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Global analysis of nuclear cluster structure from the elastic and inclusive electron scattering
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Background: Recently, the researches of cluster structure have attracted considerable attention. Many micro-
scopic structure models have been applied to describe the cluster configurations.
Purpose: To better analyze the cluster structure and associate with the experimental observations, comparative
studies are carried out in this paper by combining the nuclear structure model with the electron scattering theory.
Method: The density distributions for candidate nuclei of normal and cluster states are obtained from the de-
formed relativistic Hartree-Bogoliubov (RHB) model. Using some moderate approximations, the corresponding
Coulomb form factors |FC (q)|2 and inclusive cross sections for different configurations are calculated by the
distorted wave Born approximation (DWBA) and coherent density fluctuation model (CDFM), respectively.
Results: Comparing the |FC (q)|2 and inclusive cross sections of different configurations, the effects of nuclear
cluster structure can be revealed, due to the differences of nuclear charge radii RC in coordinate space and the
discrepancies of Fermi momentum kF in momentum space.
Conclusions: Results illustrate that the cluster structure can be reflected from the elastic and inclusive electron
scattering. The studies conducted in this paper provide a new approach to analyze the cluster configurations, and
are also helpful to guide future electron scattering experiments.
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I. INTRODUCTION

In the past decade, the cluster formation in ground and
excited states has been investigated experimentally, provid-
ing a new perspective for studying the nuclear structure and
nuclear many body problems [1–6]. The mechanism of the
cluster formation has attracted a great deal of attention in
theoretical studies [7,8]. As one of the fundamental degrees
of freedom in nuclei, clustering is regarded as a balance
between Pauli-blocking effects and nucleon-nucleon inter-
actions in nuclear many-body dynamics [9,10]. Numerous
microscopic models have been put forward to describe the
cluster states. The proposed Tohsaki-Horiuchi-Schuck-Röpke
(THSR) wave function, rooted in the nonlocalized cluster-
ing concept, can well describe the dilute gaslike state of
clusters [11–17]. Starting from the first principles of nuclear
forces of chiral effective field theory, the no-core shell model
is also a powerful approach to the study of cluster features in
light nuclei [18–20]. Based on the microscopic energy den-
sity functionals (EDFs) [21], the mean-field approach could
characterize single-nucleon localization and the formation of
cluster structures on an equal footing [22–25].
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Localization of density distributions is an essential prereq-
uisite for the formation of cluster structures [22]. Electron
scattering is considered as an effective method to investigate
the nuclear density distributions, because the mechanism of
electromagnetic interaction is well understood [26,27]. Over
the past decades, the charge density distributions of most sta-
ble nuclei have been precisely measured by electron scattering
experiments [28]. With the new radioactive isotope facilities
built at RIKEN [29,30] and GSI [31,32], the structures of
exotic nuclei can be studied by electron scattering in the near
future.

To extract the density distributions from the experimen-
tal data of elastic electron scattering, the distorted wave
Born approximation (DWBA) method has been developed
by including the Coulomb distortion effects. Combining the
DWBA method and nuclear structure models, the charge
form factors |FC (q)|2 are systematically investigated to show
the validity of the nuclear structure models [33–42]. It has
been proved experimentally and theoretically that most nu-
clei are deformed [43–45]. Further taking into account the
nuclear deformation, the |FC (q)|2 of deformed nuclei were
first studied in Refs. [46,47]. With this approach, the changing
trends of |FC (q)|2 of Sn and Xe isotopes were calculated in
Refs. [48,49] based on the deformed mean-field calculations.

Apart from the density distributions in coordinate space,
the cluster information can be reflected by the localization in
momentum space. The nuclear momentum distributions can
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be extracted from the inclusive electron scattering, a process
in which only the scattered electron is detected and the final
nuclear state is undetermined [50–54]. With the increase of the
energy transfer ω of incident electrons, the cross sections can
be divided into several regions [51]. At low energy transfer,
elastic scattering plays major role in this region [55]. For
larger energy loss ω, termed the quasielastic (QE) region, the
electrons not only interact with the total nuclei but also scat-
ter from the individual nucleon [56]. Further increasing the
electron’s energy, a nucleon can be excited to form a � (l232)
particle [57]. At very large ω, the “deep inelastic scattering”
region reflects the structureless continuum on quarks bound
in nucleons [58]. During the past few decades, the nuclear
momentum distributions of several nuclei have been precisely
obtained from the inclusive electron scattering [59–61].

The theoretical inclusive cross sections can be divided into
a product of the elementary elastic cross sections and a scaling
function. Studies of scaling function were first performed
based on the relativistic Fermi gas (RFG) model, where the
nucleus is considered as a noninteracting gas of nucleons [62].
As an extension of RFG model, the coherent density fluctu-
ation model (CDFM) was developed for spherical nuclei by
the ansatz of the generator coordinate method (GCM) and the
δ-function approximation [63]. It presents the connections be-
tween the scaling functions and the nuclear structures, i.e., the
density and momentum distributions [64,65]. With the CDFM
approach, the inclusive electron scattering cross sections can
be derived.

This paper aims to study the nuclear cluster structure of
ground states by the elastic and inclusive electron scattering.
The nuclei 12C, 16O, and 20Ne are chosen as the candi-
dates, because they usually serve as the benchmark in cluster
studies. First, the EDFs are used to investigate the cluster
information of ground states. It is noted that the origin of the
cluster formation can be traced back to the effective nuclear
interaction [66,67]. Based on a self-consistent effective nu-
clear interaction, the EDFs are constructed and regarded as
a comprehensive approach to study the nuclear structure. By
removing the degeneracy of single-nucleon levels in spherical
symmetry, the deformation in effective nuclear interaction
of EDFs motivates the formation of cluster structures [22].
Moreover, the DWBA and CDFM method are applied to cal-
culate the elastic form factors and inclusive cross sections,
respectively. As a precise approach, the DWBA method con-
tains the Coulomb distortion effects, and makes it possible to
provide quantitatively accurate descriptions of elastic electron
scattering. The CDFM is suggested as a suitable model for
studying the scaling functions of inclusive electron scattering,
which allows one to investigate simultaneously the density
and momentum distributions. However, because the CDFM
was developed based on spherical symmetry [68,69], some
moderate assumptions are made in this paper when applied
to the deformed configurations of nuclei.

The theoretical studies of cluster from EDFs are associ-
ated with the calculations of electron scattering in this paper.
First, based on the deformed relativistic Hartree-Bogoliubov
(RHB) model, the intrinsic density distributions of normal
and cluster states are calculated for the selected nuclei. Next,
with the density distributions of different configurations, the

corresponding elastic form factors |FC (q)|2 of selected nuclei
are studied by the DWBA method, and the inclusive cross
sections are calculated within the framework of CDFM. Fi-
nally, comparing the elastic form factors and inclusive cross
sections of different states, the |FC (q)|2 of cluster states have
definite changes in the shapes and the positions of diffraction
minima. There are also noticeable variations of the inclusive
cross sections of cluster states in the peak and dip regions.
Therefore, the nuclear cluster structure can be revealed from
the differences of cross sections of electron scattering, which
can be measured in future experiments. The studies in this
paper provide a new and effective method to investigate the
cluster structures. It can also be used to extract the nucleon
distributions in coordinate and momentum spaces from future
electron scattering experiments.

This paper is organized as follows: In Sec. II, the theoret-
ical frameworks of the deformed RHB model, DWBA, and
CDFM method are provided. In Sec. III, the numerical results
and discussions are presented. Finally, a summary is given in
Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, the theories of the relativistic Hartree-
Bogoliubov (RHB) model are first provided to calculate the
nuclear structure information. Besides, the frameworks of the
distorted wave Born approximation (DWBA) and coherent
density fluctuation model (CDFM) are presented to study the
elastic and inclusive electron scattering separately.

A. Axially deformed relativistic Hartree-Bogoliubov model

The RHB model provides a unified solution of the nuclear
mean-filed and paring correlations; the starting point is the
effective Lagrangian density [70]

L = ψ̄ (iγ · ∂ − m)ψ + 1

2
(∂σ )2 − 1

2
mσ σ 2 − 1

4
	μν	

μν

+ 1

2
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2
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(1 − τ3)

2
ψ,

(1)

where the couplings of the gσ , gω, gρ are the density
dependence.

From the variation of Eq. (1), the Dirac equation of the
single-nucleon and Klein-Gordon equations of mesons can be
deduced. Pairing correlations are indispensable for a quanti-
tative analysis of open-shell nuclei. The RHB model includes
particle-hole (ph) and particle-particle (pp) correlations by the
RHB equation in a mean-field approximation:

(
ĥD − m − λ �̂

−�̂∗ −ĥ∗
D + m + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (2)
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ĥD is the Dirac Hamiltonian, and �̂ is the pairing field. Uk and
Vk represent the quasiparticle Dirac spinors

Uk =
(

f (U )
k

ig(U )
k

)
, Vk =

(
f (V )
k

ig(V )
k

)
. (3)

For axially symmetric deformed shapes, Dirac spinors are
expanded independently in terms of the harmonic oscillator
eigenfunctions �α (r, s):

fi(r, s, t ) =
αmax∑
α

f (i)
α �α (r, s)χti (t ),

gi(r, s, t ) =
α̃max∑
α̃

g(i)
α̃ �α̃ (r, s)χti (t ). (4)

Substituting Eqs. (3) and (4) into the Eq. (2), the co-
efficients f (i)

α and g(i)
α̃ can be obtained. Combining the

Klein-Gordon equations of mesons, the RHB equation is
solved iteratively until the desired accuracy is achieved. With
the Dirac spinors of nucleons, the nucleon density distri-
butions can be calculated. Neglecting the effects from the
neutron, one obtains the charge density distributions ρC (r) by
integrating the single-proton charge distributions

ρC (r) =
∫

ρp(r′)ρ p(|r − r′|)dr′, (5)

where ρ p(r) = �3

8π
e−�r with � = 842.61 MeV.

B. Elastic electron scattering

With the deformed density distributions obtained from
RHB model, the elastic charge form factors are further inves-
tigated by the DWBA method.

The deformed charge densities ρC (r) are first expanded by
the Legendre function [71]

ρC (r, z) =
∑

k

ρk (R)Pk (cos θ )

= ρ0(R) + ρ2(R)P2(cos θ ) + · · · , (6)

In the framework of the plane wave Born approximation
(PWBA) method, the Coulomb form factors |FC (q)|2 are
expressed as the Fourier transformation of charge density
distributions, and can be decomposed into several Coulomb
multipoles [47],

|FC (q)|2 =
2J∑

λ=0,2,...

|FCλ(q)|2, (7)

where the Coulomb multipoles are deduced from the charge
density multipoles,

FCλ = 4π
〈Jkλ0 | JλJk〉

Z
√

2λ + 1

∫
r2ρλ(r) jλ(qr)dr. (8)

Combining Eqs. (7) and (8), the |FC (q)|2 can be obtained
within the PWBA method. However, the nuclear Coulomb
distorted effects are not included by the PWBA method. To
obtain more precise results, the DWBA method is applied in
this paper.

For the C0 multipole, the distorted wave function of the
scattered electron can be given by solving the Dirac equation
with spherical Coulomb potential VC (r):

[α · p + βm + VC (r)]�(r) = E�(r). (9)

With the direct scattering amplitude f (θ ) and spin-flip scat-
tering amplitude g(θ ) calculated from Eq. (9), one obtains the
C0 multipole in the DWBA form

FC0(q) = (| f (θ )|2 + |g(θ )|2)/σMott, (10)

where σMott is the Mott scattering cross section.
Higher multipoles FCλ, which are much smaller than FC0

and only affect the diffraction minima of |FC (q)|2, are inves-
tigated by the PWBA method. With Eqs. (6) and (7)–(10) we
can finally obtain the DWBA form factors.

C. Inclusive electron scattering

In the electron energy range of ≈ 1 GeV, there are two
dominant dynamical mechanisms: quasielastic (QE) scatter-
ing and � resonance.

1. Coherent density fluctuation model

Studies of scaling functions are first performed on the basis
of the relativistic Fermi gas (RFG) model. But it is unable
to reflect the detailed nuclear structure. CDFM is further
proposed to study the scaling functions, where the nuclear
structure information is included.

The scaling function f QE(ψ ′) in CDFM can be written as
an asymmetrical form [72]:

f QE(ψ ′) = f QE
1 (ψ ′) + f QE

2 (ψ ′), (11)

where the asymmetry scaling functions can be written as

f QE
1 (ψ ′) ∼=

∫ α/kF |ψ ′|

0
dR|F (R)|2 F1(R, ψ ′), ψ ′ � 0,

f QE
2 (ψ ′) ∼=

∫ c2α/kF |ψ ′|

0
dR|F (R)|2 F2(R, ψ ′), ψ ′ � 0,

(12)

with

F1(R, ψ ′) = c1 ×
[

1 −
(

kF R|ψ ′|
α

)2]
,

F2(R, ψ ′) = c1 ×
[

1 −
(

kF R|ψ ′|
c2α

)2]
. (13)

The weight function |F (R)|2 is strongly linked to the nuclear
density distributions

|F (R)|2 = − 1

ρ0(R)

dρ(r)

dr

∣∣∣∣
r=R

, ρ0(R) = 3A

4πR3
, (14)

and α = ( 9πA
8 )

1/3
.

In the QE region, the scaling variable ψ ′ is defined as [73]

ψ ′ ≡ 1√
ξF

λ′ − τ ′√
(1 + λ′)τ ′ + κ

√
τ ′(τ ′ + 1)

. (15)

The kF is Fermi momentum. In CDFM, the coefficients are
given by modifying the nuclear structure model and the
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phenomenological fit of the experimental data, where c1 =
0.72 and c2 = 13/12.

Substituting Eq. (14) into Eq. (12), we can obtain the
following expression:

f QE
i (ψ ′)= 4π

A

∫ Ri

0
dR ρ(R)

[
R2Fi(R, ψ ′)+ R3

3

∂Fi(R, ψ ′)
∂R

]
,

(16)
where i = 1 for ψ ′ � 0, and i = 2 for ψ ′ � 0. The density
distribution ρ(R) in Eq. (16) is spherical, and the CDFM is de-
veloped for the spherical nuclei. For example, in Refs. [68,69],
the authors investigated the magnetic form factors of odd-A
nuclei based on the deformed mean-field method where the
CDFM is applied only to the spherical nuclei. In order to
study the scaling properties of deformed configurations, in
this paper, a moderate approximation is made when applying
the scaling function of CDFM model. Instead of the density
ρ(R) of spherical nucleus, we use the spherical part ρ0(R)
of the deformed densities in Eq. (6) to calculate the scaling
function of Eq. (16). This is acceptable because the spherical
part ρ0(R) is the major component of the deformed distri-
bution. Besides, if we use the deformed density ρ(R, θ ) of
Eq. (6) instead of ρ(R) and integrate over the angular θ of
intrinsic coordinate system, the contributions of the deformed
components disappear automatically and only the spherical
component is left.

In this paper, the analysis is extended to the �-resonance
region. The scaling variable in the � region is introduced by
Ref. [74]:

ψ ′
� ≡

[
1

ξF

(
κ

√
ρ ′2

� + 1/τ ′ − λ′ρ ′
� − 1

)]1/2

×
{+1, λ′ � λ′0

�,

−1, λ′ � λ′0
�.

(17)

The �-scaling function f �(ψ ′
�) in the CDFM is defined as

f �(ψ ′
�) =

∫ ∞

0
dR|F (R)|2 f �

RFG[ψ ′
�(R)], (18)

where the RFG superscaling function in the � domain is

f �
RFG(ψ ′

�) = 3
4

(
1 − ψ ′2

�

)
�

(
1 − ψ ′2

�

)
. (19)

In CDFM calculations, the value 3/4 is replaced by 0.54 based
on the nuclear structure studies.

2. Cross sections in the quasielastic region

In the one-photon-exchange approximation, the double dif-
ferential cross sections of inclusive electron scattering can be
written as the functions of momentum transfer q and energy
transfer ω:

d2σ

d	k′dε′ = σM

[(
Q2

q2

)2

RL(q, ω)

+
(

1

2

∣∣∣∣Q2

q2

∣∣∣∣ + tan2 θ

2

)
RT (q, ω)

]
. (20)

RL and RT are the longitudinal and transverse response func-
tions, respectively. They contain the information of nuclear
electromagnetic charge and current density distribution.

In the QE region, RL(T ) can be expressed by the scaling
functions in Eq. (11) [74]:

RQE
L (κ, λ) = �0

κ2

τ
[(1 + τ )W2(τ ) − W1(τ )] × f QE(ψ ′),

RQE
T (κ, λ) = �0[2W1(τ )] × f QE(ψ ′), (21)

where W1(τ ), W2(τ ) are linked to the Sachs form factors
GE (τ ), GM (τ ). Substituting Eq. (21) into Eq. (20), the
quasielastic electron scattering cross sections can be obtained.

3. Cross sections in the � resonance region

As the ω increases, the � resonance becomes the main ef-
fect in inclusive electron scattering. With the scaling function
Eq. (18), the longitudinal and transverse response functions
RL(T ) in this region are calculated as [75]

R�
L (κ, λ) = N ξF

2mNη3
F κ

κ2

τ
[(1 + τρ2)w2(τ ) − w1(τ )

+ w2(τ )D(κ, λ)] × f �(ψ ′
�),

R�
T (κ, λ) = N ξF

2mNη3
F κ

[2w1(τ ) + w2(τ )D(κ, λ)] × f �(ψ ′
�),

(22)

where N = N , Z .
Substituting Eq. (22) into Eq. (20), the � resonance cross

sections are calculated. Combining the contributions of QE
and � regions, the total cross sections of inclusive electron
scattering can be obtained.

III. NUMERICAL RESULTS AND DISCUSSIONS

As mentioned in the Introduction, the cluster formation
plays significant role in investigating the structure of light
nuclei and coexists with the nuclear mean field. In this sec-
tion, cluster structures of selected nuclei (12C, 16O, and 20Ne)
are investigated with the self-consistent relativistic Hartree-
Bogoliubov (RHB) model with the DD-ME2 parameter set.
The corresponding Coulomb form factors and inclusive elec-
tron scattering cross sections are also calculated with the
formulas of Sec. II.

A. 12C

The binding energies of 12C from the constrained cal-
culations of the RHB model with DD-ME2 functional are
presented as a function of deformation parameter β2 in Fig. 1.
There are three minima, located at β2 = −0.33, 0.03, and
2.36. From this figure, one can see that the ground state of 12C
has an oblate shape for β2 = −0.33 and the binging energy
agrees with the experimental data Bexp = 92.2 MeV. We also
provide the corresponding intrinsic nucleon density distribu-
tions in the insets of Fig. 1. It is noted that, removing the
degeneracy of single-nucleon levels related to spherical sym-
metry, deformation plays a significant role in the formation of
clusters. In our calculation, the 3α-chain configuration shows
up for the deformation β2 = 2.36. This indicates higher defor-
mation is favorable for the formation of clusters in light nuclei.
The reason is that the deformation increases the nuclear
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FIG. 1. Binding energies of 12C as a function of the deformation
parameter β2 from the constrained RHB calculations with DD-ME2
functional. The insets display the corresponding nucleon density
distributions.

potential depth and makes the wave functions more localized.
The RHB model can provide reasonable descriptions for the
study of nuclear properties, which is also confirmed in many
researches [70,76]. By the constrained RHB model, in this pa-
per the formation of α clusters is shown without presupposing
the existence of cluster structures.

The Coulomb form factors |FC (q)|2 can reflect nuclear
electromagnetic structures precisely. To further analyze the
intrinsic density distributions in Fig. 1, the corresponding
|FC (q)|2 of 12C are calculated by the DWBA method, and
the results are presented in Fig. 2. One can see that the
experimental form factors can be reproduced by the DWBA
calculations. In Fig. 2, the |FC (q)|2 of 12C for β2 = −0.33 and
β2 = 0.03 are similar, because their charge root-mean-square
radii (RC) are relatively close to each other. However, owing
to the effects of nuclear deformation, the diffraction minimum
of |FC (q)|2 of β2 = −0.33 has a downward and outward shift,
compared with that of β2 = 0.03. As the deformation further

FIG. 2. |FC (q)|2 of 12C for deformation parameter β2 = −0.33,
0.03, and 2.36, calculated by the DWBA method. The corresponding
ρC (r) are from the constrained RHB calculations. The experimental
data are taken from Ref. [77].

FIG. 3. Inclusive electron scattering cross sections of 12C for
different deformations at incident energy ε = 1108 MeV and θ =
37.5◦. The results are calculated by CDFM, where the density dis-
tributions are from constrained RHB calculations. The experimental
data are taken from Ref. [80].

increases, the 3α-cluster structure tends to be formed, which
has essential influence on the corresponding |FC (q)|2 of Fig. 2.
For this state, there are more pronounced changes in the shape
of |FC (q)|2, and the diffraction minimum at q ≈ 1.5 fm−1

becomes flat. Therefore, the |FC (q)|2 can reflect the influences
of the cluster on the density distributions. The discrepancies
of |FC (q)|2 mean the cluster structure of the ground state of
12C can be detected by the elastic electron scattering.

Elastic scattering makes it possible to measure the density
distributions in coordinate space, and the inclusive quasielas-
tic electron scattering provides the information of nucleon
momentum distributions. To further illustrate the differences
between the cluster and normal state in momentum space,
we provide the total inclusive cross sections of 12C with the
CDFM in Fig. 3, where the corresponding density distribu-
tions are from Fig. 1. Because the CDFM can only be applied
under spherical symmetry [68,69], in this part the spherical
components ρ0(r) instead of the total density distributions
ρ(r) are used in the framework of CDFM. For β2 = −0.33
and β2 = 0.03, there are similar results of cross sections in
Fig. 3, because their deformation parameters are close to each
other. Both of them give reasonable descriptions of the exper-
imental data, which also examines the validity and suitability
of CDFM. For the biggest deformation β2 = 2.36 with the
3α-cluster structure, the regions of the peak and dip have
distinct discrepancies. The differences of cross sections in
Fig. 3 represent the discrepancies of momentum distributions,
and are also highly connected with the density distributions
in coordinate space. Because the density distributions can be
turned into momentum distributions by the Fourier transform
of nucleon wave functions, the cross sections in Fig. 3 can
reflect the cluster structure in Fig. 1. Comparing the theoret-
ical results with the experimental data of electron scattering
in Figs. 2 and 3, we can draw the conclusion that the ground
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FIG. 4. The contributions on inclusive cross sections of Fig. 3
from QE and � regions, respectively.

state of 12C mainly shows the mean-field structure rather than
the cluster structure.

To better explain the discrepancies of different states in
Fig. 3, we further present the contributions from the QE and �

regions to inclusive cross sections separately in Fig. 4. As can
be shown, the positions of QE and � peaks are identical for
different deformation parameters. Because of the energy and
momentum conservation, the inclusive cross sections have a
peak located at ω = q2/2M, which corresponds to the energy
taken from the recoiling nucleons with p = 0 [78]. The width
of the peak is another important characteristic in the study of
inclusive electron scattering, and is directly proportional to
the Fermi momentum kF [54]. It is noted that kF is inversely
correlated with the nuclear radii R [79]. The cluster state
β2 = 2.36 has the biggest R and the smallest kF , so the width
of the peak is the narrowest both in QE and � regions. The
total cross sections of Fig. 3 are the superposition of QE and
� contributions. For this reason, the 3α-cluster state has the
biggest value of the QE and � peaks and the smallest value of
dip. Combining Figs. 3 and 4, one can draw a conclusion that
inclusive electron scattering can be used to analyze the cluster
structure.

B. 16O

Besides 12C, 16O is also chosen to investigate the cluster
structure. The binding energies of 16O are presented in Fig. 5.
As can be seen, there are three minima, located at β2 = 0.0,
1.08, and 3.69, which represent the different nuclear config-
urations. In the insets of Fig. 5, the corresponding intrinsic
nucleon density distributions are included. Being a doubly
magic nucleus, it has a spherical shape for 16O at the state
β2 = 0.0. The theoretical binding energy of this state can well
reproduce the experimental result Bexp = 127.6 MeV, which
verifies the reliability of the RHB model to describe the nu-
clear ground properties. Considering the role of deformation,
the density distributions are inhomogeneous and the shape
of 16O becomes axial prolate for β2 = 1.08. For the biggest

FIG. 5. Binding energies of 16O as a function of the deforma-
tion parameter β2 from the constrained RHB calculations with the
DD-ME2 functional. The insets display the corresponding nucleon
density distributions.

deformation β2 = 3.69, the linear 4α-chain structure is well
depicted in Fig. 5. It further proves that the formation of
clusters is favored at higher deformation.

In Fig. 5, we provide the ground state densities for differ-
ent deformations. The corresponding Coulomb form factors
|FC (q)|2 and charge radii RC are calculated and presented in
Fig. 6. It can be seen that the theoretical |FC (q)|2 of β2 = 0.00
are consistent with the experimental data, because 16O is a
typical spherical nucleus. For β2 = 1.08, the deformation has
an essential influence on |FC (q)|2, where the positions of
diffraction minima have an obvious downward and outward
shift. Further increasing the deformation, the intrinsic density
distributions become more localized and the 4α-cluster con-
figuration shows up at the state of β2 = 3.69. The |FC (q)|2
of this state have no obvious diffraction minimum at q ≈
1.0 fm−1 and the shape also changes a lot. These behaviors

FIG. 6. |FC (q)|2 of 16O for deformation parameter β2 = 0.0,
1.08, and 3.69, calculated by the DWBA method. The corresponding
ρC (r) are from the constrained RHB calculations. The experimental
data are taken from the Ref. [77].
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FIG. 7. Inclusive electron scattering cross sections of 16O for dif-
ferent deformations at incident energy ε = 1200 MeV and θ = 32◦.
The results are calculated by CDFM, where the density distributions
are from constrained RHB calculations. The experimental data are
taken from Ref. [81].

show the effects of the cluster structure on|FC (q)|2, which are
similar to those in Fig. 2 of 12C.

To show the influences of the cluster state in nucleon mo-
mentum distributions, the total inclusive cross sections of 16O
for different states are presented in Fig. 7 using the CDFM.
During the calculations, we also use the spherical parts ρ0(r)
of densities instead of the deformed distribution ρ(r) as an
approximation in Eq. (16). As can be seen in this figure, the
results of β2 = 0.00 coincide better with the experimental
data. For the configuration β2 = 3.69 with the 4-α cluster
structure, its QE peak and dip have distinct changes with those
of β2 = 1.08 and β2 = 0.00. From the comparisons of the
Coulomb form factors and inclusive cross sections in Figs. 6
and 7, similar results show that the ground state of 16O is
the mean-field state instead of the cluster structure. With
the purpose of illustrating the differences in Fig. 7 between
the normal and cluster state, the contributions of QE and �

regions to inclusive cross sections are presented in Fig. 8.
In this figure, the positions of QE and � peaks for different
deformations are the same. With the increase of the deforma-
tion, the nuclear radii in r-space become larger but the Fermi
momenta kF in p-space become smaller. Due to the width of
the peak is in direct proportion to the kF , the state with the 4-α
configuration has the narrowest peak for QE and � regions in
Fig. 8. The differences in the widths of the QE and � peaks
cause the differences in the cross sections of Fig. 7. Therefore,
the distinctions in inclusive cross sections between different
states can reflect the effects of the 4-α cluster structure.

C. 20Ne

Apart from 12C and 16O, the binding energies of 20Ne
are also given in Fig. 9. The minima of the curve locate at
β2 = −0.16, 0.55, and 2.14, which correspond to the dif-
ferent shapes of nuclei. In Fig. 9, we provide the intrinsic

FIG. 8. The contributions on inclusive cross sections of Fig. 7
from QE and � regions.

nucleon density distributions accordingly in the insets. It can
be seen that the ground state of 20Ne exhibits an oblate shape
for β2 = −0.16. Increasing the deformation, the equilibrium
shape becomes prolate for β2 = 0.55, and the theoretical bind-
ing energy of this state agrees with the experimental data
Bexp = 160.6 MeV. There are two pronounced nucleon lo-
calizations with a deformed oblate core for this state, which
displays an α- 12C -α structure. Similar results are obtained
in Ref. [24]. As mentioned above, the deformation can en-
hance the formation of α clusters. For the configuration β2 =
2.14, the intrinsic density distribution displays a linear chain
structure.

With the density distributions of different deformations in
Fig. 9, the corresponding Coulomb form factors |FC (q)|2 and
charge radii RC are investigated and presented in Fig. 10. As
shown in this figure, for the mean-field structure β2 = −0.16
and α- 12C -α structure β2 = 0.55, the RC are close to each
other, and the |FC (q)|2 of the two states are also similar.
Both of them are in accordance with the elastic scattering

FIG. 9. Binding energies of 20Ne as a function of the deformation
parameter β2 from the constrained RHB calculations with DD-ME2
functional. The insets display the corresponding nucleon density
distributions.
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FIG. 10. |FC (q)|2 of 20Ne for deformation parameter β2 =
−0.16, 0.55, and 2.14, calculated by the DWBA method. The cor-
responding ρC (r) are from the constrained RHB calculations. The
experimental data are taken from the Ref. [82].

experimental data. For the linear chain state β2 = 2.14, the
diffraction minimum of the |FC (q)|2 has a noticeable shift
toward high momentum transfer q and the values of the
minimum decrease. The |FC (q)|2 reflect the effects of the
cluster structure on density distributions, therefore, the linear
chain structure causes the variations in |FC (q)|2 of 20Ne. From
Fig. 10, one can see that the linear chain structure is ruled
out for the ground state of 20Ne, and further experimental
measurements are needed at the region q ≈ 1.5 fm−1 to dis-
tinguish the mean-field state and α- 12C -α state.

To better study the density distributions of different states
of Fig. 9 in momentum space, the corresponding inclusive

FIG. 11. Inclusive electron scattering cross sections of 20Ne for
different deformations at incident energy ε = 1400 MeV and θ =
30◦. The results are calculated by CDFM, where the density distribu-
tions are from constrained RHB calculations.

FIG. 12. The contributions on inclusive cross sections of Fig. 11
from QE and � regions, respectively.

cross sections are calculated and provided in Fig. 11. It is
shown that the cross sections of β2 = −0.16 and β2 = 0.55
are close to each other in general. The linear chain state
β2 = 2.14 has differences in the peak and dip regions. If the
inclusive cross sections are measured for 20Ne, it will be help-
ful to study the mean-field structure and the cluster structure at
the ground state. In Fig. 12, we also present the contributions
on inclusive cross sections from QE and � regions separately
to interpret this phenomenon. As can be seen, the width of
the peak of the linear chain state is the narrowest in both QE
and � regions, which is due to the smallest kF of this state.
The discrepancies in the width of the peak in Fig. 12 give
rise to the differences in the corresponding cross sections of
Fig. 11. These variations of inclusive cross sections between
cluster and normal states are similar to those of 12C and 16O in
Figs. 3 and 7. Therefore, the inclusive electron scattering also
provides a suitable method to detect the cluster structure.

IV. SUMMARY

The cluster phenomenon is one of the most fundamen-
tal features in light nuclei. In this paper, we combine the
nuclear structure model with the electron scattering process
to study the cluster structure. During the research, the den-
sity distributions are obtained from the RHB model, and the
corresponding elastic and inclusive electron scattering cross
sections are calculated by the DWBA and CDFM method,
respectively.

With the RHB model, the energy surfaces of selected nuclei
(12C, 16O, and 20Ne) are investigated. There are three minima
for the curves, which represent the different nuclear configu-
rations in ground states. The corresponding intrinsic density
distributions of different minima are also given. It can be
seen that pronounced nucleon localization exhibits at specific
deformation. This is because the deformation increases the
nuclear potential depth and makes the nucleon wave func-
tions more localized, which favors the formation of cluster
structures.
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Combining the RHB model and DWBA method, the
Coulomb form factors |FC (q)|2 of different states are calcu-
lated and compared with each other for the selected nuclei.
As can be seen, the theoretical |FC (q)|2 of the normal state
coincide with the experimental data well. With the increase
of the localization of density distributions, the |FC (q)|2 have
definite changes in the shapes and the positions of diffraction
minima. The |FC (q)|2 reflect the density distributions directly;
therefore, the variations of |FC (q)|2 mean the cluster structure
in coordinate space can be analyzed by the elastic electron
scattering.

Differing from the elastic electron scattering, the inclu-
sive electron scattering makes it possible to measure the
nucleon density distributions in momentum space. Based on
the CDFM, the inclusive cross sections of the normal and
cluster states of 12C, 16O, and 20Ne are investigated and com-
pared with each other. An approximation is made in this paper
in which the spherical components ρ0(R) of the deformed
configurations are used to study the scaling properties of the
CDFM. For the normal states, the theoretical cross sections
agree with the experimental data well. For the cluster states,
there are noticeable changes of cross sections in the peak
and dip regions. This can be attributed to the variations of
kF , which result in the discrepancies of the inclusive cross
sections for the normal and cluster states. These results further
illustrate that cluster structures can be detected by the inclu-
sive electron scattering.

By the comparison of the theoretical form factors and
inclusive cross sections with the experimental data, we find
that the ground states of 12C and 16O present the mean-field
structure. For 20Ne, the linear chain state is ruled out, and
further experimental measurements are needed to distinguish
the mean-field structure and α- 12C -α structure. It should also
be mentioned that the calculations of deformed configurations
within the framework CDFM are only an approximate stud-
ies. An alternative scaling function and a new CDFM model
are expected, if applicable, for deformed nuclei. By combin-
ing the nuclear structure model with the electron scattering
theory, the method proposed in this paper provides a new
and effective approach to investigate cluster configurations,
and can serve as a useful guide for future electron scattering
experiments.
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