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We present a systematic investigation of few-nucleon systems and light nuclei using the current Low Energy
Nuclear Physics International Collaboration interactions comprising semilocal momentum-space regularized
two- and three-nucleon forces up to third chiral order (N2LO). Following our earlier study utilizing the
coordinate-space regularized interactions, the two low-energy constants entering the three-body force are de-
termined from the triton binding energy and the differential cross-section minimum in elastic nucleon-deuteron
scattering. Predictions are made for selected observables in elastic nucleon-deuteron scattering and in the
deuteron breakup reactions, for properties of the A = 3 and A = 4 nuclei, and for spectra of p-shell nuclei
up to A = 16. A comprehensive error analysis is performed including an estimation of correlated truncation
uncertainties for nuclear spectra. The obtained predictions are generally found to agree with experimental data
within errors. Similarly to the coordinate-space regularized chiral interactions at the same order, a systematic
overbinding of heavier nuclei is observed, which sets in for A ∼ 10 and increases with A.

DOI: 10.1103/PhysRevC.103.054001

I. INTRODUCTION

A reliable quantitative first-principles description of nu-
clear structure and reactions with quantified uncertainties
remains one of the main challenges in computational nuclear
physics. Presently, the most promising approach to reach this
ambitious goal comprises a combination of chiral effective
field theory (EFT) to describe nuclear interactions in harmony
with the symmetries (and their breaking pattern) of QCD with
ab initio few-body methods to tackle the quantum mechanical
A-body problem. Remarkable progress has been achieved in
recent years in both lines of research, see Refs. [1–13] for
a selection of review articles on these topics. At least for
not-too-heavy nuclei, the accuracy of theoretical predictions
is, in most cases, limited by the uncertainties of the nuclear
interactions.

To address this challenge, the Low Energy Nuclear Physics
International Collaboration aims at developing accurate and
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precise two- and three-nucleon forces (3NF) by pushing the
EFT expansion to high chiral orders and using these interac-
tions to solve the structure and reactions of light nuclei. In
Refs. [14–16], we have already explored selected nucleon-
deuteron (Nd) scattering observables and the structure of
light- and medium-mass nuclei up to A = 48 using the new
generation of the chiral EFT nucleon-nucleon potentials from
Refs. [17,18] up through fifth chiral order (N4LO). The essen-
tial new feature of these interactions as compared to the older
potentials of Refs. [19,20] and the new potentials developed
by Entem et al. [21] is the usage of a local regulator for
pion-exchange contributions, which allowed us to substan-
tially reduce finite-cutoff artifacts. These novel interactions
have also been successfully tested in selected electroweak
reactions with two and three nucleons [22,23]. While these
exploratory studies employed NN interactions only and thus
should be regarded as incomplete starting from next-to-next-
to-leading order (N2LO), the chiral order at which the 3NF
starts to contribute, they brought important new insights into
the convergence pattern of the chiral expansion. In particular,
the resulting discrepancies between theory and experimental
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data were found to be in agreement with the expected size
of the missing 3NF contributions according to the Weinberg
power counting [14].

The expressions for the 3NF have been worked out com-
pletely up to fourth chiral order (N3LO) using dimensional
regularization to deal with divergent loop integrals [24–26];
see also Refs. [27,28] for selected results at N4LO. A nu-
merical implementation of the 3NF in the Faddeev and
Yakubovsky equations requires its partial-wave decomposi-
tion, which can, in principle, be carried out in a brute-force
way by numerically performing the relevant angular inte-
grations [29,30]. However, a coordinate-space regulator for
the long-range components of the 3NF, in line with the NN
potentials of Refs. [17,18], was found to lead to numerical
instabilities when performing its partial-wave decomposition.
While this issue has been finally solved for the 3NF at tree
level (i.e., at N2LO) [31], an extension of these studies to
higher chiral orders is a nontrivial task that would require
further substantial efforts.

These findings motivated the development of the semilo-
cal momentum-space regularized (SMS) NN potentials in
Ref. [32], where both the short-range and long-range contri-
butions to the interaction are regularized in momentum space.
The other important differences to the semilocal coordinate-
space regularized (SCS) potentials of Refs. [17,18] comprise
the removal of three redundant short-range operators at N3LO
and the usage of the most up-to-date values of the pion-
nucleon low-energy constants (LECs) from the Roy-Steiner
equation analysis of Ref. [33,34]. Moreover, contrary to our
earlier studies [17,18] that relied on the Nijmegen partial-
wave analysis [35], the LECs accompanying the contact
interactions have been determined directly from the mutually
consistent neutron-proton and proton-proton scattering data of
the 2013 Granada database [36]. At the highest considered
order N4LO+, where the “+” signifies the inclusion of four
sixth-order contact interactions in F-waves in order to describe
certain very precise proton-proton scattering data,1 the NN
potentials of Ref. [32] allow for an outstanding description
of the NN scattering data from the 2013 Granada database be-
low pion-production threshold. In Ref. [37], these interactions
have been extended by taking into account isospin-breaking
contributions up to N4LO. These are currently the most pre-
cise chiral NN interactions on the market, which for the
intermediate cutoff value of � = 450 MeV even qualify to
be regarded as a partial-wave analysis up to Elab = 300 MeV.
These novel chiral EFT NN potentials have already been
successfully applied to Nd scattering [38,39] and to the 2H
and 3He electroweak disintegration processes [40]. They were
also used in the recent high-accuracy calculation of the elec-
tromagnetic form factors of the deuteron [41,42] and allowed,
in particular, the prediction of the structure radius (quadrupole
moment) of the deuteron with remarkable accuracy at the
permille (percentage) level.

In this paper we present, for the first time, results for
p-shell nuclei based on the SMS NN potentials of Ref. [32]

1The same short-range operators are also included in the N4LO
version of the potentials of Ref. [21].

and also include the dominant 3NF at N2LO using the same
regulator as employed in the two-body interactions. We em-
ploy the same convention for the long-range 3NF as used
in the NN interactions by subtracting the locally regularized
short-range terms to ensure that the corresponding regularized
three-nucleon potentials vanish at the origin. Finally, we ad-
dress the important issue of estimating truncation errors for
strongly correlated observables such as the excitation energy
spectra, see Ref. [16] for a discussion.

Our paper is organized as follows. In Sec. II we provide
the expressions for the regularized 3NF and describe the de-
termination of the LECs cD and cE from selected experimental
data in the three-nucleon system. Our predictions for selected
Nd scattering and breakup observables up to N2LO are sum-
marized in Sec. III. Next, Secs. IV and V are focused on the
properties of light nuclei with A = 3, 4 and on the energy
spectra of p-shell nuclei up to A = 16, respectively. In Sec. VI
we perform an uncertainty analysis of the obtained predictions
for the energy spectra of light nuclei using a correlated error
Bayesian model. This allows us, for the first time, to reliably
estimate the truncation errors of our predictions for the excita-
tion energies. Finally, the most important results of this study
are summarized in Sec. VII.

II. DETERMINATION OF cD AND cE

Throughout this work, we employ the N2LO three-nucleon
force (3NF) regularized in momentum space in the same way
as the SMS two-nucleon interaction of Ref. [32], namely
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where �qi = �pi
′ − �pi is the momentum transfer of nucleon i

with �pi
′ and �pi referring to the corresponding final and initial

momenta, respectively, Ti j ≡ τ i · τ j , Ti jk ≡ τ i × τ j · τk , and
�σi (τ i) are the Pauli spin (isospin) matrices. We have also
introduced the Jacobi momenta �p12 = ( �p1 − �p2)/2 and �k3 =
2( �p3 − ( �p1 + �p2)/2)/3 in the initial state and �p ′

12 = ( �p ′
1 −

�p ′
2)/2 and �k ′

3 = 2( �p ′
3 − ( �p ′

1 + �p ′
2)/2)/3 in the final state. Fur-

ther, gA, Fπ , and Mπ refer to the nucleon axial vector coupling,
pion decay constant, and pion mass, respectively, while the
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subtraction constant C is given by [32]

C = −�(�2 − 2M2
π ) + 2

√
πM3

πe
M2

π

�2 erfc
(Mπ

�

)
3�3

, (2)

where erfc(x) is the complementary error function

erfc(x) = 2√
π

∫ ∞

x
dt e−t2

. (3)

Finally, for the LECs D and E , we employ the standard
parametrization in terms of dimensionless constants cD and
cE via D = cD/(F 2

π �χ ) and E = cE/(F 4
π �χ ) with �χ =

700 MeV.
The subtraction terms proportional to C in Eq. (1) corre-

spond to the convention employed in Ref. [32]. It ensures, for
example, that the locally regularized two-pion exchange 3NF
in the curly brackets, Fourier transformed to coordinate space,
vanishes at the origin (i.e., for �r1 − �r2 → 0 or �r3 − �r2 → 0) in
order to minimize the admixture of short-range components.
The applied regularization scheme, therefore, utilizes a local
(nonlocal) regulator for long-range (short-range) components
of the 3NF.

Partial-wave decomposition of the 3NF is accomplished
numerically in momentum space in the usual way as described
in detail in Refs. [29,30,43]. Moreover, we have benchmarked
the momentum-space results by independently carrying out
the partial-wave decomposition in coordinate space. This way
we have also explicitly verified that the subtracted long-range
potentials vanish at the origin as required by our convention.

We are now in the position to specify the values of the
various LECs. For the pion-nucleon constants ci, we em-
ploy the values from matching chiral perturbation theory at
next-to-leading order (NLO) in the NN-counting scheme to
the solutions of the Roy-Steiner equations for pion-nucleon
scattering [33,34]:

c1 = −0.74 GeV−1,

c3 = −3.61 GeV−1,

c4 = 2.44 GeV−1. (4)

The same values are used in the SMS NN potentials of
Ref. [32] at next-to-next-to-leading order (N2LO).

To determine the values of the LECs cD, cE , we require,
following our previous studies [31,44–46], that the 3H binding
energy is reproduced exactly. This constraint yields cE as a
function of the LEC cD for every value of the cutoff �. In
Fig. 1, we show the resulting cD–cE correlations for the cutoff
values � = 450 and 500 MeV. As one may expect, the be-
havior is qualitatively similar to the one found using the SCS
interactions in Ref. [31]. In particular, the larger momentum-
space cutoff leads to a larger-in-magnitude negative slope of
the function cE (cD), exhibiting more nonlinear behavior.

Motivated by our findings in Ref. [31], the determination of
the remaining LEC cD is carried out by fitting the experimen-
tal data of Ref. [47] for the differential cross-section minimum
at the nucleon beam energy of EN = 70 MeV. Specifically,
the values of cD are determined from a least-squares fit of
12 cross-section data points in the angular range of θc.m. ∈
[107.0◦, 140.4◦] with the Coulomb force contribution sub-

FIG. 1. Correlation between the LECs cD and cE induced by the
requirement that the 3H binding energy be reproduced for the cutoff
choices of � = 450 MeV (blue dashed line) and � = 500 MeV (red
solid line).

tracted [48], and the statistical and systematic errors added
in quadrature. This leads to the following central values:

cD = 2.485, cE = −0.528 for � = 450 MeV,

cD = −1.626, cE = −0.063 for � = 500 MeV. (5)

The determination of uncertainties in the values of cD, cE and
their propagation will be considered in a separate publication.

III. NUCLEON-DEUTERON SCATTERING

We are now in the position to show selected results for Nd
scattering observables. For a description of our formalism for
solving the Faddeev-type integral equations, see Ref. [49].
To estimate the truncation errors at N2LO, we employ the
Bayesian model C̄650

0.5−10 introduced in Ref. [38] based on the
ideas of Refs. [17,50–52]. Specifically, for a three-nucleon
scattering observable X (EN ), we consider the chiral EFT ex-
pansion up to N2LO,

X = X (0) + �X (2) + �X (3) + . . .

=: Xref (c0 + c2Q2 + c3Q3 + . . . ), (6)

where �X (2) := X (2) − X (0) and �X (3) := X (3) − X (2), Q is
the expansion parameter, the superscripts denote the chiral
order Qn, the ellipses refer to terms beyond N2LO, the quan-
tity Xref sets the overall scale and ci are the corresponding
dimensionless coefficients.2The reference scale Xref is chosen
using the information from all three available chiral orders
as described in Ref. [38]. Assuming that all dimensionless
coefficients ci are normally distributed with the Gaussian prior

pr(ci|c̄) = 1√
2π c̄

e−c2
i /(2c̄2 ), (7)

and performing marginalization over the first h = 10
neglected orders for a uniform distribution of the

2Here and in Sec. VI we use the conventional notation ci for the
Bayesian expansion coefficients, not to be confused with the pion-
nucleon LECs c1, c3, and c4 in Sec. II.
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c.m.

c.m.

c.m.

c.m.

FIG. 2. Predictions for various Nd scattering observables based on the cD and cE values given in Eq. (5). For every considered observable
X , a solid dot corresponds to the ratio of its calculated value Xth at N2LO to the corresponding experimental value Xexp. The smaller (blue)
error bars correspond to the experimental relative uncertainty δXexp/Xexp, where δXexp includes both the statistical and systematic errors
added in quadrature. The larger (orange) error bars also take into account the estimated 68% DoB truncation error δXth and correspond to√

δX 2
exp + δX 2

th/Xexp. For the Nd doublet scattering length 2a, this relative error amounts to ±0.71 (±0.88) for � = 450 MeV (� = 500 MeV).

Experimental data are from Ref. [53], Ref. [54], Ref. [47], and Ref. [55].

hyperparameter c̄ in the range of c̄ ∈ [0.5, 10], one obtains
an analytical expression for the posterior probability
distribution prh(�|{ci}) for the dimensionless residual
�3 := c4Q4 + . . . + c3+hQ3+h to take a value � given the
known coefficients c0, c2, and c3, see Refs. [38,51] for details.
This expression can be used to obtain truncation errors
corresponding to any given degree-of-belief (DoB) interval.
Following Ref. [38], the expansion parameter Q is defined
according to

Q = max

(
p

�b
,

Meff
π

�b

)
, (8)

with Meff
π = 200 MeV and the breakdown scale �b = 650

MeV [52]. The momentum p is related to the laboratory
energy EN of a given 3N scattering observable via [38]

p =
√

2

3
mEN (9)

with m denoting nucleon mass.
In our earlier paper describing results for the SCS inter-

actions [31], the values of the LEC cD have been determined
from a combined fit to the Nd doublet scattering length 2a
as well as the total nd cross section and the pd differential
cross-section data in the minimum region at the nucleon en-
ergies of EN = 70 MeV, 108 MeV, and 135 MeV. While we
have used only the differential cross-section data at the lowest
energy of 70 MeV in the present work, we show in Fig. 2 that
our cD determination is indeed consistent with the mentioned
observables. Note that for unnaturally small observables such
as the Nd doublet scattering length 2a, one needs to go to high
order in the chiral expansion to achieve a small relative error.
The experimental value is 2a = (0.645 ± 0.008) fm, whereas
the estimated 68% DoB chiral truncation errors are 0.46 fm
and 0.54 fm, corresponding to relative truncation errors of
0.71 and 0.88, at � = 450 and 500 MeV, respectively.

The only disagreement is observed for the differential
cross-section data at EN = 135 MeV measured at KVI [55],
which also disagree with the data of Ref. [47] at the same
energy, see the blue error bars in Fig. 2. While our results indi-
cate a slight preference for the experimental data of Ref. [47],
the relatively large truncation errors at N2LO do not allow one
to make a stronger conclusion at this stage.

In Fig. 3, we show our NLO and N2LO predictions for
selected observables in elastic Nd scattering at EN = 70 MeV.
Notice that the truncation errors are symmetric, and the actual
results of our calculation lie in the middle of the correspond-
ing error bands. At both NLO and N2LO, the experimental
data are, in most cases, reasonably well described by our
calculations. We also compare our results to those of Ref. [38]
based on the same NN interactions but using the unsubtracted
version of the 3NF, as well as to our earlier results using the
SCS two- [17] and three-nucleon forces from Ref. [31] at the
regulator value R = 0.9 fm. It is reassuring to see that all
shown N2LO results agree with each other within errors.

We have also calculated selected breakup observables at
EN = 65 MeV, for which experimental data are available. In
Fig. 4, we show the fivefold differential cross section and
nucleon vector analyzing power Ay as functions of the kine-
matical locus variable S for selected configurations specified
by the detection angles θ1, θ2, and φ12 in the laboratory sys-
tem; see Ref. [49] for the definition of kinematical variables,
which may serve as representative examples.

One observes a similar picture as for the considered elastic
scattering observables. In particular, the experimental data
are well reproduced, and our N2LO results agree well with
those obtained both using the SCS (NN+3NF) interactions
and the SMS forces with unsubtracted 3NF. Furthermore, our
N2LO results for the differential cross sections in Fig. 4 agree
well with the predictions based on the CD Bonn potential,
see Fig. 6 of Ref. [58]. This should not come as a surprise
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FIG. 3. Results for the differential cross section, nucleon, and
deuteron analyzing powers An

y and Ad
y as well as deuteron tensor ana-

lyzing powers Ayy, Axz, and Axx in elastic nucleon-deuteron scattering
at laboratory energy of EN = 70 MeV at NLO (yellow bands) and
N2LO (green bands) for � = 450 MeV. Dotted lines show the N2LO
results based on the SMS NN forces from Ref. [32] accompanied
with the unsubtracted [i.e., with C(Mπ ) = 0] 3NF from Ref. [38],
while dashed-dotted lines are N2LO predictions based on the SCS
(NN+3NF) interactions from Ref. [31]. The light (dark) shaded
bands indicate 95% (68%) DoB intervals using the Bayesian model
C̄650

0.5−10. Open circles are proton-deuteron data from Ref. [47].

since 3NF effects appear to be fairly small for the considered
cases. Notice, however, that relativistic corrections turn out
to be non-negligible for the cross section in Figs. 4(d) and
4(e). In Ref. [58], they were found to decrease the predictions
for the differential cross section around the maximum by
almost 10%. In chiral EFT, relativistic corrections to the Nd
scattering amplitude need to be taken into account starting
from N3LO. Their expected size is, therefore, in qualitative
agreement with the estimated size of the neglected N3LO
contributions as reflected by the width of the green uncertainty
bands. Finally, we have also calculated breakup configura-
tions considered in Ref. [59], which feature more pronounced
3NF effects. In all considered cases (not shown here), we
found similar results to the ones based on high-precision
phenomenological NN potentials in combinations with the
Urbana IX [60] and the updated Tucson-Melbourne [61] 3NF
models.

IV. A = 3 AND 4 NUCLEI

With the interactions specified in the previous section,
we now calculate the ground-state energies and excitation

spectra up to the p shell. In this section, we focus on the
A = 3 and A = 4 bound states, for which we solve Faddeev
and Yakubovsky equations in momentum space as outlined
in Ref. [16]. The addition of 3NFs has been discussed in
Ref. [62].

For A = 3, we reach a numerical accuracy of 1 keV for
the binding energy and the expectation values. For practical
calculations, the number of partial-wave channels needs to be
truncated. To reach the desired accuracy, we take into account
all partial waves with two-body subsystem angular momen-
tum less than or equal to 5. This includes a small admixture of
total isospin T = 3/2 states in 3H and 3He. It has been shown
in Ref. [63] that this is necessary to reach the same accuracy
for the expectation values of the Hamiltonian.

In 3He, additionally, the point Coulomb interaction has
been included for the pp subsystem. For the numerical cal-
culation in momentum space, the Coulomb force has been
Fourier transformed using a cutoff at distances of 20 fm. It
has been checked that larger distances do not contribute to the
3N binding energies.

Our results are summarized in Table I for LO, NLO, and
N2LO interactions. For N2LO, we also give results for NN
interactions only.

It can been seen that the binding energy |E | based purely on
NN interactions decreases for both cutoffs when the chiral or-
der increases. At N2LO, an attractive contribution of the 3NF
increases the binding energy and brings it, by construction, in
agreement with the experimental value of −8.482 MeV for 3H
[64]. For the calculation of the energies, we used an averaged
proton and neutron mass of 938.918 MeV. The slight deviation
of the expectation values 〈H〉 from the binding energy is due
to the additional contribution 〈TCSB〉 resulting from employing
physical proton and neutron masses. Due to the larger binding
energy this effect is more pronounced at LO. The approxi-
mately ±6 keV for 3He and 3H for NLO and N2LO are in
line with the results for phenomenological interactions [63].
Including this contribution, we find in LO, NLO, and N2LO
(including the 3NF) for � = 500 MeV a charge symmetry
breaking (CSB) difference of the binding energies of 910,
764, and 755 keV comparable to the experimental value of
764 keV. Results for � = 450 MeV are very similar.

It is well known that the partial-wave convergence of
Faddeev components for the 3N system is faster than the
convergence of the wave functions. Therefore, it is advanta-
geous to normalize the overlap of Faddeev components and
wave functions [16]. Missing high partial waves then lead
to a deviation of the norm 〈
|
〉 of the 3N system from
one. The size of this effect is larger when higher orders of
the interactions or 3NFs are employed, indicating that these
interactions induce contributions to higher partial waves. In all
cases, our truncation of the partial-wave basis provides more
than 99.9% off the norm.

Table I also summarizes the S-, P-, and D-state probabil-
ities. As usual, the contribution of the P-state is small. The
D-state visibly contributes, where again the higher orders and
especially 3NFs lead to an increasing D-state probability. This
is in line with results based on different interactions [62].

Finally, we also give values for point-proton and neutron
matter radii rp and rn. These have been obtained based on a

054001-5



P. MARIS et al. PHYSICAL REVIEW C 103, 054001 (2021)

FIG. 4. Results for the differential cross section [left and center, (a), (b), (d), and (e)] and nucleon vector analyzing power Ay, [right, (c) and
(f)], as functions of the kinematical locus variable S for the deuteron breakup reaction at laboratory energy of EN = 65 MeV at NLO (yellow
bands) and N2LO (green bands) for � = 450 MeV. Proton-deuteron data for (a)–(c) are taken from Ref. [56] while those shown in (d)–(f) are
from Ref. [57]. For remaining notation see Fig. 3.

Fourier transform of the wave functions. The observed pattern
showing increasing (decreasing) values of the radii with the
chiral order (when adding the 3NF) are qualitatively in line
with the changes in binding energy. Note however that 3NFs
break this correlation to some extent.

For A = 4, we solve the set of Yakubovsky equations.
Since three orbital angular momenta contribute to the partial-
wave expansion, we need to constrain at least two of them
to end up with a finite number of partial waves. For the

calculations done here, we again use the two-body subsystem
angular momentum to less than or equal to 5. Additionally,
we only use orbital angular momenta less than or equal to 6
and also constrain the sum of all orbital angular momenta to
10 or less. We also use isospin symmetry and therefore only
take the by-far dominant isospin T = 0 channels into account.
We checked that these constraints lead to an uncertainty of
approximately 10 keV for the binding energies and 50 keV
for the expectation values. Since we only take isospin T = 0

TABLE I. Summary of energies and wave-function properties for 3H/3He. See text for explanations. Energies and cutoffs are given in
MeV except for 〈TCSB〉 which is given in keV. Radii are given in fm and the S-, P-, and D-state probabilities are given in %.

� E 〈H〉 〈T 〉 〈VNN 〉 〈V3NF〉 〈TCSB〉 〈
|
〉 P(S) P(P) P(D) rp rn

LO −12.22 −12.24 52.38 −64.61 −10.505 1.0000 96.25 0.019 3.73 1.250 1.319
NLO −8.515 −8.521 34.31 −42.82 −5.798 0.9999 94.79 0.028 5.19 1.556 1.7023H 450N2LO (NN-only) −8.143 −8.148 34.94 −43.08 −5.552 0.9998 93.28 0.044 6.68 1.595 1.752

N2LO+3NFs −8.483 −8.489 36.13 −44.16 −0.459 −5.840 0.9995 92.54 0.077 7.38 1.576 1.725

LO −12.52 −12.53 57.84 −70.36 −11.528 0.9999 94.96 0.036 5.01 1.224 1.286
NLO −8.325 −8.332 35.87 −44.19 −6.150 0.9998 94.29 0.032 5.68 1.575 1.7253H 500N2LO (NN-only) −7.920 −7.926 37.94 −45.86 −5.754 0.9996 92.06 0.059 7.89 1.625 1.787

N2LO+3NFs −8.482 −8.488 40.27 −48.09 −0.660 −6.24 0.9992 91.39 0.109 8.50 1.581 1.731

LO −11.34 −11.33 51.45 −62.79 9.851 1.0000 96.24 0.019 3.75 1.342 1.264
NLO −7.751 −7.745 33.55 −41.30 5.217 0.9998 94.79 0.027 5.18 1.744 1.5793He 450N2LO (NN-only) −7.397 −7.392 34.15 −41.55 4.967 0.9998 93.29 0.043 6.67 1.797 1.620

N2LO+3NFs −7.734 −7.729 35.37 −42.65 −0.452 5.26 0.9995 92.57 0.076 7.35 1.766 1.598

LO −11.63 −11.62 56.88 −68.51 10.865 0.9999 94.94 0.036 5.02 1.308 1.237
NLO −7.574 −7.568 35.07 −42.65 5.557 0.9997 94.30 0.031 5.67 1.768 1.5983He 500N2LO (NN-only) −7.194 −7.188 37.11 −44.30 5.164 0.9995 92.08 0.059 7.86 1.834 1.649

N2LO+3NFs −7.739 −7.733 39.44 −46.54 −0.641 5.65 0.9991 91.43 0.107 8.47 1.772 1.602
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TABLE II. Summary of energies and wave-function properties for 4He. See text for explanations. Energies and cutoffs are given in MeV.
The matter radius rN is given in fm and the S-, P-, and D-state probabilities are given in %.

� E 〈H〉 〈T 〉 〈VNN 〉1 〈VNN 〉2 〈V3NF〉 〈
|
〉1 〈
|
〉2 P(S) P(P) P(D) rN

LO −49.99 −49.98 124.4 −174.4 −174.4 0.99952 0.99980 95.71 0.070 4.21 0.990
NLO −29.36 −29.34 71.47 −100.8 −100.8 0.99914 0.99932 92.02 0.129 7.84 1.3754He 450N2LO, NN-only −27.32 −27.28 71.95 −99.3 −99.2 0.99887 0.99894 89.71 0.211 10.07 1.423

N2LO+3NFs −28.62 −28.59 75.73 −102.0 −102.0 −2.376 0.99934 0.99923 86.72 0.462 12.81 1.423

LO −51.47 −51.46 139.2 −190.7 −190.7 0.99943 0.99973 93.73 0.147 6.11 0.955
NLO −28.15 −28.12 74.56 −102.7 −102.7 0.99872 0.99863 90.96 0.154 8.87 1.4084He 500N2LO, NN-only −25.95 −25.85 78.54 −104.5 −104.4 0.99806 0.99758 87.36 0.303 12.32 1.469

N2LO+3NFs −28.72 −28.62 86.71 −111.9 −111.9 −3.474 0.99873 0.99811 85.06 0.597 14.34 1.424

channels into account, there is no contribution from charge-
symmetry breaking to the kinetic energy. Also the proton and
neutron radii are exactly equal in this approximation.

The pattern of binding is very similar to the A = 3 nuclei,
as can be seen in Table II. In leading order, there is strong
overbinding compared to the experimental 4He binding en-
ergy of −28.296 MeV [64]. This is drastically reduced at
NLO, leading even to a slight underbinding for � = 500 MeV.
At N2LO, 4He is clearly underbound for both cutoffs when
only NN interactions are used. Adding the 3NFs then leads to
mild overbinding again. The effect of the 3NFs is larger for
the larger cutoff. An alternative approach has been proposed
[65] which reduces the strong overbinding at LO and it will
be interesting to see if that approach is successful when con-
sistent higher orders are developed.

As described in more detail in Ref. [62], the A = 4 cal-
culations are solved using two kinds of Jacobi coordinates
that either single out a three-nucleon subsystem (3+1) and a
spectator nucleon or two two-nucleon subsystems (2+2). It is
advantageous to use both kinds of coordinates simultaneously
since this allows for the most effective representation of the
Yakubovsky components. Again, like in A = 3, we perform
the normalization of the wave function using overlaps of the
Yakubovsky component and the wave function and then cal-
culate the norm using only the wave function in either the 3+1
representation (〈
|
〉1) or in the 2+2 one (〈
|
〉2). As one
can see in the table, the deviation from 1 is less than 1% for
both representations of the wave function.

We also give the expectation values of the Hamiltonian,
the kinetic energy and the potential energy in both representa-
tions. In contrast to A = 3, there are small deviations between
the expectation value 〈H〉 and E that can not be traced back
to additional charge-symmetry breaking contributions in the
kinetic energy but are due to the missing isospin T = 1 and
T = 2 components and due to missing higher partial waves in
intermediate states. For A = 3, such deviations did not show
up because all isospin channels were included and because no
intermediate steps were necessary to compute wave functions
and expectation values.

Table II also compiles the S-, P-, and D-state probabilities,
which follow a very similar trend as the ones for A = 3. Fi-
nally, the point-nucleon matter radius rN is also given. Again,
we observe the expected correlation with the binding energy
with the exception that 3NFs can contribute additional binding
without decreasing the radius.

We conclude this section with a short discussion on the
radii of the A = 3, 4 nuclei. The (unobservable) point-proton
matter radius rp quoted in Tables I and II is related to the
charge radius rc by the well-known equation [66]

r2
c = r2

p + R2
p + 3

4m2
p

+ N

Z
R2

n + r2
so + r2

mec + · · · , (10)

where mp, Rp, and Rn are the proton mass, charge radius and
the neutron charge radius, respectively, while the ellipses refer
to higher-order relativistic corrections. Further, r2

so denotes
the contribution of the spin-orbit term of relativistic nature,
see Refs. [42,67] for more details, while r2

mec refers to the
contribution of the exchange charge density. In a close anal-
ogy to the deuteron, see, e.g., Ref. [68], one can define the
point-proton structure radius rstr via

r2
str = r2

c −
(

R2
p + 3

4m2
p

+ N

Z
R2

n

)
. (11)

This quantity is observable and differs from the point-proton
matter radius rp by taking into account the contributions
associated with nuclear binding mechanisms such as r2

so
and r2

mec. Since these corrections first appear at N3LO, see
Refs. [69–71], our N2LO predictions for rp coincide with
the ones for the structure radii, whose experimental values
can be extracted from the corresponding charge radii rexp

c, 3H =
1.755(86) fm [72], rexp

c, 3He = 1.973(14) fm [73], and rexp
c, 4He =

1.681(4) fm [74]. Using the CODATA-2018 recommended
value for the proton radius, Rp = 0.8414(19) fm [75], along
with the current PDG value for the square charge radius of
the neutron, R2

n = −0.1161(22) fm2 [76],3 we extract the cor-
responding structure radii rexp

str, 3H = 1.604(96) fm, rexp
str, 3He =

1.792(17) fm, and rexp
str, 4He = 1.484(6) fm. Notice that this

value for rexp
str, 4He is significantly (by ≈1.5%) larger than the

one of rexp
str, 4He = 1.462(6) fm given in Ref. [66] and also

quoted in our earlier studies [14,31]. This difference is caused
entirely by employing the updated (smaller) value for the
proton radius recommended by the CODATA group [75], and

3Notice, however, that our recent determination of R2
n from the

atomic isotope shift data [41,42] yielded a somewhat smaller in
magnitude value of R2

n = −0.105+0.005
−0.006 fm2, which would result in

slightly smaller structure radii.
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TABLE III. Summary of energies for 4He, 6He, and 6Li from LO up through N2LO including 3NFs α = 0.08 and 0.04 fm4. Quoted
uncertainties are the extrapolation uncertainties only. Energies and cutoffs are given in MeV. Experimental values are from Refs. [64,78].

AZ(Jπ , T ) � α (fm4) LO NLO N2LO, NN-only N2LO NN+3NFs Expt. (MeV)

4He(0+, 0) 450 0.04 −49.891(2) −29.339(3) −27.254(5) −28.447(4) −28.296
450 0.08 −49.733(1) −29.366(1) −27.260(2) −28.527(2)
500 0.04 −51.327(1) −28.087(3) −25.816(5) −28.585(5)
500 0.08 −51.167(1) −28.123(2) −25.807(3) −28.630(2)

6He(0+, 1) 450 0.04 −46.5(5) −28.73(16) −27.09(16) −28.84(20) −29.27
450 0.08 −46.7(3) −27.86(14) −27.18(10) −29.04(7)
500 0.04 −47.2(6) −27.27(15) −25.66(16) −29.08(20)
500 0.08 −47.6(4) −27.39(10) −25.69(7) −29.21(6)

Ex (2+, 0) 450 0.08 3.5(9) 2.10(31) 2.09(23) 2.10(15) 1.80
500 0.08 3.6(1.0) 2.08(23) 2.08(12) 2.08(07)

6Li(1+, 0) 450 0.04 −50.1(4) −31.79(11) −30.20(16) −31.85(15) −31.99
450 0.08 −50.4(3) −31.93(9) −30.28(6) −32.04(6)
500 0.04 −50.7(6) −30.33(12) −28.75(15) −32.17(20)
500 0.08 −51.1(3) −30.45(6) −28.77(5) −32.29(4)

Ex (3+, 0) 450 0.08 5.3(8) 2.90(17) 2.85(12) 2.40(7) 2.19
500 0.08 5.1(9) 2.93(14) 2.82(7) 2.41(7)

consistent with decade-long findings using dispersion theory,
see, e.g., Ref. [77].

Our N2LO predictions underestimate the central experi-
mental values for the structure radii of all three considered
nuclei. The amount of underestimation is slightly smaller
for the larger cutoff � = 500 MeV. This is in line with the
recent high accuracy calculations of the deuteron charge and
quadrupole form factors [41,42], where the contribution of the
two-body short-range charge density was found to decrease
with increasing cutoff values. Using the same Bayesian model
C̄650

0.5−10 as employed in Sec. III for 3N scattering observables
to estimate the truncation errors for the radii, our N2LO pre-
dictions for � = 500 MeV rN2LO

str, 3H = 1.581(29) fm, rN2LO
str, 3He =

1.772(37) fm, and rN2LO
str, 4He = 1.424(36) fm are found to be

consistent with the experimental values for the A = 3 nu-
clei. At the 95% Bayesian confidence level corresponding to
rN2LO

str, 4He = 1.424(109) fm, our result for 4He is also in agree-
ment with the experimental datum.

V. P-SHELL NUCLEI

We now turn to heavier p-shell nuclei. For simplicity,
we ignore the proton-neutron mass difference, and use the
same nucleon mass m = 938.92 MeV for the protons and the
neutrons; furthermore, we add a standard repulsive Coulomb
potential between the protons.

We use the No-Core Configuration Interaction (NCCI)
approach [79] to determine the ground states of p-shell nu-
clei (excluding mirror nuclei) at N2LO; for select nuclei we
perform calculations at lower orders, and include narrow
low-lying excited states as well. In the NCCI approach we
expand the wave function 
 of a nucleus consisting of A
nucleons in an A-body basis of Slater determinants �k of
single-particle wave functions φnl jm(�r). Here, n is the radial
quantum number, l the orbital motion, j the total spin from
orbital motion coupled to the intrinsic nucleon spin, and m the
spin-projection. The Hamiltonian Ĥ is also expressed in this

basis and thus the many-body Schrödinger equation becomes
a matrix eigenvalue problem; for an NN potential plus 3NFs,
this matrix is sparse for A > 4. The eigenvalues of this matrix
are approximations to the energy levels, to be compared to
the experimental binding energies and spectra, and the corre-
sponding eigenvectors to the nuclear wave functions.

We use the conventional harmonic oscillator (HO) basis
with energy parameter h̄ω for the single-particle wave func-
tions, in combination with a truncation on the total number of
HO quanta in the system: the basis is limited to many-body
basis states with

∑
A Ni � N0 + Nmax, with N0 the minimal

number of quanta for that nucleus and Nmax the trunca-
tion parameter. (Even/odd values of Nmax provide results for
natural/unnatural parity.) Numerical convergence toward the
exact results for a given Hamiltonian is obtained with in-
creasing Nmax, and is marked by approximate Nmax and h̄ω

independence. In practice, we use extrapolations to estimate
the binding energy in the complete (but infinite-dimensional)
space [80–84], based on a series of calculations in finite bases.

The rate of convergence depends both on the nucleus and
on the interaction. For realistic interactions, the dimension of
the matrix needed to reach a sufficient level of convergence
is in the tens or even hundreds of billions, which saturates
or exceeds the capabilities of current high-performance com-
puting facilities. In order to improve the convergence of the
basis space expansion, we therefore first apply a Similar-
ity Renormalization Group (SRG) transformation [85–87] to
soften these interactions. Most of the results presented here
have been evolved to an SRG parameter of α = 0.08 fm4

and all of them include any induced 3NFs, but we have also
performed calculations at α = 0.04 fm4 in order to make sure
the dependence on the SRG parameter is weak. For 4He we
also compare with the Yakubovsky calculations presented in
the previous section.

The calculations described in this section have been per-
formed with the NCCI code MFDn [88,89] to calculate the
lowest energy levels with natural parity of p-shell nuclei. Most
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NCCI calculations were performed on the IBM BG/Q Mira
at the Argonne Leadership Computing Facility (ALCF), with
additional calculations performed on the Cray XC40 Theta
at ALCF and the Cray XC40 Cori at the National Energy
Scientific Computing Center (NERSC). For all nuclei we
have performed calculations for at least four h̄ω values (one
below, and two above the variational minimum), in order to
perform extrapolations to the complete (infinite-dimensional)
basis with uncertainty estimates. We use a simple three-point
exponential extrapolation in Nmax at fixed h̄ω,

E h̄ω(Nmax) = E h̄ω
∞ + a e(−b Nmax ), (12)

using three consecutive values of Nmax around the variational
minimum in h̄ω, which seems to work well for a range of
interactions and nuclei [80,90,91]. We take as our best es-
timate for E∞ in the complete basis the value of E h̄ω

∞ for
which |E h̄ω

∞ − E h̄ω(Nmax)| is minimal. Our estimate of the
extrapolation uncertainty is given by the maximum of

(i) the difference in E h̄ω
∞ for two successive extrapola-

tions using data for (Nmax − 6, Nmax − 4, Nmax − 2)
and (Nmax − 4, Nmax − 2, Nmax), respectively;

(ii) half the variation in E h̄ω
∞ over a 8-MeV interval in h̄ω

around the variational minimum;
(iii) 20% of |E h̄ω

∞ − E h̄ω(Nmax)|.
This procedure is identical to what was used in

Refs. [16,31]. When we apply this method to 3H, our re-
sults are, within the estimated extrapolation uncertainties, in
excellent agreement with the Yakubosky results discussed in
the previous section, see Table I. As expected, the NCCI
calculations performed after SRG evolution to α = 0.08 fm4

converge faster, with estimated extrapolation uncertainties in
the ground-state energies of about ten keV, whereas the ex-
trapolation uncertainties are up to about a hundred keV at
α = 0.04 fm4. Within these uncertainties, our results are also
independent of the SRG parameter α.

In Table III we list our order-by-order results for the
ground-state energies of 4He and A = 6 nuclei for α = 0.04
and 0.08 fm4. The quoted uncertainties in Table III are the ex-
trapolation uncertainties only. For 4He we can perform these
calculations up to Nmax = 14, which is sufficient to obtain the
ground-state energies to within a few keV for both α = 0.04
and 0.08 fm4. We do observe a small dependence on the SRG
parameter, of the order of a few tens of keV, which can easily
be caused by induced 4-body forces from the SRG evolution
which have not been incorporated here. Indeed, compared to
the results from the Yakubovsky calculations discussed in the
previous section, we see differences of up to about a hun-
dred keV in the binding energies (i.e., up to 0.4%), with the
Yakubovsky results being slightly deeper bound, see Table II.
This suggests that the missing induced four-body forces would
lead to slightly stronger binding, at least in 4He.

For 6He and 6Li our calculations are limited by the number
of the input 3NF matrix elements, which in practice means
that we can perform calculations up to Nmax = 12. Clearly,
our results are not as precise as for 4He, and in fact, our NCCI
extrapolation uncertainties at α = 0.04 fm4 are of the same or-
der of magnitude as the difference between the α = 0.04 and
α = 0.08 fm4 results, whereas the extrapolation uncertainties
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FIG. 5. Order-by-order 6He nn separation energy (top) and
6Li α + d breakup threshold (bottom). Error bars indicate the NCCI
extrapolation uncertainties only.

at α = 0.08 fm4 are significantly smaller, again as expected.
We therefore concentrate on our results with α = 0.08 fm4 for
nuclei with A > 6.

Comparing the results at different chiral orders, we see
that there is, not surprisingly, a large difference between the
LO and the NLO results, followed by a significantly smaller
difference between the NLO and the N2LO predictions. The
role of the 3NFs at N2LO is significant, and in fact, while
the NN-only potential at N2LO decreases the binding ener-
gies by about 1 to 2 MeV compared to the NLO potential,
which moves the ground-state energies of 6He and 6Li further
away from experiment, with the complete N2LO interaction
including the 3NFs the ground-state energies of both 6He and
6Li are within a few hundred keV of the experimental values.

Our results indicate that at LO, neither 6Li nor 6He is
bound, as is illustrated in Fig. 5. Here, we calculate the nn
separation energy and the α + d breakup threshold as the
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TABLE IV. Order-by-order results for ground-state energies of select stable p-shell nuclei, with excitation energies for narrow states with
natural parity, from LO up through N2LO including 3NFs. Energies and cutoffs are in MeV. Calculated results shown are for α = 0.08 fm4,
with the NCCI extrapolation uncertainties only. Experimental values are from Refs. [64,78,92,93].

AZ(Jπ , T ) � LO NLO N2LO, NN-only N2LO NN+3NFs Expt. (MeV)

7Li( 3
2

−
, 1

2 ) 450 −61.35(15) −38.72(9) −36.98(11) −39.39(6) −39.24
500 −62.1(2) −36.82(11) −35.10(14) −39.73(6)

Ex ( 1
2

−
, 1

2 ) 450 −0.07(13) 0.22(11) 0.20(12) 0.32(7) 0.48
500 −0.09(14) 0.17(12) 0.16(15) 0.35(6)

Ex ( 7
2

−
, 1

2 ) 450 10.22(45) 5.54(18) 5.30(23) 4.86(9) 4.63
500 10.49(60) 5.40(13) 5.05(21) 4.81(8)

Ex ( 5
2

−
, 1

2 ) 450 10.10(43) 6.70(16) 6.50(17) 6.65(12) 6.68(5)
500 10.37(57) 6.37(17) 6.16(18) 6.77(10)

Ex ( 5
2

−
, 1

2 ) 450 16.55(50) 8.64(25) 8.16(16) 7.84(11) 7.46
500 17.3(6) 8.37(16) 7.73(16) 7.79(9)

8He(0+, 2) 450 −41.6(9) −28.2(7) −27.1(5) −30.4(2) −31.41
500 −41.6(1.0) −26.3(6) −25.6(4) −30.9(2)

8Li(2+, 1) 450 −59.5(3) −39.44(19) −38.07(19) −41.23(16) −41.28
500 −59.6(4) −37.24(14) −36.11(16) −41.85(15)

Ex (1+, 1) 450 0.50(27) 0.90(20) 0.80(23) 1.11(19) 0.98
500 0.49(41) 0.80(16) 0.72(17) 1.10(18)

Ex (3+, 1) 450 4.57(39) 3.00(28) 2.82(27) 2.54(15) 2.26
500 4.49(48) 2.92(20) 2.68(22) 2.42(15)

Ex (0+, 1) 450 −0.71(23) 2.01(22) 2.15(28) 3.04(26) ?
500 −0.74(26) 2.26(24) 2.04(26) 3.39(27)

Ex (4+, 1) 450 10.65(35) 6.52(35) 6.36(33) 6.80(24) 6.54(2)
500 11.03(45) 6.24(30) 6.05(27) 6.90(23)

10Be(0+, 1) 450 −97.7(1.5) −61.9(6) −60.8(4) −66.5(5) −64.98
500 −98.1(1.7) −57.9(6) −57.3(5) −67.5(4)

Ex (2+, 1) 450 7.6(2.1) 3.5(8) 3.3(5) 3.3(6) 3.37
500 8.1(2.5) 3.4(7) 3.0(5) 3.2(4)

Ex (2+, 1) 450 6.1(1.6) 4.6(9) 4.8(6) 6.3(7) 5.96
500 6.6(2.0) 4.2(7) 4.4(6) 6.2(6)

10B(3+, 0) 450 −92.8(1.6) −61.1(6) −60.3(4) −66.4(4) −64.75
500 −92.5(2.0) −57.0(5) −57.0(5) −68.4(4)

Ex (1+, 0) 450 0.2(1.7) 1.8(8) 1.6(5) 1.4(6) 0.72
500 0.2(2.0) 1.5(7) 1.5(5) 1.8(5)

Ex (1+, 0) 450 −6.7(1.6) −1.4(8) −0.8(5) 1.7(1.0) 2.15
500 −7.0(2.0) −1.6(6) −0.8(5) 2.2(5)

Ex (2+, 0) 450 −0.6(1.9) 2.1(6) 2.2(5) 3.4(5) 3.59
500 −0.8(2.1) 1.6(5) 1.9(5) 4.1(5)

Ex (3+, 0) 450 1.5(2.2) 3.8(1.1) 4.2(7) 5.7(7) 4.77
500 1.3(2.6) 3.3(9) 3.9(5) 7.1(6)

12B(1+, 1) 450 −113.7(1.3) −76.0(7) −76.7(5) −84.8(4) −79.58
500 −111.7(1.6) −70.4(6) −72.6(5) −87.5(4)

Ex (2+, 1) 450 4.4(1.3) 1.2(8) 0.7(5) −0.9(4) 0.95
500 4.6(1.7) 1.4(7) 0.6(5) −1.1(4)

Ex (0+, 1) 450 −1.3(1.3) 0.3(9) 0.7(5) 1.9(6) 2.72
500 −1.4(1.6) 0.1(8) 0.5(5) 2.7(6)

Ex (2+, 1) 450 0.0(1.4) 1.8(9) 2.0(6) 3.4(7) 3.76
500 0.0(1.7) 1.5(8) 1.8(6) 4.1(6)

Ex (1+, 1) 450 2.1(1.6) 3.0(8) 3.2(5) 4.9(7) 4.99
500 2.3(2.0) 2.6(6) 2.9(6) 5.7(6)

Ex (3+, 1) 450 4.9(1.4) 3.8(9) 4.1(5) 5.3(7) 5.61
500 5.2(1.8) 3.6(8) 3.8(5) 6.1(7)

12C(0+, 0) 450 −145.0(1.0) −89.7(5) −90.0(5) −98.7(4) −92.16
500 −144.6(1.2) −83.3(5) −85.0(4) −101.8(4)

Ex (2+, 0) 450 6.9(0.9) 3.4(6) 3.2(4) 4.2(4) 4.44
500 7.5(1.3) 3.1(6) 2.9(5) 4.5(4)
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TABLE IV. (Continued.)

AZ(Jπ , T ) � LO NLO N2LO, NN-only N2LO NN+3NFs Expt. (MeV)

Ex (1+, 0) 450 31.3(1.2) 14.2(6) 12.9(5) 9.6(4) 12.71
500 32.2(1.4) 13.6(6) 11.8(5) 9.9(4)

Ex (4+, 0) 450 23.3(1.1) 12.2(7) 11.7(5) 13.7(5) 14.08
500 24.6(2.0) 11.4(6) 10.8(5) 14.6(4)

difference between the extrapolated energies of 6He and 4He,
and between that of 6Li and Eα + Ed , respectively; for the
numerical uncertainty we take the extrapolation uncertainty of
the A = 6 nucleus. It turns out that 6He only becomes bound
at N2LO including 3NFs, both with the 450-MeV and the
500-MeV regulator. And even then it is bound relative to 4He
by only 0.5 to 0.6 MeV, whereas experimentally it is bound
by about 1 MeV. On the other hand, 6Li becomes minimally
bound at NLO, and its binding relative to the α + d threshold
is in good agreement with the experimental breakup threshold
for both regulator values. Note that this is qualitatively similar
to what we found in Ref. [31] using the SCS interactions.

In addition to the ground-state energies, we also list in
Table III the excitation energies of the lowest excited states
in 6He and 6Li at α = 0.08 fm4. For these excitation ener-
gies, we extrapolate the total energy of these excited states to
the complete (infinite-dimensional) basis, following the same
procedure as for the ground states. Next, we take the differ-
ence between these extrapolated energies as our best estimate
for the excitation energy. For the corresponding extrapolation
uncertainties we take the maximum of the estimated extrap-
olation uncertainties of the total energies of the two states,
which is a rather conservative uncertainty estimate given
the often strong correlations between different states in the
spectrum. For narrow excited states (and we mainly consider
narrow excited states in this work), this extrapolation method
seems to give results that are numerically reasonably stable,
even for states that are above threshold, and has the advan-
tage that we can apply the same method to all nuclei under
consideration. Our results clearly indicate (not surprisingly!)
that there are strong correlations between the ground state
and the excited state—the difference between the excitation
energies at different chiral orders is significantly smaller than
the difference between the ground-state energies at different
chiral orders. We will come back to this when we discuss
the uncertainties associated with the truncation of the chiral
expansion in the next section. At N2LO, including consistent
3NFs, the excitation energies are within a few hundred keV
of the experimental values, which is similar to the deviation
of the total ground-state energies from their experimental
values. (Our results at α = 0.04 fm4 are within the quoted
extrapolation uncertainty estimates, but with larger numerical
uncertainties.)

In Table IV we summarize our results for the ground-state
energies of a range of p-shell nuclei, as well as the excitation
energies for narrow excited states with natural parity (i.e.,
positive for even nuclei, and negative for odd nuclei in the
p shell). We also include the incomplete results at N2LO
without the 3NFs in order to highlight the importance of the
3NFs starting at this chiral order. The overall convergence

pattern of the ground-state binding energies starts out similar
to that of 4He, 6He, and 6Li: significant overbinding at LO, and
modest underbinding at NLO. Furthermore, it is interesting to
note that for all ground-state energies in Table IV, the dif-
ference between N2LO calculations with or without 3NFs is
noticeably larger than the difference between NLO and N2LO
calculations without 3NFs. This highlights the importance of
3NFs at N2LO.

Looking in more detail at specific nuclei up to A = 10, the
N2LO NN-only potential leads to even more underbinding
than at NLO, but the 3NFs at N2LO increase the binding
energy again. The additional binding coming from the 3NFs is
significantly stronger with � = 500 MeV than with � = 450
MeV, and overbinds 7Li slightly compared to experiment.
Note that for A = 8, however, both regulators underbind 8He
at N2LO including 3NFs, while the ground-state energy of
8Li is in agreement with experiment for � = 450 MeV (to
within the extrapolation uncertainty), and slightly overbound
for � = 500 MeV. The amount of overbinding keeps increas-
ing with A; at A = 10 the � = 450 MeV interaction also leads
to overbinding.

For A = 12 the N2LO NN-only potential increases the
binding slightly compared to NLO, in contrast to the binding
energies up to A = 10. Adding the 3NFs leads to significant
overbinding for 12C. The overbinding also means that the low-
est breakup thresholds appear higher in the spectrum than in
reality. In particular, the 3α threshold in 12C is around 15 MeV
at N2LO, that is, about a factor of 2 higher than in the real
world, as is illustrated in Fig. 6. One would therefore antici-
pate that the first excited 0+ in 12C (also known as the Hoyle
state), which is experimentally near the 3α threshold, will be
significantly too high in the spectrum at N2LO. Unfortunately,
within the NCCI approach we cannot correctly describe this
state within the numerically accessible basis spaces [94].

As we continue up in the p shell and move to 16O, the
amount of overbinding at N2LO gets even worse, as is il-
lustrated in Fig. 7. For comparison, we also include our
results with the SCS [31] interaction at N2LO in this figure,
which for the considered cutoff values agrees somewhat better
with experiment in the upper half of the p shell. The calcu-
lated ground-state energies, together with the corresponding
experimental values, as well as the deviation from these ex-
perimental values, are summarized in Table V.

Next, we show in Fig. 8 the calculated ground-state
energies together with the corresponding truncation errors
for those nuclei for which the results are available at all
orders up through N2LO. Here we use the Bayesian trun-
cation model C̄650

0.5−10 and assume the expansion parameter
Q = Meff

π /�b = 200/650 ≈ 0.31. We, however, emphasize
that such an estimation is somewhat simplistic, see Ref. [16]
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TABLE V. ground-state energies of p-shell nuclei, excluding
mirror nuclei, at N2LO including 3NFs with SRG α = 0.08 fm4,
together with the deviations from the experimental values. Quoted
uncertainties are the extrapolation uncertainties only. Energies and
cutoffs are in MeV. Experimental values are from Ref. [64].

AZ(Jπ , T ) N2LO(450) N2LO(500) Expt. (MeV)

4He(0+, 0) −28.527(2) −28.630(2) −28.296
+0.231(2) +0.334(2)

6He(0+, 1) −29.04(7) −29.21(6) −29.27
−0.23(7) −0.06(6)

6Li(1+, 0) −32.04(6) −32.29(4) −31.99
+0.05(6) +0.30(4)

7Li( 3
2

−
, 1

2 ) −39.39(6) −39.73(6) −39.24
+0.15(6) +0.49(6)

8He(0+, 1) −30.4(2) −30.9(2) −31.41
−1.0(2) −0.5(2)

8Li(2+, 0) −41.23(16) −41.85(15) −41.28
−0.05(16) +0.57(15)

8Be(0+, 0) −56.5(3) −57.0(3) −56.50
0.0(3) +0.5(3)

9Li( 3
2

−
, 3

2 ) −45.14(16) −46.18(16) −45.34
−0.20(16) +0.84(16)

9Be( 3
2

−
, 1

2 ) −58.82(21) −59.73(16) −58.16
+0.66(21) +1.57(16)

10Be(0+, 1) −66.5(5) −67.5(4) −64.98
+1.5(5) +1.5(4)

10B(3+, 0) −66.4(4) −68.4(4) −64.75
+1.7(4) +3.7(4)

11B( 3
2

−
, 1

2 ) −79.8(4) −82.3(4) −76.21
+3.6(4) +6.1(4)

12B(1+, 1) −84.8(4) −87.5(4) −79.58
+5.2(4) +7.9(4)

12C(0+, 0) −98.7(4) −101.8(4) −92.16
+6.5(4) +9.6(5)

13B( 3
2

−
, 3

2 ) −92.8(5) −95.4(5) −84.45
+8.4(5) +11.0(5)

13C( 1
2

−
, 1

2 ) −108.3(4) −112.2(4) −97.11
+11.2(4) +15.1(4)

14C(0+, 1) −120.1(4) −123.9(4) −105.28
+14.8(4) +18.6(4)

14N(1+, 0) −121.4(4) −125.6(4) −104.66
+16.7(4) +20.9(4)

15N( 1
2

−
, 1

2 ) −135.1(5) −138.9(5) −115.49
+19.6(5) +23.4(5)

16O(0+, 0) −149.1(7) −153.2(1.0) −127.62
+21.5(7) +25.6(1.0)

and the discussion in the next section. Also, the assumed value
for the expansion parameter may be too optimistic for heavier
nuclei. This is, e.g., indicated by the spread between the (obvi-
ously correlated) predictions for the ground-state energies for
� = 450 and 500 MeV in Fig. 7, which can serve as a mea-
sure of the N2LO truncation errors (at some low confidence
level) and appears to show a clear tendency of increasing with
growing values of A. Extending the calculations to N3LO will
allow us in the future to perform a more reliable and elaborate
estimation of the truncation uncertainty.
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FIG. 8. Calculated ground-state energies in MeV using chiral
NLO, and N2LO interactions at � = 450 MeV (blue and green sym-
bols) in comparison with experimental values (red levels). For each
nucleus the NLO, and N2LO results are the left and right symbols and
bars, respectively. The open blue symbols correspond to incomplete
calculations at N2LO using NN-only interactions. Blue and green
error bars indicate the NCCI extrapolation uncertainty. All results
shown are for α = 0.08 fm4. The light (coral) and dark (gray) shaded
bars indicate the 95% and 68% DoB truncation errors, respectively,
estimated using the Bayesian model C̄650

0.5−10 (at NLO we only show
the 68% DoB truncation errors because the 95% errors would be off
one or even both ends of the scale).

In Table IV we also list our order-by-order results for
the excitation energies. Again, these excitation energies are
the difference of the extrapolated total energies. For 7Li our
results are, starting from NLO, in good qualitative agreement
with experiment, see Fig. 9. However, at LO the spectrum
looks very different: The ground state and first excited state
are nearly degenerate, and reversed in order, while the second
and third excited state are significantly too high and also
nearly degenerate. This can easily be qualitatively explained
in terms of the clustering: the lowest two states in 7Li can be
viewed as a bound states of 3H and 4He in an L = 1 state with
the spin and orbital motion (anti)aligned, whereas the second
and third excited state are bound states of 3H and 4He in an
L = 3 state with the spin and orbital motion (anti)aligned.
Without sufficient spin-orbit splitting in the NN-potential at
LO, the first two states become degenerate, as do the second
and third state. Note that the second excited 5

2
−

state has a
different structure, and is even higher in the spectrum at LO.
Starting from NLO, however, the spectrum is in qualitative
agreement with experiment, and the differences between the
excitation energies between NLO and N2LO (with or without
3NFs) are less than an MeV; and at N2LO (with 3NFs) there
is good agreement with the experimental values.
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FIG. 9. Order-by-order excitation spectra of 7Li (top) and 8Li
(bottom). All excitation energies are obtained with SRG parameter
α = 0.08 fm4; open symbols are with � = 450 MeV, closed symbols
are with � = 500 MeV, and horizontal lines indicate experimental
values [78,92]. Dashed (dotted) lines connect results for the lowest
(second) excited state of a given J at different orders.

Also for 8Li we see a qualitative difference between the
spectrum at LO and at higher orders: at LO the ground state is
actually a 0+ state, whereas the experimental ground state is a
2+ state. (Note that there is no narrow 0+ listed in Ref. [92].)
Starting from NLO, the excitation energies of the 1+, 3+,
and 4+ states are in reasonable agreement with the known
experimental values, with only small changes as one goes
from NLO to N2LO without and with 3NFs; the latter gives
best agreement for the low-lying spectrum. In addition to the
known narrow 1+, 3+, and 4+ states, and the 0+ state which
is the ground state at LO, we also see evidence for additional
1+ and 2+ states between 3 and 7 MeV at N2LO with 3NFs.
These states are also found with the SCS interactions [95];
however, they are not very well converged and probably cor-
respond to broad resonances.

The two lowest excited states of 10Be are both J = 2 states,
and at N2LO their excitation energies are in good agreement
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FIG. 10. Order-by-order excitation spectra of 10Be (top left), 10B (top right), 12B (bottom left), and 12C (bottom right). All excitation
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values [92,93]; the horizontal dashed lines indicate excited 0+ states in 10Be and 12C not in the low-lying spectra of our NCCI calculations.

with the experimental values, see Fig. 10. Although they have
the same quantum numbers, they are easily distinguished by
their quadrupole moments: at N2LO the first J = 2 state has a
negative quadrupole moment and can be identified as a rota-
tional excitation of the ground state [96], whereas the second
J = 2 has a positive quadrupole moment. Note, however, that
at LO the order of these two states is reversed. In addition to
these two J = 2 states, there is also a narrow J = 0 excited
state at 6.179 MeV (see Ref. [92]), for which we do not find
any evidence in our NCCI calculations. It is unclear whether
that is a deficiency of the NCCI approach or a property of the
interaction; also with the SCS interactions we do not see this
excited J = 0 state in the low-lying spectrum [31,95].

The low-lying spectrum of 10B is known to be very sensi-
tive to details of the interaction, and in particular to 3NFs [97].
Indeed, in Fig. 10 we see that without 3NFs we do not get the
correct ground state: one of the two low-lying J = 1 states is
(well) below the lowest J = 3 state at LO, NLO, and N2LO
without 3NFs. Only after adding the 3NFs at N2LO do we get
the correct ground state, and what appears to be the ground
state at lower orders, seems to become the second J = 1 state,
based on observables such as the magnetic and quadrupole
moments (dotted line in Fig. 10). A complicating factor is that

the two low-lying J = 1 states mix as function of the basis
parameters h̄ω and Nmax, which makes the extrapolation to the
complete basis less reliable. Nevertheless, at N2LO with 3NFs
we find reasonable agreement for the low-lying spectrum,
given our numerical uncertainty estimates. Furthermore, it is
interesting to note that the convergence pattern with chiral
order, and the effect of the 3NFs, is very similar for the
J = 1 state that is lowest at LO and NLO (dotted line), the
J = 2 state, and the first excited J = 3 state, indicating strong
correlations between these three states.

The spectrum of 12B turns out to be even more sensitive to
the NN and 3N interaction, as can be seen in the lower-left
panel of Fig. 10. There are two narrow J = 2 excited states in
12B, which have an opposite behavior as we go from LO to
N2LO in the chiral expansion: one of them is almost degener-
ate with the J = 1 ground state at LO, but its excitation energy
increases at NLO, and increases further at N2LO (including
3NFs), whereas the excitation energy of the second J = 2
state at LO decreases at higher orders, and this J = 2 state
drops below the physical J = 1 ground state at N2LO with
3NFs, becoming (incorrectly) the predicted ground state. Also
note that there are three excited states, with J = 0, 1, and
2, whose excitation energies have a very similar pattern as
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function of the chiral order—and this pattern is also very
similar to that seen for three low-lying states in 10B. This
suggests that these states have a closely related structure,
which deserves further investigation. It also remains to be seen
what happens at higher chiral orders.

Finally, the spectrum of 12C. As already mentioned, the
Hoyle state (the first excited J = 0 state in 12C, which is near
the 3α threshold) cannot be correctly described within the
NCCI approach within the numerically accessible basis space.
In Fig. 10 this state is represented by the dashed line. The
J = 2 and J = 4 states are rotational excitations of the ground
state [98], and it is therefore no surprise that their behavior
as a function of the chiral order is very similar; the ratio of
their respective excitation energies remains nearly constant at
about 3.3, as one would expect for a rotational band. More
interesting and puzzling is the systematic decrease with chiral
order of the J = 1 (with T = 0) state, in particular with the
inclusion of the 3NFs at N2LO. Again, the question is what
happens with this state at higher chiral orders.

To summarize, most of the calculated spectra of p-shell
nuclei show good agreement with experiment for the lowest
narrow states with natural parity, with only a few exceptions.
These exceptions are the J = 0+ excited states in 10Be and
12C (which are most likely absent in our calculations due to
the limited basis spaces), as well as several states that are
particularly sensitive to the details of the NN-potential and the
3NFs. Specifically, these are the excited J = 1 state in 12C; the
J = 2 state in 12B, which is the second excited J = 2 state at
LO and NLO, but which becomes the theoretical ground state
at N2LO, whereas the experimental ground state has J = 1;
and the lowest states in 10B, which has experimentally a J = 3
ground state, with two low-lying J = 1 excited states, but in
ab initio calculations without 3NFs, typically one of these
J = 1 states becomes the lowest state. However, in order to
judge whether or not these exceptions are problematic, we
need to consider not only the extrapolation uncertainties, but
also the chiral truncation uncertainties.

VI. CORRELATED TRUNCATION UNCERTAINTIES
FOR NUCLEAR SPECTRA

In this section we consider the EFT truncation errors for
the calculated spectra summarized in Tables III and IV. As de-
scribed in Sec. III, these uncertainties can be estimated using a
Bayesian statistical model that learns from the order-by-order
convergence pattern. This model has been applied in Secs. III
and IV in a pointwise form, meaning that different observables
are treated as statistically independent. If applied to the energy
spectra from the last section, one would add individual errors
in quadrature to find the error bars for excitation energies
(because they are a difference between excited- and ground-
state energies treated independently). But as already noted and
from all other experience, these excitation energies are gen-
erally much better determined than energies of the individual
levels. Therefore, to avoid overestimating the truncation errors
it is essential to apply a correlated error model, which we do
here.

An extended model applicable to correlated truncation er-
rors was recently developed in Ref. [99] and applied to infinite

matter in Refs. [100,101]. This model employed Gaussian
processes (GPs) because the observables were continuous
functions of the input variables, namely energy and density,
respectively. The spectra here are discrete, but we can adapt
the GP results because every finite number of inputs will
have a joint Gaussian distribution. Rather than learn the hy-
perparameters of a covariance function that depends on the
continuous distance between inputs, we can learn the covari-
ance structure between discrete energy levels and nuclei from
the observed pattern of order-by-order expansion coefficients
ci [defined in Eq. (6)].

To manifest the correlations, we plot the ci coefficients for
each individual level listed in Tables III and IV in Fig. 11.
For this rough visualization, we extract the cis using a fixed
Q = Meff

π /�b = 200/650 ≈ 0.31 for all the states, with Xref

taken from experiment (or the N2LO result for the 0+ state in
8Li). We see high correlation as expected between observable
coefficients for the spectra of a given nucleus but also between
nuclei. To model these correlations, we introduce a covariance
matrix and determine it empirically [102]. We emphasize that
the correlations shown beyond c0 are for the corrections to the
observables.

As already seen in Eqs. (6) and (7), the truncation er-
ror model is contingent on the expansion parameter Q and
the characteristic variance c̄2 of the observable expansion
coefficients ci. Ideally we would learn Q2 and c̄2 from the
order-by-order calculations together with the prior expecta-
tions for each. A complication for the spectra of light nuclei
is that the order-by-order convergence pattern is obscured for
those observables at low orders by the strong cancellation be-
tween kinetic and potential energies [16]. This is exacerbated
in the present case by only having orders up to N2LO.

As a first approach we bypass the problem with the low
orders by using just the c3 coefficients to learn c̄2. By “learn-
ing” we mean obtaining a statistical solution to the inverse
problem of determining the distribution the coefficients come
from (which is characterized by c̄2). We follow Appendix
A of Ref. [99] and use a hierarchical model that is com-
putationally efficient and enables us to both parametrize our
prior expectations and easily marginalize (i.e., integrate over)
the hyperparameters to reduce sensitivity. Previous work has
shown little sensitivity to the choice of prior once higher
orders are available. With only up to N2LO available we can
expect more sensitivity here, but this will be cured in future
work with N3LO and higher, so we do not exhaustively test
the dependence on the choice of prior. For the analysis of
spectra we use the scaled inverse-χ2 conjugate prior proposed
in Ref. [99], which is shown in Fig. 12 for several candidate
choices of the hyperparameters ν0 and τ0 to assess sensitivity.
Based on these tests we have chosen ν0 = 1.5, τ0 = 1.5 for
the present error analysis.

If we use just the c3 coefficients but from all of the en-
ergy levels to find a posterior for Q (without accounting for
correlations), it peaks close to the value adopted for Fig. 11
(Q ≈ 0.3), which is an average of the somewhat smaller val-
ues found for the lighter nuclei and the somewhat larger values
found for the heavier nuclei. This is consistent with expec-
tations that Q should increase with the increasing average
kinetic energy (the use of the nonobservable kinetic energy
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FIG. 11. Expansion coefficients for the individual energy levels
in Tables III and IV with α = 0.08 fm4 and � = 450 MeV. These
are extracted according to Eq. (9) with a fixed value of Q ≈ 0.31 and
Xref taken from experiment [78,92,93] (or the N2LO result for the 0+

in 8Li).

in estimating Q is discussed in Ref. [16]). To fit the empirical
covariance matrix, it is not sufficient to use the c3 results. As
a start, we also include c2 for determining the covariance,
which might overestimate the degree of correlation based
on a comparison of orders in Fig. 11. Other strategies for
determining correlations for energy spectra will be explored
in future work.

The resulting Bayesian 95% confidence intervals for the
excitation energies are shown in Fig. 13, where we plot the dif-
ference of theory and experiment. The intervals are shown for

FIG. 12. Prior pdf for the variance c̄2 of the expansion coefficient
with several choices of hyperparameters ν0 and τ0.

the results from Tables III and IV for both the � = 450 MeV
(upper, blue) and � = 500 MeV (lower, red) potentials at
SRG α = 0.08 fm4. We see that the uncertainties for the
500 MeV potential are systematically larger than those for
450 MeV potential, but in both cases the empirical coverage
of experiment is good. That is, the error bars encompass unity
at roughly the rate one would expect for 95% intervals. We
emphasize that without taking correlations into account, the
intervals would have been significantly larger, and therefore
would have been too conservative based on this comparison
(i.e., with poor empirical coverage).

When N3LO results are available, we will be able to val-
idate these results and explore the covariance structure in
greater detail. It will be interesting to analyze the correla-
tions among states with similar and distinct characteristics
as expected from theoretical considerations. We will also
seek to make use of the lower-order results along the lines
discussed in Ref. [16] as alternative approaches to the
truncation errors.

VII. SUMMARY AND CONCLUSIONS

In this paper we have, for the first time, applied the novel
SMS chiral NN potentials of Ref. [32], along with the con-
sistently regularized 3NFs comprising subtraction terms, to
study selected observables in Nd elastic scattering and the
deuteron breakup process as well as various properties of light
nuclei up to N2LO in chiral EFT. Our main findings can be
summarized as follows:

(i) We have used the approach introduced and advocated
in Ref. [31] to determine the LECs cD and cE enter-
ing the leading 3NF using the triton binding energy
and the Nd cross-section minimum at EN = 70 MeV
for the cutoff values of � = 450 and 500 MeV. The
resulting values of these LECs are found to be of
natural size. The predicted results for Nd scattering
observables sensitive to the 3NF that have been con-
sidered in Ref. [31], namely the doublet scattering
length 2a, Nd total cross section and the differential
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FIG. 13. Central values (dots) for the difference of predicted (at
N2LO with 3NFs) and measured excitation energies from Tables III
and IV, with 95% Bayesian confidence intervals (for truncation er-
rors only) indicated as error bars. We omit the 0+ in 8Li because
an experimental value is not available and note that the lowest 2+

in 12B is incorrectly predicted to be the ground state. For each
excitation from the calculated ground state, the upper (blue) bar is
for � = 450 MeV and the lower (red) bar is for � = 500 MeV. All
results shown are for α = 0.08 fm4.

cross section in elastic Nd scattering in the mini-
mum region at EN = 108 and 135 MeV, are found
to be in agreement with the experimental data from

Refs. [47,54,55]. The only exception are the data
of Ref. [47] at EN = 135 MeV, for which a slight
discrepancy (at the level of ≈1.5σ is observed). Fur-
ther, in line with earlier studies, our results suggest
that 2a is not suitable for the determination of these
LECs when used in combination with the 3H bind-
ing energy due to the well-known strong correlation
between these two observables. Our predictions for
the considered analyzing powers in elastic Nd scat-
tering at EN = 70 MeV as well as for the differential
cross section and nucleon vector analyzing power Ay

in selected deuteron breakup configurations at EN =
65 MeV are in reasonable agreement with the data.
We demonstrated the agreement between complete
N2LO predictions based on the SCS force [31], a
previous form of the SMS interaction [38], and on
the newly used SMS potential comprising subtraction
terms in the 3NFs.

(ii) For the ground-state energies of light nuclei, we ob-
serve a similar pattern to the one reported in our
earlier study [31] using the SCS chiral interactions
at the same chiral order. In particular, while the pre-
dicted binding energies are found to be within ≈3% of
the experimental values for light nuclei, a systematic
overbinding trend sets in for A ∼ 9–10 and increases
with growing A. For the considered nuclei up to A =
12, our predictions are consistent with the experimen-
tal values within errors. For the lightest nuclei with
A = 3, 4 we have also calculated the point-proton
and point-neutron radii. Our predictions for the point-
proton structure radii for 3H and 3He agree with the
data within errors. For 4He, our N2LO prediction for
the radius is ≈4% smaller than the central experimen-
tal value, but it is still consistent with the datum at the
95% confidence level.

(iii) We have addressed the question of quantifying trun-
cation errors for strongly correlated observables, such
as the excitation energy spectra, by using a correlated
Bayesian error model and empirically determining
the corresponding covariance matrix. Our results for
the excitation energies are statistically consistent with
both the assumed expansion parameter and the exper-
imental data for the spectra.

In the future, we plan to extend these results in various
directions. First, it would be interesting to relax the constraint
of exactly reproducing the 3H binding energy employed in all
our calculations at N2LO. This would require a more careful
uncertainty analysis in the determination of the LECs cD, cE

that would take into account the expected truncation error for
this observable. We also plan to investigate the origin of the
overbinding found for heavier nuclei. In particular, it remains
to be seen whether this issue is related to deficiencies of the
N2LO approximation to the NN force or has to be resolved by
higher-order 3NF contributions.

Clearly, the most important step is the extension of these
studies to N3LO, which will require the inclusion of the cor-
responding corrections to the 3NF. However, it was shown
in Ref. [3] that one cannot apply the simple regularization
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approach we are using in this study to the N3LO contributions
derived in Refs. [24–26] using dimensional regularization,
as this would destroy consistency with the NN interactions.
Rather, all loop contributions to the 3NF (and to exchange
charge and current operators) need to be rederived using a
consistent semilocal regulator instead of the dimensional reg-
ularization. Work along these lines is in progress.
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