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Large-Nc and renormalization group constraints on parity-violating low-energy coefficients
for three-derivative operators in pionless effective field theory

Son T. Nguyen ,1,* Matthias R. Schindler ,2,† Roxanne P. Springer ,1,‡ and Jared Vanasse 3,§

1Department of Physics, Duke University, Durham, North Carolina 27708, USA
2Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA

3Fitchburg State University, Fitchburg, Massachusetts 01420, USA

(Received 9 December 2020; revised 20 March 2021; accepted 12 April 2021; published 27 May 2021)

We extend, from operators with one derivative to operators with three derivatives, the analysis of two-body
hadronic parity violation in a combined pionless effective field theory (EFTπ/) and large-Nc expansion, where
Nc is the number of colors in quantum chromodynamics (QCD). In elastic scattering, these operators contribute
to S-P and P-D wave transitions, with five operators and their accompanying low energy coefficients (LECs)
characterizing the S-P transitions and six operators and LECs those in P-D transitions. We show that the large-Nc

analysis separates them into leading order in Nc, next-to-leading order in Nc, etc. Relationships among EFTπ/

LECs emerge in the large-Nc expansion. We also discuss the renormalization group (RG) scale dependence of
these LECs by considering two distinct limits: one in which large-Nc relationships among LECs hold but RG-
related approximate expansions do not, and vice versa. Our analysis can complement lattice QCD calculations
and help prioritize future parity-violating experiments.
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I. INTRODUCTION

Understanding weak interactions in few-nucleon systems
may provide a window into how nonperturbative quantum
chromodynamics (QCD) governs nuclear structure and behav-
ior. Since parity is conserved in electromagnetic and strong
interactions but not in weak interactions, parity-violating (PV)
processes involving few nucleons can be used to isolate the
effects of the weak interactions, which are suppressed by
about seven orders of magnitude relative to the strong inter-
actions (see, e.g., [1–5] and their references for theoretical
reviews and experimental status). The nonperturbative nature
of QCD at low energies makes direct calculations of hadronic
PV observables challenging. While lattice QCD efforts in
this direction continue, they are still in their infancy [6,7].
Effective field theories (EFTs) provide a model-independent
approach for understanding interactions among nucleons.

EFTs exploit any hierarchy of scales existing in a sys-
tem. They retain dynamics that are relevant at the desired
energy scale as well as underlying symmetries, while all high-
energy/short-distance dynamics are encoded into low-energy
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coefficients (LECs), which are not determined by these sym-
metries. The LECs may be calculated from the underlying
theory or fit to experimental data. At any given order in the
EFT expansion, only a finite number of LECs are relevant.
Once these have been fixed by comparison with data, their
values can be used to predict additional observables.

At momenta significantly below the pion mass (mπ ≈ 140
MeV), an EFT describing few-nucleon physics may be con-
structed in which the only dynamical degrees of freedom
are nonrelativistic nucleons and possibly photons, neutrinos,
etc. In this pionless EFT (EFTπ/) [8–15], the operators are
organized in powers of p/��π , where p is a typical external
momentum or momentum transfer in the system, and ��π ∼
mπ is the breakdown scale of EFTπ/. When restricted to two-
nucleon processes, EFTπ/ is written in terms of four-nucleon
contact interactions, with terms involving an adequate number
of derivatives to reach the desired level of precision. EFTπ/ is
well established for the low-energy regime of E � 10 MeV
in the laboratory frame (or momentum transfers of p � ��π ).
(For reviews, see Refs. [16–21].)

Another useful tool for understanding QCD is the large-Nc

limit, where the number of colors, Nc, is taken to be large
(the physical value is Nc = 3) [22,23]. Combining the large-
Nc expansion with the EFTπ/ expansion puts constraints on
the LECs of EFTπ/. The approach of combining EFTπ/ with
large Nc has been applied to parity-conserving (PC) nucleon-
nucleon (NN) interactions [24–26], the leading (largest) PV
NN interactions [27], time-reversal violating NN interactions
[28], and interactions with external currents [29]. In this paper,
we use the dual EFTπ/ and large-Nc expansion to study the
impact of three-derivative operators on PV NN interactions.
The leading PV NN terms appear with one derivative and
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describe S-P wave transitions. For elastic scattering, five in-
dependent three-derivative operators provide corrections to
these S-P wave transitions, and an additional six independent
three-derivative operators contain the leading contributions to
P-D wave transitions.

At present, there exist two measurements of PV two-
nucleon observables performed at the low energies where
EFTπ/ is valid. The longitudinal asymmetry in �pp scattering
was found in Refs. [30,31]. More recently, the NPDGamma
Collaboration published the PV gamma-ray asymmetry aris-
ing from polarized neutron capture on the proton [32]. Con-
tributions from P-D transitions to PV asymmetries become
competitive with those from S-P transitions at high enough
energies. A measurement of PV pp scattering was performed
at 221 MeV [33,34] since the contributions from S-P transi-
tions were expected to be at a minimum at this energy. How-
ever, EFTπ/ is not valid at such high energies. One approach to
extract P-D transitions at low energies is to look at the angular
correlations within PV asymmetries. For example, taking the
difference divided by the sum of the differential scattering
cross sections for a forwards and backwards longitudinally
polarized neutron beam on an unpolarized proton target would
give a PV asymmetry with angular dependence. From this
angular information, the P-D LECs could in principle be
extracted. However, this would require higher statistics than
is needed to extract leading S-P LECs and would be a difficult
experiment. Certain asymmetries at low energies may be sen-
sitive to P-D transitions due either to a fortuitous suppression
of S-P transitions and/or enhancement of P-D transitions. It is
not clear, short of careful study, what, if any, asymmetries may
do this and such asymmetries may be as difficult to measure
as the angular dependence in other asymmetries.

The dual EFTπ/ and large-Nc expansion has been success-
fully applied in the PC sector [24–26], in which sufficient
data are available to test its predictions. While data are much
more sparse in the PV sector, the existing results for the
PV EFTs are not incompatible with the large-Nc picture. An
isovector LEC can be extracted from the NPDGamma result
[32] and is relatively small, as expected from a term that is
next-to-leading order (NLO) in the large-Nc expansion [27].
In addition, Ref. [27] showed that an experimental bound
on the induced circular polarization in unpolarized neutron
capture (np → d �γ ) [35,36] indicates that an isoscalar and
an isotensor LEC are of the same size, as suggested by that
large-Nc analysis.

If the dual expansion can be used to indicate which PV
terms are most important, it may help prioritize future PV
experiments. For the interactions considered here, the dual ex-
pansion yields an estimate of which of the 11 three-derivative
operators will be dominant; the large-Nc expansion suggests
that only two of these EFTπ/ LECs are both dominant and in-
dependent. This allows us to obtain corrections to the leading
S-P LEC relationships found in Ref. [27] and provides con-
straints for P-D LECs as well. However, at the moment, there
is no experimental evidence available to verify these predic-
tions. Nonetheless, this work provides a model-independent
analysis of low-energy P-D transitions. This is an important
benchmark since any theory that is valid at higher energies
will need to match these results in the low-energy limit.

Since this is the first detailed study of three-derivative oper-
ators in EFTπ/, we investigate the renormalization group (RG)
behavior of the corresponding LECs. Our analysis shows that
PV scattering does not require a new LEC until two orders
past leading. Further, we see that the PV LEC RG equations
have a general form, paralleling that found in the PC sector
[11,12,14]. These equations hold independent of the value of
the subtraction point μ.

A subtlety of the large-Nc analysis is that it applies not to
observables but to LECs, which are typically μ dependent.
Previous results, from the PC sector [24,26], suggest that
large-Nc constraints on LECs only hold at values of μ around
or above the pion mass. Therefore, in addition to studying
general RG behavior, we also consider how the LECs behave
when μ > mπ versus an incompatible limiting case, μ � mπ .
In the latter limit, approximations in the RG equations yield
relationships among LECs in different channels. We expect
that one or the other of these regions may be useful to help
reduce the number of independent LECs needed to understand
a given process.

Potential future experiments, e.g., at the high-intensity cold
neutron beam line at the Spallation Neutron Source at the Oak
Ridge National Laboratory and the High-Intensity Gamma-
ray Source at the Triangle Universities Nuclear Laboratory
[37,38], are expected to provide additional information on the
PV LECs. At the same time, there are attempts to calculate
PV LECs using lattice QCD [6,7,39]. The isotensor terms in
particular present an opportunity for lattice QCD because the
calculation does not involve disconnected (quark-loop) dia-
grams. As shown in Refs. [27,40], isotensor contributions are
dominant in large-Nc counting; they are particularly attractive
for lattice QCD and future experiments.

An outline of this paper is as follows: we begin with a brief
review of the large-Nc counting rules in Sec. II. In Sec. III, we
introduce the PV Lagrangian expressed in two different bases:
one in which the large-Nc scaling is most transparent, the other
describing the interactions in terms of partial-wave transitions.
We will refer to these as the large-Nc and partial-wave bases,
respectively. The large-Nc scaling of the partial-wave LECs
is then provided. We discuss the RG behaviors of LECs and
apply them to available experimental data in Sec. IV. Conclu-
sions and an Appendix showing an example Fierz procedure
follow.

II. LARGE-Nc COUNTING

Using the large-Nc limit of QCD to understand hadron
properties was first suggested by t’Hooft [22] and further
developed by Witten [23]. Assuming a sensible Nc → ∞ limit
exists, 1/Nc may serve as a useful expansion parameter for
large, but finite Nc. Many calculations have demonstrated
the capability of this method to make definite predictions
of meson and baryon dynamics (see, e.g., Refs. [41–43] for
reviews).

In the large-Nc approach, baryons consist of Nc quarks.
Quark confinement requires that the baryon wave function
be an SU(Nc) color singlet. Since the total wave func-
tion of the baryon must be completely antisymmetric, the
baryon’s ground-state wave function is totally symmetric in
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spin and flavor components. This motivates the introduction
of so-called bosonic quarks from which the color degrees
of freedom are removed. Neutrons and protons consist of
valence up (u) and down (d ) quarks, which can each be in two
possible spin states (↑,↓). References [44–50] showed that in
the Nc → ∞ limit, there is an SU(4) spin-flavor symmetry
with u ↑, u ↓, d ↑, and d ↓ in the fundamental representa-
tion, where u and d are the bosonic quarks. In the large-Nc

limit, NN interactions take the form of a Hartree Hamiltonian
[23–25,47]:

Ĥ = Nc

Nc∑
n=0

∑
s+t�n

vstn(p, p′)
(

Ŝ

Nc

)s( Î

Nc

)t( Ĝ

Nc

)n−s−t

, (1)

where vstn is a function of momenta and scales, at most, as
O(N0

c ) in the large-Nc counting. The operators in Eq. (1) and
the identity are

Ŝi = q̂† σi ⊗ 1

2
q̂, Îa = q̂† 1 ⊗ τa

2
q̂,

Ĝia = q̂† σi ⊗ τa

4
q̂, 1̂ = q̂†(1 ⊗ 1)q̂, (2)

where q̂ = (u, d ) are bosonic quarks, and σi, τa are SU(2)
Pauli matrices (i, a = 1, 2, 3) acting on spin and isospin
spaces, respectively. When evaluated between nucleon states,
the large-Nc counting rules for matrix elements of the spin-
isospin operators and the identity are given by [24,25,47]

〈N ′|Ŝi/Nc|N〉 ∼ 〈N ′|Îa/Nc|N〉 � N−1
c ,

〈N ′|Ĝia/Nc|N〉 ∼ 〈N |1̂/Nc|N〉 � N0
c , (3)

where N = (p, n)T is the nucleon field.
The potential between two nucleons can be viewed as a

matrix element of the above Hartree Hamiltonian [25]. In the
center-of-mass (c.o.m.) frame,

V = 〈p′; −p′|Ĥ |p; −p〉. (4)

Two independent momentum variables can be defined [25],

p+ = p + p′, p− = p − p′. (5)

How momenta scale with Nc is a subject of much debate
[23,51]. As discussed in Ref. [51], one argument can be made
using the meson-exchange potential derived from the Hartree
Hamiltonian. Considering the t channel, p+ only results from
relativistic corrections and therefore contributes to the Nc

counting as 1/M ∼ 1/Nc since the nucleon mass M scales as
Nc [23]. The large-Nc counting of momenta in this channel
then becomes

p− ∼ N0
c , p+ ∼ N−1

c . (6)

The analysis in the u channel is complementary, so we will
restrict the discussion to the t channel. Equations (3) and (6)
are sufficient to systematically determine which spin-isospin
structures occur at each large-Nc order. We will use this to
describe two-nucleon PV scattering, retaining rotational and

time-reversal invariance. A concise overview of the transfor-
mation properties of various spin-isospin operators can be
found in Tables I and II of Ref. [52]. These constraints restrict
the possible terms in the PV potential. In the next section,
following the procedure used in Ref. [27], we present the
EFTπ/ PV Lagrangian with three derivatives and obtain the
large-Nc scaling of the relevant LECs.

III. EFTπ/ PARITY-VIOLATING LAGRANGIAN
WITH THREE DERIVATIVES

At three derivatives, the effective two-nucleon interactions
are characterized by dimension-nine operators. The choice of
basis used to express these operators is arbitrary. As long as
the underlying symmetries are obeyed, different choices of
bases must yield the same physics. However, as is often the
case, some basis choices are more illuminating than others.

In this paper, we will consider the PV EFTπ/ Lagrangian
in two bases: the large-Nc basis, expressed in the form
(N†O1N )(N†O2N ), and the partial-wave basis, expressed in
the form (NTO3N )†(NTO4N ), where the Oi are spin-isospin
and momentum operators. While the physics might be more
transparent in the partial-wave basis, the large-Nc scaling can
be most easily determined in the large-Nc basis. Fierz iden-
tities can be used to transform between these two bases, but
this must be done with care in order to maintain the correct
large-Nc ordering of the operators.

A. Large-Nc basis Lagrangian

The terms in the PV three-derivative Lagrangian that ap-
pear at leading order (LO) in the large-Nc expansion are given
in the large-Nc basis by

LLO =C[3]
G.Gεi jk∇i(N

†σ jτaN )∇2(N†σkτaN )

+ C′[3]
G.Gεi jkIab∇i(N

†σ jτaN )∇2(N†σkτbN ), (7)

corresponding to a potential

VLO = − iC[3]
G.G p2

− p− · (�σ1 × �σ2)(�τ1 · �τ2)

− iC′[3]
G.G p2

− p− · (�σ1 × �σ2)(τ a
1 Iabτ

b
2 ). (8)

Here, Iab = diag(1, 1,−2), and C[3]
G.G, C′[3]

G.G are two LECs with
subscripts chosen to reflect the operator structures they ac-
company. These two terms describe isospin transitions �I =
0 and �I = 2, respectively. The rules of Eqs. (3) and (6) yield
the Nc scaling of the two couplings,

C[3]
G.G ∼ Nc, C′[3]

G.G ∼ Nc, (9)

where a factor of sin2 θW ≈ 0.23 [53] in the isotensor coupling
could be included because of matching at the weak scale
[27,40]. However, it is not clear that this suppression survives
the strong running to the low-energy scales that we consider.
At NLO, scaling as N0

c in large Nc, there are four �I = 1
operators,

LNLO = 1

2
C̃[3]

G.σ εi jk[∇i(N
†σ jτ3N )∇2(N†σkN ) + ∇i(N

†σ jN )∇2(N†σkτ3N )]

+ 1

2
C̃[3]

G.τ εab3
[∇i(N

†σiτaN )∇2(N†τbN ) + ∇i(N
†τaN )∇2(N†σiτbN )

]
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+ C̃[3]
G.Gεi jkεab3[(N†σiτai

←→∇ j N )∇k∇l (N
†σlτbN ) + (N†σlτai

←→∇ j N )∇k∇l (N
†σiτbN )]

+ C̃[3]
G.1[(N†σiτ3i

←→∇i N )∇2(N†N ) − (N†i
←→∇i N )∇2(N†σiτ3N )]. (10)

The tilde symbol indicates NLO in large Nc. The Galilean-invariant derivative
←→∇ is defined by N†O←→∇i N ≡ N†O(∇iN ) −

(∇iN†)ON , where O is a spin-isospin operator. Again, the �I = 1 terms may be accompanied by a factor of sin2 θW [27,40]
from matching at the weak scale. The corresponding NLO potential is

VNLO = − i

2
C̃[3]

G.σ p2
− p− · (�σ1 × �σ2)(τ1 + τ2)3 − i

2
C̃[3]

G.τ p2
− p− · (�σ1 + �σ2)(�τ1 × �τ2)3

+ C̃[3]
G.G

[
(p+ × p−) · �σ1p− · �σ2 + p− · �σ1(p+ × p−) · �σ2

]
(�τ1 × �τ2)3 + C̃[3]

G.1p2
− p+ · (�σ1τ

3
1 − �σ2τ

3
2 ). (11)

There are additional operators at higher orders in the large-Nc expansion; however, in the following, we restrict the discussion
to the terms of Eqs. (7) and (10), which are expected to be dominant in the large-Nc expansion. The terms in Eqs. (8) and (11),
as well as the terms at next-to-next-to-leading order (NNLO) in the large-Nc expansion, can be obtained from the expressions in
Ref. [40] by expanding their functions U i

P(p−) and U 1
D(p−) in p− and retaining all terms with three powers of momentum.

B. Partial-wave basis Lagrangian

The PV NN interactions can also be expressed in terms of the mixing of odd and even partial waves characterized by the
spectroscopic notation 2S+1LJ . During the scattering process, the total angular momentum (orbital plus spin angular momentum)
quantum number J = 0, 1, 2 of the two-nucleon system must be conserved. The three-derivative PV NN interactions can be
written in the partial-wave basis as

L[3]
SP = 1

8

[
C(3S[2]

1 −1P[1]
1 )(NT Pi

←→∇ 2N )†(NT P0i
←→∇i N ) + C

(1S[2]
0 −3P[1]

0 )
�I=0 (NT Pa

←→∇ 2N )†(NT Pi,ai
←→∇i N )

+C
(1S[2]

0 −3P[1]
0 )

�I=1 εab3(NT Pa
←→∇ 2N )†(NT Pi,b

←→∇i N ) + C
(1S[2]

0 −3P[1]
0 )

�I=2 Iab(NT Pa
←→∇ 2N )†(NT Pi,bi

←→∇i N )

+C(3S[2]
1 −3P[1]

1 )εi jk (NT Pi
←→∇ 2N )†(NT Pk,3

←→∇ j N ) + C(3S[0]
1 −1P[3]

1 )(NT PiN )†(NT P0i
←→∇i

←→∇ 2N )

+C
(1S[0]

0 −3P[3]
0 )

�I=0 (NT PaN )†(NT Pi,ai
←→∇i

←→∇ 2N ) + C
(1S[0]

0 −3P[3]
0 )

�I=1 εab3(NT PaN )†(NT Pi,b
←→∇i

←→∇ 2N )

+C
(1S[0]

0 −3P[3]
0 )

�I=2 Iab(NT PaN )†(NT Pi,bi
←→∇i

←→∇ 2N ) + C(3S[0]
1 −3P[3]

1 )εi jk (NT PiN )†(NT Pk,3
←→∇ j

←→∇ 2N )
]

+ H.c., (12)

L[3]
PD = 1

8

[
C(1P1−3D1 )

3 (NT Pi
←→∇ x

←→∇ y N )†(NT P0i
←→∇ j N )

(
δixδ jy − 1

3
δi jδxy

)

+C(3P1−3D1 )
3 εi jk (NT Pl

←→∇ x
←→∇ y N )†(NT Pk,3

←→∇ j N )

(
δlxδiy − 1

3
δilδxy

)

+C(3P2−1D2 )
3,�I=0 (NT Pa

←→∇ x
←→∇ y N )†(NT Pi,ai

←→∇ j N )

(
δixδ jy − 1

3
δi jδxy

)

+C(3P2−1D2 )
3,�I=1 εab3(NT Pa

←→∇ x
←→∇ y N )†(NT Pi,b

←→∇ j N )

(
δixδ jy − 1

3
δi jδxy

)

+C(3P2−1D2 )
3,�I=2 Iab(NT Pa

←→∇ x
←→∇ y N )†(NT Pi,bi

←→∇ j N )

(
δixδ jy − 1

3
δi jδxy

)

+C(3P2−3D2 )
3 εi jk (NT Pj

←→∇ k
←→∇ l N )†(NT Pm,3

←→∇ n N )(δimδln + δinδlm)

]
+ H.c. (13)

On the left-hand side, the subscript denotes the partial waves
involved in the transition, and the superscript indicates the
number of derivatives in the operators. On the right-hand side,
the LEC labels are chosen to echo the incoming/outgoing
partial waves, and the superscript [k] on a particular channel
indicates the number of derivatives acting on that partial-wave
channel. �I denotes the isospin structure of the operator.
The operators between nucleon fields are projectors onto
the required combination of spin and isospin. The partial-
wave projectors and momentum structures are provided in

Ref. [54],

Pi = 1√
8
σ2σiτ2, Pa = 1√

8
σ2τ2τa,

Pi,a = 1√
8
σ2σiτ2τa, P0 = 1√

8
σ2τ2. (14)

In general, the magnitudes of the relative momenta of the
incoming and outgoing nucleons are not equal, i.e., |p| �= |p′|.
But for elastic scattering, the two operators with different
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TABLE I. Large-Nc scaling of and mapping between large-Nc

and partial-wave bases.

LEC LO in Nc, O(Nc) NLO in Nc, O(N0
c )

C (3S1−1P1 )
3 = 32C[3]

G.G + 0

C (1S0−3P0 )
3,�I=0 = 32

3 C[3]
G.G + 0

C (1S0−3P0 )
3,�I=1 = 0 + 16

3 (2C̃[3]
G.σ + C̃[3]

G.1)

C (1S0−3P0 )
3,�I=2 = − 64

3 C′[3]
G.G + 0

C (3S1−3P1 )
3 = 0 + − 16

3 (2C̃[3]
G.τ + C̃[3]

G.1)

C (1P1−3D1 )
3 = 24C[3]

G.G + 0

C (3P1−3D1 )
3 = 0 + 4(C̃[3]

G.τ − C̃[3]
G.1 − 6C̃[3]

G.G)

C (3P2−1D2 )
3,�I=0 = 8C[3]

G.G + 0

C (3P2−1D2 )
3,�I=1 = 0 + 8(C̃[3]

G.σ − C̃[3]
G.1)

C (3P2−1D2 )
3,�I=2 = −16C′[3]

G.G + 0

C (3P2−3D2 )
3 = 0 + 4(−C̃[3]

G.τ + C̃[3]
G.1 − 2C̃[3]

G.G)

placements of
←→∇ 2 in each S-P transition cannot be distin-

guished; the LECs occur in the linear combination C(S[2]−P[1] )

+ C(S[0]−P[3] ). Going forward, we will use the new set of LECs,

C(SP)
3 ≡ C(S[2]−P[1] ) + C(S[0]−P[3] ). (15)

A similar issue has been seen in the discussion of the two
four-derivative S-wave operators C4 and C̃4 in the PC sector
[15,55].

C. Large-Nc counting of partial-wave LECs

It is unclear how to directly count the large-Nc behavior of
the partial-wave basis terms appearing in Eqs. (12) and (13);
instead, the counting rules discussed in Sec. II are applied
in the large-Nc basis, and Fierz transformations are used to
map the scaling to the partial-wave basis operators (see the
Appendix for details). The large-Nc scaling of the LECs, as
well as the mapping between the LECs of the large-Nc basis
and the partial-wave basis, are shown in Table I.1 The ratios
of the EFTπ/ S-P LECs in the three-derivative sector that are
predicted at LO in the large-Nc expansion agree with the ratios
found in the one-derivative sector in Ref. [27]. In particular,
the two isoscalar LECs are not independent at LO in the
large-Nc expansion. Their ratio is given by

C(3S1−1P1 )
3

C(1S0−3P0 )
3,�I=0

= 3

[
1 + O

(
1

N2
c

)]
. (16)

Corrections to this identity are O(1/N2
c ) because all operators

suppressed by a single factor of 1/Nc are isovector.

1References [27,40] include factors of sin2 θW in the counting of
isovector and isotensor terms. Since these factors originate from
matching at the weak scale and may be significantly modified by the
nonperturbative running to the scales of EFTπ/, we do not show them
in this table.

For the six P-D wave transitions, the large-Nc counting
rules predict that C(1P1−3D1 )

3 , C(3P2−1D2 )
3,�I=0 , and C(3P2−1D2 )

3,�I=2 are dom-
inant. We see that the large-Nc behavior of the P-D LECs
follows the pattern established by the S-P LECs: the �I = 0
and �I = 2 LECs are O(Nc), and only one �I = 0 LEC is
independent. The relationship among the �I = 0 LECs in the
large-Nc expansion is predicted to be

C(1P1−3D1 )
3

C(3P2−1D2 )
3,�I=0

= 3

[
1 + O

(
1

N2
c

)]
. (17)

At LO in the large-Nc expansion, the results of Table I
also predict relationships between P-D LECs and the three-
derivative S-P LECs, such as

C(1P1−3D1 )
3

C(3S1−1P1 )
3

= 3

4

[
1 + O

(
1

N2
c

)]
(18)

and

C(3P2−1D2 )
3,�I=0 + C(3P2−1D2 )

3,�I=1 + C(3P2−1D2 )
3,�I=2

C(1S0−3P0 )
3,�I=0 + C(1S0−3P0 )

3,�I=1 + C(1S0−3P0 )
3,�I=2

= 3

4

[
1 + O

(
1

Nc

)]
.

(19)
Consistent with what is observed in Refs. [40,42,47,48], we
find that the correction within a given channel is suppressed
by 1/N2

c . The correction in Eq. (19) is O(1/Nc) since the
expression contains isovector LECs in addition to isoscalar
and isotensor LECs.

In addition, at NLO, we obtain a large-Nc prediction for a
ratio in the �I = 1 sector between the S-P and P-D channels,

2C(3P2−1D2 )
3,�I=1 − C(3P1−3D1 )

3 + 3C(3P2−3D2 )
3

C(1S0−3P0 )
3,�I=1 + C(3S1−3P1 )

3

= 3

2

[
1 + O

(
1

N2
c

)]
.

(20)
While we have not considered terms beyond NLO in the large-
Nc expansion here, as shown in Ref. [40] all terms at NNLO
in large Nc are either isoscalar or isotensor; thus corrections to
the isovector identity of Eq. (20) are suppressed by 1/N2

c .
The impact of this section is that while there are 11 inde-

pendent operators with three derivatives in EFTπ/, when the
accompanying LECs are ranked by powers of 1/Nc, the 11
LECs reduce to just two that are leading in both EFTπ/ and
a large-Nc expansion. If nature agrees, this could provide a
powerful reduction in the number of experiments needed to
understand PV in NN scattering at every order in this dual
expansion.

However, LECs are not observables and are generally
functions of the renormalization parameter μ. Because the
large-Nc predictions considered in this paper apply to LECs
and not observables, care must be taken to choose a μ that
both illuminates the large-Nc behavior and also obeys the
power counting principles used in EFTπ/. This will be dis-
cussed in the next section, along with a discussion of LEC
behavior for values of μ where large-Nc relationships may not
hold.
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IV. RENORMALIZATION GROUP BEHAVIOR OF PV LECs

While observables must be independent of renormalization
scales and schemes, the LECs of a theory in general depend
upon a renormalization parameter. In the power divergence
subtraction (PDS) scheme [11,12] used here, this parameter
is the subtraction point μ. The dependence of the LECs on
μ can be determined by requiring that observables are μ

independent.
In this section, we will obtain general relationships

that hold regardless of the value of μ, and will present
relationships among LECs that only hold for small values of
μ. The small values of μ can lead to significant simplifications

for certain PV LECs, but they are likely not compatible with
the LEC relationships obtained in the previous section on
large Nc because of the different sizes of μ required. In what
follows, we will keep the μ dependence explicit to emphasize
this point.

A. Reviewing the parity-conserving renormalization group
behavior

In the PC sector, the RG μ dependence of the LECs has
been analyzed in detail in, for example, Refs. [11–15,55,56].
The PC Lagrangian, including the 1S0, 3S1, and 3S1 − 3D1 chan-
nels up to four derivatives, is (see, e.g., Ref. [15])2

LPC = − C(3S1 )
0 (NT PiN )†(NT PiN ) − C(1S0 )

0 (NT PaN )†(NT PaN ) + 1

8
C(3S1 )

2

[
(NT PiN )†(NT Pi

←→∇ 2N ) + H.c.
]

+ 1

8
C(1S0 )

2

[
(NT PaN )†(NT Pa

←→∇ 2N ) + H.c.
] + 1

4
C(3S1−3D1 )

2

[
(NT PiN )†(NT Pj

←→∇ x
←→∇ y N )

(
δixδ jy − 1

3δi jδxy
) + H.c.

]
− 1

16
C′(3S1 )

4 (NT Pi
←→∇ 2N )†(NT Pi

←→∇ 2N ) − 1

32
C̃(3S1 )

4

[
(NT PiN )†(NT Pi

←→∇ 4N ) + H.c.
]

− 1

16
C′(1S0 )

4 (NT Pa
←→∇ 2N )†(NT Pa

←→∇ 2N ) − 1

32
C̃(1S0 )

4

[
(NT PaN )†(NT Pa

←→∇ 4N ) + H.c.
]
. (21)

EFTπ/ power counting is based on a small expansion parameter
Q/��π , where ��π ∼ mπ is the breakdown scale of EFTπ/ and
Q � ��π . Taking external momenta p ∼ Q, the summation of
the infinite series of loop diagrams in Fig. 1 can be justified
in the PDS scheme if |1/a − μ| � ��π . The LECs may be
determined by matching the NN scattering amplitude to the
effective range expansion about p = 0, yielding [11,12]

C0(μ) = 4π

M

(
1

−μ + 1/a

)
, (22)

C2(μ) = 4π

M

(
1

−μ + 1/a

)2 r0

2
, (23)

where a is the scattering length and r0 is the effective range
for the 1S0 or 3S1 channels, as needed. In the following, we
will continue to suppress the 3S1/

1S0 label on quantities such
as C0, C2, a, and r0 if they are unnecessary. The running of the
S-D-mixing LEC C(3S1−3D1 )

2 is governed by the RG equation
[11,57]

μ
d

dμ
C(3S1−3D1 )

2 (μ) = μM

4π
C(3S1 )

0 (μ)C(3S1−3D1 )
2 (μ). (24)

Using E (2)
1 = ηSD (a(3S1 ) )2 + · · · [58], where ηSD is the asymp-

totic SD mixing ratio, as a boundary condition for the solution
to Eq. (24), C(3S1−3D1 )

2 is given by [15,59]

C(3S1−3D1 )
2 (μ) = −E (2)

1

6
√

2π

M(μ − γ )
= E (2)

1

3√
2

C(3S1 )
0 (μ). (25)

While most applications of the EFTπ/ power counting as-
sume that |1/a − μ| � ��π , Refs. [24,26,60–63] observe that

2Our LEC C′(3S1 )
4 is labeled /πC (3S1 )

4 in Ref. [15]. Otherwise the
notation is the same, except for the absence of the /π designation.

the large-Nc predictions do not agree with experiment un-
less μ � mπ . At smaller values of μ, the S-wave LECs are
dominated by the unnaturally large scattering lengths, which
conceal the large-Nc relationships [24]. The implication is that
at least in the PC sector, μ � mπ may be required for this
large-Nc analysis of LECs to hold. The large-Nc relationships
in Sec. III C were provided without regard to the μ value.
However, as we will show below, the μ dependence of the
PV S-P LECs is driven by that of the PC S-wave LECs. It
is therefore reasonable to expect that the PV LECs follow
the pattern of PC LECs and that experimental evidence may
require an imposition of μ � mπ for this large-NC analysis
to hold. Fortunately, a power counting that is valid for these
larger values of μ, including the justification for resumming
the diagrams in Fig. 1, exists [64]; the corresponding LECs are
of natural size, but the ordering of the perturbative expansion
is modified compared to the case |1/a − μ| � ��π .

Because the power counting for EFTπ/ deviates from naive
dimensional analysis in the S waves, it is important to keep
distinct the mass dimension versus the power counting of op-
erators in EFTπ/. For example, both C2 and C(3S1−3D1 )

2 have mass
dimension −4, but their dependence on dimensionful scales is
different. From Eq. (23) and assuming that the effective range
r0 ∼ 1/��π , C2(μ) ∼ 1

Mμ̂2� �π
, where

μ̂ =
∣∣∣∣μ − 1

a

∣∣∣∣. (26)

FIG. 1. Diagrams contributing to PC NN interactions at LO. C0

can be the coupling in either the 3S1 or 1S0 channel.
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FIG. 2. The LO PV NN scattering diagrams. C (SP)
1 is the leading

weak interaction LEC and the C0 LECs are PC. C (SP)
1 could be any of

the five LECs from Eq. (27) and C0 is 1S0 or 3S1 as needed.

On the other hand, C(3S1−3D1 )
2 ∼ 1

Mμ̂�2
�π
.

B. S-P transitions at one and three derivatives

Similar RG arguments can be applied in the PV sector. The
relevant one-derivative terms in the PV Lagrangian are [27,65]

L[1]
SP = − 1

2

[
C(3S1−1P1 )

1 (NT PiN )†(NT P0i
←→∇i N )

+ C(1S0−3P0 )
1,�I=0 (NT PaN )†(NT Pi,ai

←→∇i N )

+ C(1S0−3P0 )
1,�I=1 εab3(NT PaN )†(NT Pi,b

←→∇i N )

+ C(1S0−3P0 )
1,�I=2 Iab(NT PaN )†(NT Pi,bi

←→∇i N )

+ C(3S1−3P1 )
1 εi jk (NT PiN )†(NT Pk,3

←→∇ j N )
]

+ H.c.,

(27)

where the subscript “1” on the LECs indicates the number of
derivatives in the corresponding operator. The one-derivative
Lagrangian in Eq. (27) is different from the one used in
Refs. [27,65] by an overall normalization factor of 16. The
reason for this is to ensure a normalization of the operators
analogous to the three-derivative operators used in our large-
Nc analysis. All diagrams in Fig. 2 are of the same order and
must be summed to reproduce the LO PV scattering ampli-
tude. This sum is a geometric series and simplifies to

A[1]
SP ∝ − pC(SP)

1

1

1 − I0C0
, (28)

where in the PDS subtraction scheme the loop integral I0 is
given by [11]

I0 = − i
(μ

2

)4−D
∫

dDq

(2π )D

i
E
2 + q0 − q2

2M + iε

i
E
2 − q0 − q2

2M + iε

PDS= − M

4π
(μ + ip), (29)

with E the total energy, p = √
ME the relative momentum

of the nucleons in the c.o.m. frame, and D the dimensions
of spacetime used in dimensional regularization. The scat-
tering amplitude for each channel also contains the operator
structure and an overall factor, which cancels out in the RG
analysis. As discussed in Ref. [65], the scattering amplitude
must be independent of μ, which requires that

μ
d

dμ

C(SP)
1

C0
= 0, (30)

or that the ratio C(SP)
1 /C0 is μ independent. Thus the RG run-

ning of the single-derivative PV LEC is entirely determined
by that of the LO PC LEC.3 The solution of Eq. (30) requires
an undetermined integration constant that encodes the short-
distance PV physics for each LEC. Assuming that only the
S-wave scattering lengths are unnatural, this implies that

C(SP)
1 ∼ 1

��π
C0 ∼ 1

Mμ̂��π
. (31)

However, while Eq. (31) provides information on the scaling
of this PV LEC with nucleon mass M, subtraction point μ,
and cutoff scale ��π , there is always a dimensionless number
that remains unspecified. In the present case, where we are
showing the relationship between the scaling of a PV LEC and
the scaling of a PC LEC, this dimensionless number involves
GF m2

π ≈ 10−7, where GF is Fermi’s coupling constant. This

3At μ = 0, C0(0) = 4πa/M from Eq. (22). This implies that at very
low energies, the PV LEC becomes proportional to the scattering
length, reminiscent of the Danilov parameters [66,67].

reflects the very different size of PV versus PC interactions,
despite the fact that they scale the same with respect to μ.

The contributions to elastic PV S-P wave scattering from
the three-derivative EFTπ/ terms of Eq. (12) are shown in
Fig. 3. The S-P scattering amplitude from three-derivative
operators is

A[3]
SP ∝ −p3C(SP)

1

I0C2

(1 − I0C0)2
− p3C(SP)

3

1

1 − I0C0
. (32)

Each term in Eq. (32) individually depends on μ. Requiring
that the derivative of A[3]

SP with respect to μ vanishes yields

μ
d

dμ
C(SP)

3 (μ) = μM

4π

[
C(SP)

1 (μ) C2(μ) + C(SP)
3 (μ) C0(μ)

]
.

(33)
The solution to this equation is

C(SP)
3 (μ) = C(SP)

1 (μ)

C0(μ)
C2(μ) + C̄(SP)

3 C0(μ), (34)

where C̄(SP)
3 is a new μ-independent integration constant that

needs to be fixed from a lattice QCD calculation or from
comparison to data. Currently, insufficient data are available
to do so. (The general structure of C(SP)

3 (μ) in Eq. (34) was
already anticipated in Ref. [65].)

While the contribution to the S-P scattering amplitude in
Eq. (32) must be μ independent, this independence is achieved
by the cancellation of the μ dependence between the two
terms in Eq. (32). Substituting Eq. (34) into Eq. (32) shows
that (i) the second term in Eq. (34) yields a μ-independent
contribution to Eq. (32), and (ii) the first term in Eq. (34)
provides the μ dependence of the second term in Eq. (32) to
cancel the μ dependence in the first term of Eq. (32).
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FIG. 3. The diagrams contributing to the three-derivative corrections to S-P wave transitions in EFTπ/. The small squares denote insertions
of PV operators with couplings C (SP)

1 or C (SP)
3 as indicated. The hashed ovals represent the strong S-wave rescattering, which is the sum of a

noninteraction and the LO PC NN interactions.

The S-P scattering amplitude up to and including three-
derivative terms is given by

ASP = A[1]
SP + A[3]

SP, (35)

where A[1]
SP and A[3]

SP correspond to the contributions from the
diagrams in Figs. 2 and 3, respectively, and are given by

A[1]
SP ∝ −C(SP)

1

C0

C0 p

1 − I0C0
= −4π

M

p(
1
a + ip

) C(SP)
1

C0︸ ︷︷ ︸
LO

, (36)

A[3]
SP ∝ −C(SP)

1

C0

C2 p3

(1 − I0C0)2
− C̄(SP)

3

C0 p3

1 − I0C0

= −4π

M

p(
1
a + ip

)
⎡
⎢⎢⎢⎣C(SP)

1

C0

r0

2

p2(
1
a + ip

)
︸ ︷︷ ︸

NLO

+ C̄(SP)
3 p2

︸ ︷︷ ︸
NNLO

⎤
⎥⎥⎥⎦. (37)

The NLO correction to the PV scattering amplitude, which is
suppressed by Q/��π relative to the LO contribution, is driven
entirely by the leading PV LEC C(SP)

1 and strong physics (the
scattering length and the effective range parameter). No new
undetermined PV parameter is required to this order; a new
PV parameter is only required at NNLO.

The PC S-P scattering amplitude up to and including NLO
is given by [11]

APC = APC
−1 + APC

0 ∝ 4π

M

1(
1
a + ip

)[
1 + r0

2

p2(
1
a + ip

)]
,

(38)
where the subscripts −1 and 0 indicate the scaling with Q/��π
in the expansion. From Eqs. (36) and (37), the PV scattering
amplitude up to and including NLO is simply

APV ∝ p
C(SP)

1

C0
APC. (39)

We can apply this result to the �pp longitudinal asymmetry,
given by [65]

A �pp
L = σ+ − σ−

σ+ + σ−
= 2

Re
[APVAPC∗]
|APC|2 , (40)

where for �pp scattering, APV ∼ C(1S0−3P0 )
1,�I=0 + C(1S0−3P0 )

1,�I=1 +
C(1S0−3P0 )

1,�I=2 , σ is the total cross section, and the subscript + or −

indicates the beam helicity. From Eq. (39), it is apparent that
the LO asymmetry A �pp

L receives no NLO correction and only
receives corrections at NNLO. This shows that the LO results
of Ref. [65] that fit a linear combination of single-derivative
LECs to the asymmetry A �pp

L hold through NLO.

C. S-P transitions at NNLO and beyond

The total S-P scattering amplitude is given by

ASP = A[1]
SP + A[3]

SP + A[5]
SP + · · · . (41)

As shown in the previous section, there is a contribution to
the NNLO S-P scattering amplitude that comes from C̄(SP)

3 .
At the same order, there will be contributions from products
of PV and PC operators containing a total of five derivatives.
In particular, the scattering amplitude given by the sum of
diagrams in Fig. 4 yields

A[5]
SP ∝ − p5

[
C(SP)

1

I0C4

(1 − I0C0)2
+ C(SP)

1

(I0C2)2

(1 − I0C0)3

+C(SP)
3

I0C2

(1 − I0C0)2
+ C(SP)

5

1

1 − I0C0

]
, (42)

where we have set C(SP)
5 ≡ C(S[0]−P[5] ) + C(S[2]−P[3] ) +

C(S[4]−P[1] ). Following the same procedure as above, we
obtain the RG equation,

μ
d

dμ
C(SP)

5 (μ) = μM

4π

[
C(SP)

1 (μ) C4(μ)

+ C(SP)
3 (μ) C2(μ) + C(SP)

5 (μ) C0(μ)
]
.

(43)

Solving this equation yields

C(SP)
5 (μ) = C(SP)

1 (μ)

C0(μ)
C4(μ) + C̄(SP)

3 C2(μ) + C̄(SP)
5 C0(μ),

(44)
where C̄(SP)

5 is a new constant of integration that for
naturally sized boundary conditions scales as 1/�5

�π . The
resulting p5 correction to the scattering amplitude is then
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FIG. 4. The diagrams contributing to the five-derivative corrections to elastic NN S-P transitions in EFTπ/. Notation as in Fig. 3.

given by

A[5]
SP ∝ − p5

[
C(SP)

1

C0

(C2)2I0

(1 − I0C0)3
+ C(SP)

1

C0

C4

(1 − I0C0)2
+ C̄(SP)

3

C2

(1 − I0C0)2
+ C̄(SP)

5

C0

1 − I0C0

]

= − 4π

M

p5(
1
a + ip

)
⎡
⎢⎢⎢⎢⎣

C(SP)
1

C0

1(
1
a + ip

)2

r2
0

4︸ ︷︷ ︸
NNLO

+ C(SP)
1

C0

1(
1
a + ip

) r1

2
+ C̄(SP)

3

1

( 1
a + ip)

r0

2︸ ︷︷ ︸
N3LO

+ C̄(SP)
5︸︷︷︸

N4LO

⎤
⎥⎥⎥⎥⎦. (45)

In the general case, the RG equations of these PV LECs have
the form4

μ
d

dμ
C(SP)

2n+1 = μM

4π

n∑
m=0

C(SP)
2(n−m)+1C2m, (46)

where C(SP)
2n+1(μ) ≡ ∑n

m=0 C(S[2m]−P[2n−2m+1] )(μ).

4For a given partial-wave and isospin transition, there exist several
possible operator structures for a given power of momentum in the
two-nucleon sector. However, all of these operator structures reduce
to a single operator structure for elastic NN scattering. For example,
the operators associated with C′

4 and C̃4 both reduce to the operator
for C4. The LECs in Eq. (46) are for these single operator structures
for each power of momentum in NN scattering.

D. P-D transitions

Now we consider the PV scattering amplitudes in the P-D
channels. The four J = 2 P-D channels only receive contribu-
tions from the tree diagram [Fig. 5(a)],

A[3]
3P2−(1,3)D2

∝ −p3C(3P2−(1,3)D2 )
3 , (47)

and C(3P2−1D2 )
3,�I=0 , C(3P2−1D2 )

3,�I=1 , C(3P2−1D2 )
3,�I=2 , and C(3P2−3D2 )

3 are each
independent of μ. However, the 1P1 − 3D1 (�I = 0) and
3P1 − 3D1 (�I = 1) channels receive contributions from loop
diagrams with the S-D-mixing parameter [Fig. 5(b)]. The
corresponding scattering amplitudes are

A[3]
(1,3)P1−3D1

∝ −p3C((1,3)P1−3D1 )
3 − p3C(3S1−(1,3)P1 )

1

I0C
(3S1−3D1 )
2

1 − I0C0
.

(48)

(a) 3P2
(1,3)D2 =

C
(3P2−(1,3)D2)
3

(b) (1,3)P1
3D1 =

C
(SP )
1 C

(SD)
2

+

C
((1,3)P1−3D1)
3

FIG. 5. The diagrams contributing to the P-D transitions in EFTπ/. The small squares denote insertions of PV operators with couplings
C (SP)

1 , and the small circles denote insertions of PV operators with couplings C (PD)
3 , as indicated. The superscript (1,3) indicates either spin

singlet or spin triplet. Diagrams with strong rescattering on P-wave and D-wave channels occur at higher order.
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Requiring that A[3]
(1,3)P1−3D1

be μ independent and using
Eq. (24), we obtain

μ
d

dμ
C((1,3)P1−3D1 )

3 (μ) = μM

4π
C(3S1−(1,3)P1 )

1 (μ)C(3S1−3D1 )
2 (μ),

(49)
yielding

C((1,3)P1−3D1 )
3 (μ) = C(3S1−(1,3)P1 )

1 (μ)

C(3S1 )
0 (μ)

C(3S1−3D1 )
2 (μ) + C̄((1,3)P1−3D1 )

3 ,

(50)
where C̄((1,3)P1−3D1 )

3 is another μ-independent constant of inte-
gration. The structure is analogous to that of Eq. (34).

The leading contributions to the J = 1 P-D scattering am-
plitudes occur at order (Q/��π )2 in the EFTπ/ power counting.
Substituting Eq. (50) into Eq. (48), they are given by

A[3]
(1,3)P1−3D1

∝ − 4π

M

p3

1
a + ip

C(3S1−(1,3)P1 )
1 (μ) C(3S1−3D1 )

2 (μ)[
C(3S1 )

0 (μ)
]2︸ ︷︷ ︸

N2LO

− p3C̄((1,3)P1−3D1 )
3︸ ︷︷ ︸
N3LO

. (51)

In addition to the contribution from C̄((1,3)P1−3D1 )
3 , at the same

order there are contributions to the scattering amplitudes from
products of PV and PC operators containing a total of five
derivatives.

E. The small μ limit

In this section, we consider the region (likely large-Nc in-
compatible) |1/a − μ| � ��π , with μ ∼ Q as well as |1/a −
μ| ∼ Q. We will find simplifications and relationships among
LECs in this limit.

1. Reviewing the small μ limit in the parity-conserving sector

At higher orders in the EFTπ/ expansion, additional LECs
contribute to S-wave scattering, which can be matched to
higher orders in the ERE. For elastic scattering, the two LECs
C′

4 and C̃4 only contribute in the linear combination,

C4(μ) = C′
4(μ) + C̃4(μ)

= 4π

M

r2
0

4

(
1

−μ + 1/a

)3

+ 4π

M

r1

2�2
�π

(
1

−μ + 1/a

)2

,

(52)
where r1/�

2
�π is the shape parameter in the relevant (spin-

singlet or spin-triplet) channel [11]. We are again suppressing
1S0 and 3S1 labels as Eq. (52) is valid for both. If both r0 and
r1 are of natural size, that is, if they both scale as 1/��π , the
first term in Eq. (52) scales as 1

Mμ̂3�2
�π

and the second as 1
Mμ̂2�3

�π
,

where again μ̂ = |μ − 1/a|. So long as |1/a − μ| � ��π , the
second term is suppressed relative to the first by a factor of
μ̂/��π . If this term is neglected, the LEC C4 is entirely deter-
mined from the scattering length and the effective range and
no new parameter enters. In general, if |1/a − μ| � ��π and
all parameters aside from the scattering length are of natural

size (that is, they scale with inverse mass dimension ��π ), the
“leading” (in a μ̂/��π expansion) behavior for C2n is

C2n(μ) ∼ 1

Mμ̂n+1�n
�π
, (53)

where n > 0 and 2n is the number of derivatives associated
with the operator for the C2n LEC [11,18].

2. The small μ limit for S-P transitions at three derivatives

If there are no other as-yet-unidentified unnatural scales in
the problem, C̄(SP)

3 in Eq. (34) should scale as 1/�3
�π , again

keeping in mind that this is the scaling with dimensionful
parameters in the theory; the very different sizes of PV ver-
sus PC LECs are encoded in a dimensionless proportionality
constant involving GF m2

π , as discussed in Sec. IV B. The first
term in Eq. (34) scales as 1

Mμ̂2�2
�π

, while the second term scales

as 1
Mμ̂�3

�π
.

As long as μ̂ = |μ − 1/a| � ��π , it is useful to expand
Eq. (34) as

C(SP)
3 (μ) = C(SP)

1 (μ)

C0(μ)
C2(μ)

[
1 + O

(
μ̂

��π

)]
. (54)

In this case, the term with C̄(SP)
3 is suppressed by a factor of

μ̂/��π and can be neglected; C(SP)
3 is dominated by the LO PV

LEC C(SP)
1 and the PC LECs C0 and C2. For μ̂ � ��π , which

is the domain in which the large-Nc relationships are expected
to hold, both terms in Eq. (34) are expected to be of the same
size, and the expansion of Eq. (54) breaks down; C̄(SP)

3 cannot
be neglected.

3. The small μ limit of S-P transitions at NNLO and beyond

The complete solution to Eq. (46) requires integration con-
stants that must be fit to experiment or lattice calculations,
which are currently unavailable. However, assuming that the
integration constant C̄(SP)

2n+1 ∼ 1/�2n+1
�π , the leading behavior of

PV LECs for |1/a − μ| � ��π is

C(SP)
2n+1(μ) ≡

n∑
m=0

C(S[2m]−P[2n−2m+1] )(μ)

= C(SP)
1 (μ)

C0(μ)
C2n(μ)

[
1 + O

(
μ̂

��π

)]
. (55)

By analogy with the discussion of PC LECs in Ref. [11],
Eq. (55) implies that the leading behavior of PV LECs for
n > 0 is driven only by the PV observable C(SP)

1 /C0 and the
S-wave strong interaction LECs in the small μ limit. But this
does not mean that PV observables can be determined beyond
NLO with C(SP)

1 alone; at NNLO and beyond, higher-order PV
parameters must be included.

4. LEC relationships in the small μ limit

Again, if the constant term in Eq. (50) is assumed to
be of natural size and if |1/a(3S1 ) − μ| � ��π , C̄((1,3)P1−3D1 )

3 is
suppressed by μ̂/��π , where μ̂ = |μ − 1/a|, compared to the
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other term in Eq. (50). For this restriction on μ, we can write

C((1,3)P1−3D1 )
3 (μ)

C(3S1−3D1 )
2 (μ)

= C(3S1−(1,3)P1 )
1 (μ)

C(3S1 )
0 (μ)

[
1 + O

(
μ̂

��π

)]
. (56)

This implies that the leading contribution of C((1,3)P1−3D1 )
3 is

determined by PC LECs and a LO PV LEC. A constraint on
C(3S1−3P1 )

1 can be extracted from the recent NPDGamma mea-
surement [32], using the result from Ref. [68]. After adjusting
for the different normalization of the operators, we find, for
|1/a(3S1 ) − μ| � ��π ,

C(3P1−3D1 )
3

C(3S1−3D1 )
2

+ O

(
μ̂

��π

)

≈ C(3S1−3P1 )
1

C(3S1 )
0

= (−7.3 ± 3.4 ± 0.5) × 10−10 MeV−1.

(57)

In the above equation, we list just the experimental (statisti-
cal plus systematic) errors from the NPDGamma experiment
[32]. For the equality, the associated EFTπ/ errors are Q/��π .
Corrections to the approximation are roughly 30% for μ̂ ∼ Q
and include a contribution from C̄(3P1−3D1 )

3 (they could be 100%
if μ̂ is large).

5. Expansion around the deuteron pole

For processes involving the 3S1 channel, it is useful to
consider the effective range expansion about the deuteron pole
[69,70]. For this case, the PC LECs are expanded in powers
of Q. For example, C0 = C0,−1 + C0,0 + C0,1 + · · · , where, on
the right-hand side, the first and second subscripts indicate the
number of derivatives of the operator, and the order in powers
of Q, respectively. The μ-scaling of these PC LECs, includ-
ing relativistic corrections, is given in Ref. [15]. Similarly,
we can express the PV LECs as a power series in Q, e.g.,
C(SP)

1 = C(SP)
1,−1 + C(SP)

1,0 + C(SP)
1,1 + · · · . We verified that the RG

behaviors of the PV LECs in the deuteron pole expansion can
be analyzed order by order by following the same procedures
we used above, and the arguments about which LECs are
dominant in the range |1/a − μ| � ��π are similar.

V. CONCLUSIONS

We analyzed the three-derivative parity-violating NN con-
tact interactions in the dual EFTπ/ and large-Nc expansion.
The minimal set of three-derivative EFTπ/ operators for elastic
scattering consists of five that correct the (five) LO S-P tran-
sitions and six that describe the leading contribution to the
P-D transitions. The LECs accompanying these operators are
free parameters in EFTπ/ and must be fit to the experimental
data or extracted from lattice QCD. The large-Nc expansion
reduces the number of independent LECs at a given order,
either by demoting some to higher order in the dual EFTπ/ and
large-Nc expansion or by relating some LECs to each other. By
organizing the LECs of the three-derivative operators in EFTπ/

in powers of 1/Nc, we can establish a hierarchy among them.

The isoscalar and isotensor LECs appear at LO in Nc, while
four isovector LECs appear at subleading order in Nc. The
relationships found among the LECs hold up to corrections
of 1/N2

c ∼ 10% channel by channel. The relationships among
the LECs for three-derivative S-P operators echo those found
in the one-derivative sector; in both cases, the two isoscalar
LECs are not independent, and isoscalar and isotensor terms
dominate in the large-Nc limit. For elastic scattering, the 11
independent LECs that occur at three derivatives in EFTπ/

are reduced to two at LO in the dual EFTπ/ and large-Nc

expansion. This may provide constraints that can be checked
by future experiments and lattice QCD calculations. As usual,
because Nc = 3 in our world, a large-Nc treatment cannot offer
exact predictions, but should indicate general trends.

We also studied the RG behavior of the three-derivative
operators and analyzed the running of the PV LECs with
respect to the subtraction point μ. For μ in the range |1/a −
μ| � ��π , the leading behavior of all the S-P LECs only
depends on C(SP)

1 and the strong S-wave LECs. The analysis
of the P-D LECs shows that 3S1 − 3D1 mixing introduces μ

dependence in the J = 1 P-D LECs, while the J = 2 P-D
LECs are μ independent. This RG analysis allows us to power
count PV NN scattering operators in EFTπ/; it indicates that
some previous (LO) calculations of S-P channel observables
[65] do not obtain corrections until NNLO. It also shows that
LECs in two J = 1 P-D channels are related to S-P LECs
for sufficiently small values of μ. We emphasize again that
the value of μ needed for large-Nc relationships to hold may
be incompatible with the small values of |1/a − μ| that lead
to some simplifications of the RG relationships. While we
address two distinct regions of μ in this paper, we antici-
pate that one or the other may be useful for reducing the
number of independent LECs required to analyze a given
process.
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APPENDIX: FIERZ TRANSFORMATION

In this section, we show in detail one method for match-
ing between the large-Nc and partial-wave bases using Fierz
identities. The relevant Fierz identities are

δABδCD = 1
2 (σ2)CA(σ2)BD + 1

2 (σiσ2)CA(σ2σi )BD,

(σi )ABδCD = − 1
2 [(σiσ2)CA(σ2)BD + (σ2)CA(σ2σi )BD]
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NB,β(p)

ND,δ(−p)

NA,α(p′)

NC,γ(−p′)

FIG. 6. Assignment of spin, isospin indices and momenta. Greek
letters denote isospin indices and uppercase Latin letters denote spin
indices.

− 1
2 iεi jk (σ jσ2)CA(σ2σk )BD,

(σi )AB(σ j )CD = − 1
2δi j (σ2)CA(σ2)BD + 1

2 iεi jk
[
(σkσ2)CA(σ2)BD

− (σ2)CA(σ2σk )BD
]

− 1
2 (δikδ jn + δinδ jk −δi jδkn)(σkσ2)CA(σ2σn)BD,

(A1)

where the uppercase Latin letters denote spin indices.
These formulas are also applied to isospin matrices by
substituting σ → τ . One approach to performing Fierz
transformations is to take matrix elements, as outlined in
Appendix A of Ref. [65]. For example, the matrix ele-
ment of the operator corresponding to C̃[3]

G.G in Eq. (10)
(see Fig. 6 for momentum and index assignments) is

〈Õ[3]
G.G

〉 = 2εi jk[(σi)AB(σl )CD + (σl )AB(σi )CD]εab3(τa)αβ (τb)γ δ (pi + p′
i )(pk − p′

k )(pl − p′
l )

− 2εi jk[(σi )CB(σl )AD + (σl )CB(σi )AD]εab3(τa)γ β (τb)αδ (pi − p′
i )(pk + p′

k )(pl + p′
l ). (A2)

The operator symbol in the matrix element above echoes its corresponding LEC; e.g., Õ[3]
G.G is the operator associated with C̃[3]

G.G.
Applying the identities in Eq. (A1) gives〈Õ[3]

G.G

〉 = 64iεi jk (δimδln + δinδlm)(P†
m)CA,γ α (Pn,3)BD,βδ (p j p′

k p′
l ) + H.c. (A3)

This structure suggests that the C̃[3]
G.G term may contribute to 3S1 − 3P1, 3P1 − 3D1, and 3P2 − 3D2 transitions. The corresponding

partial-wave matrix elements for these three channels are〈O[3]
3S1−3P1

〉 = − 4C(3S1−3P1 )
3 iεi jk (P†

i )CA,γ α (Pj,3)BD,βδ (p′2 pk ) + H.c., (A4)〈O[3]
3P1−3D1

〉 = − 4C(3P1−3D1 )
3 iεi jk (P†

l )CA,γ α (Pi,3)BD,βδ (p′
l p′

k p j )

+ 4

3
C(3P1−3D1 )

3 iεi jk (P†
i )CA,γ α (Pj,3)BD,βδ (p′2 pk ) + H.c., (A5)〈O[3]

3P2−3D2

〉 = − 4C(3P2−3D2 )
3 iεi jk (P†

i )CA,γ α (Pj,3)BD,βδ (p′
k p′

l pl )

− 4C(3P2−3D2 )
3 iεi jk (P†

i )CA,γ α (Pl,3)BD,βδ (p′
k p′

l p j ) + H.c., (A6)

where the projectors Px are defined in Eq. (14). Using

εi jk (P†
i )CA,γ α (Pj,3)BD,βδ (p′

k p′
l pl ) = εi jk (P†

i )CA,γ α (Pj,3)BD,βδ (pk p′2) + εi jk (P†
i )CA,γ α (Pl,3)BD,βδ (p′

k p′
l p j )

− εi jk (P†
l )CA,γ α (Pi,3)BD,βδ (p′

k p′
l pl ) (A7)

with Eq. (A3) yields 〈Õ[3]
G.G

〉 = −24
〈O[3]

3P1−3D1

〉 − 8
〈O[3]

3P2−3D2

〉
. (A8)
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