to the second and fourth charge radial moments. Special attention has
been paid to the magnetic spin-orbit density associated with the local variations of the spin-orbit current.
Methods: The calculations for semimagic and open-shell nuclei are performed in the framework of self-
consistent mean-field theory using quantified energy density functionals and density-dependent pairing forces.
We used the general expression for the spin-orbit form factor that is valid for spherical and deformed nuclei.
Results: We studied the impact of various correction terms on the charge radii, fourth radial moments, diffraction
radii, and surface thickness of spherical and deformed nuclei. The spin-orbit corrections to charge radial moments
and surface thickness show strong shell fluctuations which can make an appreciable effect when aiming at high-
precision predictions of isotopic shifts. The inclusion of relativistic and center-of-mass corrections impacts the
quality of energy density functionals optimized to charge radii data.
Conclusions: To establish reliable constraints on the existence of new forces from isotope shift measurements,
precise calculations of nuclear charge densities of deformed nuclei are needed. The proper inclusion of the
spin-orbit charge density and other correction terms is essential when aiming at extraction of subtle effects
which become particularly visible in isotopic trends. It is also important when developing high-quality nuclear
energy density functionals optimized using heterogeneous datasets involving absolute charge radii, differential
charge radii, and charge form factor properties deduced from electron-scattering data.
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I. INTRODUCTION

High-precision studies of atomic transitions offer com-
plementary information on the structure of atomic nucleus
and fundamental symmetries, including hints of new physics
beyond the standard model of particle physics [1–5]. In par-
ticular, precise measurements of transition frequencies allow
extraction of tiny variations in the root-mean-square (rms)
nuclear charge radii across long isotopic chains of stable and
radioactive nuclei [6–12]. This carries the potential to con-
strain the existence of new forces and hypothetical particles
with unprecedented sensitivity [2–4,6,13–17]. The theoret-
ical findings have stimulated considerable developments in
high-precision experimental techniques [18–21]. The new un-
precedented level of precision offers sensitivity not only to

explore new physics, but would also provide access to nu-
clear observables that have so far been elusive, such as the
fourth-order charge radial moment 〈r4〉 [15,22,23] that carries
information on nuclear surface properties [24,25].

To extract structural information from atomic measure-
ments, it is important for nuclear theory to produce reliable
predictions of nuclear charge densities and currents. Nuclear
models usually yield the proton and neutron densities from
which the nuclear charge density can be extracted by consid-
ering several corrections [26,27]. The spurious center-of-mass
(c.m.) motion is corrected by an unfolding with the width of
the center-of-mass vibrations. The nucleon structure is taken
into account by folding with the intrinsic form factor of the
free nucleons expressed in terms of the Sachs form factors.
The leading part comes from the folding with the nucleonic
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charge form factors. Moreover, there are the magnetic form
factors of the nucleons which contribute to the charge den-
sity through the coupling to the nuclear spin-orbit density.
The latter contributions are called the spin-orbit terms in the
following. Together with the relativistic Darwin-Foldy term,
they constitute the relativistic corrections to the charge den-
sity [26,28–32]. (For a recent discussion of the nucleonic
corrections see also Ref. [33].)

The relativistic corrections are routinely considered in few-
body and many-body ab initio nuclear calculations of charge
densities and related observables, see, e.g., Refs. [34,35]
In calculations of charge radii based on the self-consistent
mean-field theory [27,36–38], the proton and neutron form
factor can be expressed in terms of single-particle Hartree-
Fock (HF) or Hartree-Fock-Bogoliubov (HFB) densities. The
spin-orbit correction is often neglected [5,25,39,40], which is
commonly considered reasonable for predictions that do not
require high accuracy. Moreover, the majority of calculations
with relativistic corrections are carried out in spherical geom-
etry [41–44]; this becomes insufficient when considering long
isotopic chains which contain deformed nuclei.

In this work, we take a fresh look at the calculation of
nuclear radii under the perspective of the enhanced demands
of precision as required by current measurements of nuclear
radii. To that end, we apply the self-consistent mean-field
theory to study nuclear charge densities and charge radial
moments for spherical and deformed nuclei with an empha-
sis on the intrinsic nucleon form factors and the relativistic
contributions that are essential for the accuracy required for
precision studies. The paper is organized as follows: The
definitions of corrections to charge densities and charge radii
given in Sec. II. Section III describes the theoretical approach
used. This is followed by description of results in Sec. IV.
Finally, Sec. V contains the conclusions of our study.

II. KEY OBSERVABLES

A. The charge form factor

The nuclear charge density is uniquely related to the nu-
clear charge form factor Fc:

ρc(r) = 1

(2π )3

∫
d3qe−iq·rFc(q). (1)

The latter is the quantity measured by electron-scattering ex-
periments [28] and used for conveniently including the folding
by the intrinsic nucleon form factors and the c.m. motion
correction. In the following, we recall the relativistic and non-
relativistic expressions for Fc and briefly discuss the treatment
of the c.m. correction.

1. The magnetic contribution to charge density
in the relativistic mean-field theory

The relativistic operator for the nuclear charge form fac-
tor F̂c is the zeroth component of the charge current Ĵ0 and
reads [26]

F̂c(q) ≡ Ĵ0(q) =
∑

t∈{p,n}
f1,t (q)γ̂0 − f2,t (q)

h̄

2mc
α̂ · q, (2)

where m is the nucleon mass, α̂ is the three-vector of Dirac
matrices [45], f1,t (q) is the intrinsic nucleon charge form fac-
tor, and f2,t (q) is the intrinsic nucleon magnetic form factor.
The charge form factor can be written as

Fc(q) =
∑

t∈{p,n}

[
f1,t (q)Ft (q) − f2,t (q)

Ftens,t (q)h̄

2mc

]
, (3)

where the form factors

Ft (q) =
∫

d3reiq·rρt (r),

Ftens,t (q) =
∫

d3reiq·rρtens,t (r), (4)

can be expressed in terms of relativistic densities

ρt (r) =
∑
α∈t

v2
αψαγ̂0ψα,

ρtens,t (r) = −i∇ ·
∑
α∈t

v2
αψαi

(
0 σ

σ 0

)
ψα, (5)

where the four-component eigenstate of the Dirac equation
ψα is the nucleonic single-particle (s.p.) wave function, v2

α are
the BCS or HFB canonical pairing occupations, and the tensor
density ρtens,t together with the nucleon magnetic form factors
yield the magnetic contribution to the charge density.

The intrinsic nucleon form factors are usually expressed in
terms of the Sachs form factors GE and GM as

f1,t (q) = GE ,t (q) + q2Dμt GM,t (q)

1 + q2D ,

f2,t (q) = −GE ,t (q) + μt GM,t (q)

1 + q2D , (6)

where

D = h̄2

(2mc)2 (7)

and μt are the magnetic moments of the nucleon: μp = 2.79
and μn = −1.91.

The above expressions for form factors do not depend on
the geometry of the Dirac equation. The explicit spherical-
geometry expressions can be found in, e.g., Refs. [42,43].

2. The magnetic contribution to charge density
in nonrelativistic mean-field theory

The expression for the form factor in nonrelativistic models
is obtained by the expansion in powers of D ∝ m−2 up to first
order [28]. In this nonrelativistic limit, the charge form factor
reads [26]

Fc(q) =
∑

t∈{p,n}

[
GE ,t (q)

(
1 − 1

2
q2D

)
Ft (q)

− D[2μt GM (q) − GE ,t (q)]F�s,t (q)

]
. (8)

The form factors

Ft (q) =
∫

d3reiq·rρt (r),

F�s,t (q) =
∫

d3reiq·r∇ · Jt (r) (9)
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are given in terms of the local particle densities ρt (r) and spin-
orbit currents Jt (r):

ρt (r) =
∑

α

v2
α|ϕtα (r)|2,

Jt (r) = i
∑

α

v2
αϕ∗

tα (r)(σ × ∇)ϕtα (r), (10)

with ϕtα (r) being the canonical HFB (or BCS) wave functions
and v2

α the corresponding pairing occupation coefficients.
Note that the above derivation does not make assumptions
about spatial symmetries. Consequently, the expressions can
be applied in three-dimensional (3D) HFB codes as well as in
two-dimensional (2D) axial or one-dimensional (1D) spheri-
cal HFB calculations.

There is a subtle difference in the interpretation of the rela-
tivistic and nonrelativistic expressions. In the relativistic form
factor, the magnetic contributions are associated simply with
the tensor density. In the nonrelativistic case, this becomes the
spin-orbit density and it turns out to be of the same order D as
the relativistic Darwin term GED. It is customary, to consider
the purely electric contribution GE ,t Ft as the leading term and
everything else as relativistic corrections.

3. The center-of-mass contribution to charge density

There are several ways to describe the c.m. correction
formally [46–48]. For calculations in a coordinate-space basis,
as in this work, the most appropriate is the approximate pro-
jection technique [46]. In the second-order Gaussian overlap
approximation, the projected point-proton form factor can be
written as

F proj
p (q) = Fp(q) exp

(
3

8〈	|P̂2|	〉
q2

)
, (11)

where |	〉 is the BCS or HFB state and P is the c.m. mo-
mentum. This expression is analogous to that obtained in the
harmonic-oscillator expansion [47,48].

The quality of the approximation (11) has been examined
in Ref. [46]. It was concluded that the bulk nuclear properties
as the diffraction radius and surface thickness are more robust
and show little difference between approximate and exact
projection. Noteworthy effects appear only for light nuclei up
to Ca, reaching to typically 0.0004 fm uncertainty for Ca.

B. The charge radius

The squared charge radius is obtained from the charge form
factor Fc(q) as

〈
r2

c

〉 = −∇2Fc(q)|q=0

Fc(0)
. (12)

For the reflection-symmetric nuclei, all form factors F (q) in
Eq. (8) fulfill the condition: ∇F (q) = 0. The product rule with
∇2 then yields only terms with zeroth or second derivative. We
abbreviate ∇2 f |q=0 = f ′′ for each factor in the form factor
and insert the values in zeroth order: GE ,p(0) = 1, GE ,n(0) =
0, GM (0) = 1, Fp(0) = Z , Fn(0) = N , and F�s,t (q)(0) = 0.

This yields at q = 0

Fc = Z, (13)

F ′′
c = F ′′

p + ZG′′
E ,p − 3ZD + NG′′

E ,n

− (2μp − 1)DF ′′
�s,p − 2μnDF ′′

�s,n. (14)

The second derivatives can be written as

F ′′
p =

∫
d3rr2ρp(r) ≡ Z〈r2〉pp, (15)

F ′′
�s,t =

∫
d3rr2∇ · Jt (r), (16)

and similarly G′′
E ,p = 〈r2〉(intr)

p , G′′
E ,n = 〈r2〉(intr)

n . In the above
expression, 〈r2〉pp indicates the point-proton radius as it
emerges directly from the mean-field calculation. The quan-
tity F ′′

�s,t can alternatively be written as

F ′′
�s,t = −2Z〈σ̂ · �̂〉t , (17)

which adds a physical interpretation. In practice, we evaluate
F ′′

�s,t in terms of Eq. (16) because the local spin-orbit current
Jt is already provided by the HFB calculations.

By combining all contributions, we obtain the expression
or the average squared charge radius:

〈
r2

c

〉 = 〈
r2

pp

〉 + 〈
r2

p

〉(intr) + N

Z

〈
r2

n

〉(intr) + 〈r2〉(rel), (18)

where

〈r2〉(rel) = 3D +
(

μp − 1

2

)
D〈σ̂ · �̂〉p + μnN

Z
D〈σ̂ · �̂〉n

(19)
is the relativistic contribution to the charge radius. As dis-
cussed above, it consists of the Darwin-Foldy (DF) term 3D
and the spin-orbit corrections.

The form of the spin-orbit terms in Eq. (16) that involves
∇ · J is valid for an arbitrary mean-field geometry. The sec-
ond form (17), involving 〈σ̂ · �̂〉t , is particularly useful if the
spherical geometry is imposed. In this case, the expectation
value of the spin-orbit term becomes independent of the radial
profile of the wave functions and the expression reduces (for
each nucleon type) to 〈σ̂ · �̂〉 = ∑

α v2
α (σ�)α where (σ l )α =

jα ( jα + 1) − lα (lα + 1) − 3
4 , which is �α for jα = �α + 1/2

and −(�α + 1) for j = �α − 1/2. It is immediately seen that,
if both subshells of the spin-orbit doublet are occupied with
the same weight, their contribution to the �s term in Eq. (18)
vanishes (spin-saturated case). The maximal spin-orbit con-
tribution is attained when the lower-energy member of the
spin-orbit doublet is fully occupied and the upper-energy
member with j = � − 1/2 is not [26].

III. COMPUTATIONAL FRAMEWORK

The examples presented here were computed with non-
relativistic nuclear density-functional theory (DFT) using the
well-known Skyrme energy-density functional; for a detailed
review, see Ref. [37]. In our applications, we employ the
Skyrme parametrization SV-bas from Ref. [49] which has
been optimized to a large experimental calibration dataset
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including information on several exotic nuclei. This is appro-
priate for the present study, which covers long isotopic and
isotonic chains. We have repeated calculations presented in
this work with other Skyrme parametrizations and obtained
results that are very similar to those with SV-bas. We also
employed the Fayans functional Fy(�r, HFB) [9,50], which
uses the optimization dataset of SV-bas and adds to it a crucial
new input consisting of differential charge radii in the calcium
chain.

To cover deformed nuclei, we use the recently published
code SKYAX which allows for deformed axially symmetric
shapes [51]. A word is in order about the treatment of pairing.
The code SKYAX implements pairing at the BCS level using a
soft cutoff in pairing space with the cutoff profile as used in
Ref. [52]:

wα = (1 + exp {[εα − (εF,qα
+ εcut )]/�ε})−1, (20)

where εα are the s.p. energies, εcut marks the cutoff band, and
�ε = εcut/10 is its width. We use a dynamical setting of the
pairing band where εcut is adjusted such that a fixed number of
nucleons Nq + ηcutN2/3

q is included in the sum
∑

α∈q wα [53],
here with ηcut = 1.65 for SV-bas (as in Ref. [49]) and ηcut = 5
for Fy(�r,HFB) as in Ref. [50].

It is to be noted that mere BCS is not always appropriate
for nuclei at the edges of stability [9,54,55], for which one
should use, in principle, the full HFB framework. In this study,
however, we limit the selection generally to nuclei whose
proton and neutron Fermi energies are sufficiently bound so
the unphysical particle gas effects are avoided.

The intrinsic form factors of the nucleons were com-
puted as in Ref. [38] with the Sachs form factors taken
from Refs. [56,57]. We wish to emphasize that we do not
use Eq. (18) to estimate charge radii but rather compute nu-
merically the radial moments (as well as other observables)
directly from the charge density and charge form factor by
the folding the point-charge distribution with the intrinsic nu-
cleon form factors. In this way, all contributions to the charge
density are automatically included. In this work, we consider
subtle effects stemming from the relativistic corrections that
place great demands on the accuracy of underlying calcula-
tions. To compute charge radii with precision better than 0.001
fm, the calculations were carried out with enhanced demands
on grid spacing, box size, Fourier transform, and HF + BCS
termination criteria.

IV. RESULTS

We shall begin from a pedagogical Fig. 1 showing the
charge density (1) predicted with SV-bas for 40Ca and 48Ca. It
is seen that, at large distances, the neutron charge distribution
and, to a lesser extent, the neutron spin-orbit density produce
a negative contribution to the charge density in 48Ca, while the
effect of correction terms to the proton density in 40Ca is less
pronounced. The resulting negative contribution to the charge
radius helps bringing the charge radius of 48Ca very close
to the value in 40Ca [6,34,42,43,58], see discussion around
Table I.

Figure 2 shows the predicted rms proton and charge radii
along selected isotopic chains which cover spherical and de-
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FIG. 1. Comparison of charge and proton densities for 40Ca and
48Ca computed with SV-bas. The density dependence at large dis-
tances is shown in the insets.

formed nuclei. The nucleonic and relativistic corrections are
of the order of 0.05 fm. This suggests that in applications
where one aims merely at a global description of radii one
may use the approximate relation [26]〈

r2
c

〉 ≈ 〈
r2

pp

〉 + 〈
r2

p

〉(intr) + (N/Z )
〈
r2

n

〉(intr)
, (21)

with the constant proton and neutron charge radii 〈rp〉(intr) =
0.848 fm [59] and 〈r2

n〉(intr) = −0.1161 fm2 [60], which is the

TABLE I. Properties of charge density computed with and with-
out spin-orbit contribution to the charge form factor for two energy
density functionals: SV-bas and Fy(�r,HFB). The rms deviations
from data for the diffraction radius, surface thickness, and charge
radius (all in 10−3 fm) are �Rc, �σc, and �rc, respectively. We
compute Rc and σc consistently from the charge form factor Fc as
discussed in Ref. [51]. The differential mean-square charge radii for
the Ca isotopes are defined in the usual way: δ〈r2〉A′,A = 〈r2〉(ACa) −
〈r2〉(A′

Ca). Their experimental values are δ〈r2〉40,48 = 0.007 fm2 and
δ〈r2〉44,48 = 0.308 fm2. χ 2 is the overall quality measure for the fit,
see Ref. [49].

SV-bas Fy(�r,HFB)

Full No 〈σ̂ · �̂〉t Full No 〈σ̂ · �̂〉t

�Rc 34 33 29 27
�σc 26 29 17 20
�rc 13 15 17 16
δ〈r2〉40,48 0.109 0.205 0.010 0.112
δ〈r2〉44,48 −0.083 −0.128 0.294 0.235
χ 2 56.9 62.6 65.1 125.8
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FIG. 2. The rms point-proton (blue) and charge radii (red) for
isotopic chains of magic (Ca, Sn, Pb) and open-shell (Cr, Sr, Yb, U)
nuclei computed with SV-bas.

radius correction (18) without the relativistic term 〈r2〉(rel).
(Note that the previous implementation of the proton form
factor in Refs. [38,56,57] implies the older value of the pro-
ton radius 〈rp〉(intr) = 0.854 fm, which amounts to a constant
reduction of about 0.001 fm, with no effect on trends.)

Figure 3 shows the c.m. correction to the charge radii of
Ca isotopes. It is seen that the c.m. correction varies very
smoothly with neutron number. Such a smooth trend holds
also for the possible systematic error from approximate c.m.
projection. Consequently, this already small error becomes
reduced for differential radii. We can thus conclude that small
errors on the charge radii due to the c.m. treatment have
negligible consequences for differential radii, for which high
precision is required.

On the other hand, the relativistic correction must be
included in precision calculations (which aims at average
uncertainties as low as 0.015 fm) and studies of small local
variations of charge radii such as the discontinuities across
shell closures, which requires accuracy on charge radius pre-
diction well below 0.01 fm [10]. To quantify this point, Table I
shows the impact of the spin-orbit contribution to the charge
form factor on the results of the nuclear energy functional
parametrizations SV-bas and Fy(�r,HFB) optimized to large
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computed with SV-min.
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FIG. 4. The difference 〈r2
c 〉 − 〈r2

pp〉 for several isotopic chains.
For comparison, the results without relativistic contribution (19)
are shown. Magic numbers are indicated by vertical dashed lines.
Positions of unique-parity shells are marked.

experimental datasets including form-factor information. The
root mean square (r.m.s.) deviations from experiment for the
robust global observables, namely, the diffraction radius, sur-
face thickness, and charge radius, depend, at first glance,
weakly on the spin-orbit correction. But note that the changes
amount to 3%–15%, which has a visible impact on the overall
quality of the fit. This is already the case for SV-bas, for
which isotopic shifts have not been included in the opti-
mization dataset. The differential mean-square charge radii
δ〈r2〉A′,A are more refined observables and they react quite
dramatically. This becomes apparent in the huge change of
χ2 for Fy(Dr, HFB) because this parametrization includes the
isotopic shifts in the fit data. We conclude that a description
of isotope shifts without the spin-orbit correction is grossly
misleading.

To show the effect of spin-obit correction on charge radii in
detail, Fig. 4 displays the difference 〈r2

c 〉 − 〈r2
pp〉 for the iso-

topic chains of Fig. 2. For each chain, the results without the
spin-orbit term exhibit a smooth decrease with neutron num-
ber that is consistent with the behavior of the intrinsic neutron
charge distribution term in Eq. (21). As expected, the spin-
orbit contribution strongly fluctuates with N . In the regions
corresponding to the gradual occupation of high- j unique-
parity shells, the spin-orbit correction rapidly decreases due
to the negative value of μn. The local increasing trends can be
associated with the gradual occupation of the upper spin-orbit
partner.

The most dramatic local variation of relativistic contri-
butions is predicted between 40Ca and 52Ca (due to the
population of 1 f7/2 and 2p3/2 neutron shells) and in the Sr
chain around N = 50 (due to the population of 1g9/2 and 2d5/2

neutron shells). In heavy nuclei the variations tend to be more
gradual due to the fragmentation of the spin-orbit strength and
the smoothing effect of pairing.

Figure 5 illustrates the behavior of 〈r2
c 〉 − 〈r2

pp〉 along the
isotonic chains of semimagic nuclei. Here, due to the positive
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value of (μp − 1/2), the spin-orbit contribution increases with
Z in the regions in which high- j shells are occupied. The
largest shell effect is predicted for N = 28; it is see in the
rapid rise of the spin-orbit correction between 48Ca and 56Ni.
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thickness σ , and diffraction radius Rc along several isotopic chains.
For comparison, the results without relativistic contribution are also
shown.

Appreciable kinks in 〈r2
c 〉 are expected at Z = 50 and 82

where the j = � + 1/2 shells close up and the j = � − 1/2
shells become occupied.

To illustrate the impact of deformation effects, Fig. 6 shows
the corrections to the difference 〈r2

c 〉 − 〈r2
pp〉 along the Yb

chain. We note that the deformed Yb isotopes are of particular
interest in the context of ongoing experimental searches of
new physics [21]. The intrinsic proton contribution, DF, and
c.m. terms do not vary with N . The intrinsic neutron contri-
bution shows the trivial linear N/Z dependence. Note that,
in the deformed region, the spin-orbit contributions change
gradually as the single-particle spin-orbit strength becomes
highly fragmented by deformation and pairing. The prolate-to
oblate shape transitions seen in the extremely-proton-rich and
extremely-neutron-rich isotopes result in noticeable variations
of spin-orbit contributions.

As demonstrated recently [24], the fourth radial moment
〈r4〉 can be directly related to the surface thickness σ of
nuclear density (see also the discussion in Ref. [43]). Precise
knowledge of 〈r4〉 is essential to establish reliable constraints
on new physics. The fourth radial moment 〈r4〉 is computed
from the charge density as obtained from Fc by the inverse
Fourier transform (which we find the simplest and most robust
procedure). To demonstrate the sensitivity of 〈r4

c 〉 and bulk
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FIG. 8. Similar to Fig. 7 but for several isotonic chains of
semimagic nuclei.

nuclear surface properties on the spin-orbit charge densities,
Figs. 7 and 8 illustrate the impact of relativistic corrections
on 〈r4〉, surface thickness σ , and diffraction radii Rc (see
Ref. [24] for definitions). It is seen that the shell fluctuations
of relativistic corrections to these quantities are appreciable
for 〈r4〉 and σc while Rc is less sensitive.

V. CONCLUSIONS

In this study, we investigated the impact of nucleonic
corrections to the nuclear charge density and charge radial
moments that are important in the context of precise mea-
surements of isotopic shifts. The calculations were performed

for spherical and deformed nuclei in the framework of self-
consistent mean-field theory using quantified nuclear energy
density functionals and density-dependent pairing forces. We
used the general expression for the spin-orbit form factor that
is valid for deformed nuclei. The main conclusions and results
of our study can be summarized as follows:

(i) The nucleonic corrections are of the order of 0.05
fm. While the electric nucleonic corrections to charge
radii do not depend on shell structure and can be sim-
ply accounted for, the magnetic spin-orbit corrections
strongly vary with particle number and require careful
modeling. These corrections can amount up to 0.01
fm and need to be accounted for in precision studies
aiming at extraction of tiny effects due to new physics
from differential radii.

(ii) Spin-orbit corrections, with their pronounced shell
effects, play a role during the optimization of nuclear
energy density functionals to the datasets involving
charge radii. On the other hand, the uncertainty in the
charge radii due to the c.m. treatment has negligible
consequences for differential radii, provided that the
underlying EDF has been optimized to datasets in-
cluding charge radii.

(iii) The discontinuities in charge radii across shell clo-
sures results in kinks, which are well below 0.01
fm [10]. Since some of the nuclei of interest are
open-shell systems [61], contributions from deformed
spin-orbit densities can be appreciable.

(iv) Deformation and pairing give rise to the fragmen-
tation of the spin-orbit strength. This results in a
smoothing of the spin-orbit correction to charge radii.
To estimate this fragmentation for heavy nuclei, the
deformed formalism laid out in this work can be ap-
plied.

(v) It will be interesting to investigate experimentally the
charge radii along the isotonic chains of semimagic
nuclei. Here, our calculations predict a large shell
effect for N = 28 that is characterized in the rapid
rise of the spin-orbit correction between 48Ca and
56Ni. Also, appreciable kinks in 〈r2

c 〉 are expected at
Z = 50 and 82 due to the closing of proton 1g9/2 and
1h11/2 intruder shells and filling the 1g7/2 and 1h9/2

spin-orbit partner shells
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