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Strangeness-changing rates and hyperonic bulk viscosity in neutron star mergers

Mark G. Alford * and Alexander Haber †

Physics Department, Washington University in Saint Louis, 63130 Saint Louis, Missouri, USA

(Received 18 December 2020; accepted 6 April 2021; published 28 April 2021)

In this paper, we present a computation of the rates of strangeness-changing processes and the resultant bulk
viscosity in matter at the densities and temperatures typical of neutron star mergers. To deal with the high
temperature in this environment, we go beyond the Fermi surface approximation in our rate calculations and
numerically evaluate the full phase space integral. We include processes where quarks move between baryons via
meson exchange: These have generally been omitted in previous analyses but provide the dominant contribution
to the rates of strangeness-changing processes and the bulk viscosity. The calculation of these rates is an essential
step toward any calculation of dissipation mechanisms in hyperonic matter in mergers. As one application, we
calculate the dissipation times for density oscillations at the frequencies seen in merger simulations. We find
that hyperon bulk viscosity for temperatures in the MeV regime can probably be neglected in this context but
becomes highly relevant for keV-range temperatures.
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I. INTRODUCTION

The discovery of gravitational waves from a binary neu-
tron star merger in 2017, named GW170817 [1], opened
a new window to study dense nuclear and possibly quark
matter at high densities and temperatures [2–9]. In order to
relate the phase structure of dense matter to the astrophysical
observations, detailed simulations using numerical relativity
and relativistic hydrodynamics have to be performed [10–14],
using accurate representations of the relevant material proper-
ties. Therefore, it is necessary to improve our understanding
of dense matter in merger conditions. Studies of GW170817
[15,16] estimate that the central densities of the merging
stars were more than two times saturation density (n0 =
0.15 fm−3). Numerical simulations of the first 20 ms after the
initial contact of the stars provide further insight. They sug-
gest that the density reaches several times saturation density
and that temperatures can reach tens of MeV [11,14], where
some simulations even predict up to T ≈ 100 MeV [13]. Fur-
thermore, fluid elements undergo strong density oscillations
with central frequencies of around 1 kHz [17,18]. This raises
the question of which microscopic transport phenomena and
dissipation mechanisms are important on the 20-ms neutron
star merger timescale. Initial estimates of various transport
phenomena in Ref. [17] showed the potential importance of
bulk viscosity in ordinary nuclear matter. Bulk viscosity is
a dissipative mechanism, which converts oscillation energy
into heat or radiated neutrinos. The magnitude of the bulk
viscosity and the equation of state (EOS) of nuclear matter
together determine the dissipation timescale on which oscil-
lations are damped. A detailed study in neutrino-transparent
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matter showed that dissipation times for npe matter due to di-
rect and modified Urca processes are indeed on a millisecond
timescale [19,20], whereas in the neutrino-trapped regime,
bulk viscosity seems to be negligible [21,22].

The intriguing prospect for nuclear physics is that other
forms of matter might have different bulk viscosities, leading
to observable signatures of their presence in the merger. In
this paper, we focus on hyperonic matter, where several weak,
nonleptonic processes can contribute to β equilibration and
hence to bulk viscosity. Although the existence of hyperons
in cold, isolated neutron stars is contested (the “hyperon puz-
zle” [23,24]), the higher temperatures and densities reached
in the merger render their appearance highly likely. In the
past, hyperonic bulk viscosity has been exclusively studied at
low (keV range) temperature, often in the context of r modes
[25–32]. At these temperatures, one can use the Fermi sur-
face (FS) approximation since all particles participating in β

equilibration processes are close to their Fermi surfaces. Fur-
thermore, an ultra nonrelativistic approach, where the baryon
momenta in the matrix element are set to zero, is sometimes
adopted [25,26,31] in order to obtain analytic results. In the
merger environment, both of these assumptions are invalid
and need to be improved on. Additionally, most studies only
consider the contact interaction diagram where a W boson
is exchanged between baryons. In Refs. [28,32], it has been
shown that, at least at the studied low temperatures, the one-
meson exchange (OME) contribution, where the W exchange
is internal to a hadron, dominates the rates that are relevant to
the bulk viscosity. In our treatment of the β equilibration rate,
we improve on previous treatments and obtain results that are
valid in the merger environment by the following steps:

(a) taking the OME contributions for all processes into
account;

(b) computing numerically the full 12-dimensional phase
space integral instead of using the FS approximation; and
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(c) using a fully relativistic approach, which is particularly
important at high densities where the Fermi momenta are
largest.

This allows us to calculate the re-equilibration rates at
temperatures up to 50 MeV for four different strangeness-
changing, nonleptonic, weak decay processes, two of which
predominantly occur via OME, not via the contact interaction,
which is heavily suppressed. We show that all of these rates
contribute to the bulk viscosity and have to be taken into ac-
count. Although neutrino trapping is expected at T � 5 MeV,
it does not influence the nonleptonic rates that we calculate,
and we neglect its influence on the equation of state.

We find that the re-equilibration rates at high temperatures
are generally too fast to lead to a sizable bulk viscosity and
correspondingly short dissipation times. Consequently, hy-
peron bulk viscosity is most likely not a significant factor in
the hot regions of neutron star mergers. However, for tem-
peratures in the keV regime, bulk viscosity shows a resonant
peak, giving damping times in the ms range, which means that
we expect significant damping of density oscillations in either
exceptionally cold regions of a merger or in the inspiral phase
of an elliptic merger, where tidal forces are expected to excite f
modes with frequencies of order 1 kHz [33,34]. The processes
whose rates we calculate, along with other (semileptonic)
hyperon decay processes, might play an important role in
cooling, thermal transport, or radiative dissipation [35] and are
a fundamental ingredient for an extension of the calculation of
phase conversion dissipation [36] to merger temperatures.

In this paper, we use natural units, where h̄ = c = kB =
1 and the mostly minus signature of the Minkowski metric,
gμν = diag(1,−1,−1,−1).

II. HYPERONIC MATTER AND BULK VISCOSITY

A. Equation of state

There are many proposed equations of state for nuclear
matter with hyperonic degrees of freedom. Depending on the
EOS, different hyperons appear at different onset densities
[37–44]. Since our analysis requires calculations, includ-
ing derivatives, of the EOS both in and out of chemical

equilibrium with respect to strangeness, we use a simple EOS
that we call “PK1+H,” which can be computed at arbitrary
strangeness fraction rather than using an EOS that is de-
fined via a table of numbers. PK1+H allows stars up to a
maximum mass of 1.88 M�, putting it at the 3σ edge of com-
patibility with current constraints (Mmax � 1.928 ± 0.017 M�
[45], Mmax � 2.01 ± 0.04 M� [46]). We were able to per-
form one check that our main conclusions are not specific to
the EOS that we used, by calculating a typical strangeness-
changing rate using another hyperonic EOS, GM1’B, which
has Mmax = 2.02 M� [47]. GM1’B predicts a different order
of the onset of the different hyperon species and includes
an additional (strange) exchange meson, which leads to a
repulsion between the hyperons. However, as we will discuss
in Sec. III, in the relevant density and temperature range it pre-
dicts strangeness-changing rates comparable to PK1+H. This
is an indication that our findings concerning the relevance of
hyperonic bulk viscosity are valid for any EOS where at least
one hyperonic degree of freedom appears at a density that is
reachable in mergers.

The PK1+H EOS is based on a relativistic mean field
model (RMF) which includes nonlinear mesonic terms which
interact with the nucleons and the � and �− hyperons, which
have the lowest onset densities. We neglect the other hyper-
ons in the baryon octet because they only appear at much
higher densities. In PK1+H, the �− hyperon appears first as
a function of density due to its contributions to the overall
charge neutrality of matter. The nuclear part of the Lagrangian
including the Yukawa couplings gσN , gωN , gρN between the
nucleons and the three mesons follow the conventions in
Ref. [48]; the numerical parameters are chosen according to
the PK1 parametrization from Table 1 in Ref. [49]. We extend
the PK1 EOS to the hyperonic sector by adding the hyperons
to the Langrangian as shown below. The hyperonic coupling
constants are chosen in accordance with Ref. [37] in such a
way that the model reproduces a hyperon spectrum similar
to the one from the DD-ME2 hyperonic EOS investigated
in Ref. [40]. All numerical parameters are summarized in
Appendix B. The Lagrangian of the model is

L = LB + Lm + Ll , (1a)

LB =
∑

i

ψ̄i[iγ
μ∂μ − Mi − gσ iσ − gωiγ

μωμ − gρiγ
μ�τ · �ρμ]ψi , (1b)

Lm = 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − g2

3
σ 3 − g3

4
σ 4 − 1

4
ωμνωμν + 1

2
m2

ωωμωμ + c3

4
(ωμωμ)2 + 1

2
m2

ρ �ρ μ · �ρμ − 1

4
�ρ μν · �ρμν , (1c)

Ll =
∑

l

ψ̄l [iγ
μ∂μ − ml ]ψl , (1d)

where

ωμν ≡ ∂μων − ∂νωμ , (2a)

�ρ μν ≡ ∂μ�ρ ν − ∂ν �ρ μ + gρN �ρ μ × �ρ ν , (2b)

with symbols with arrows being vectors in isospin space. The
first term LB includes the sum over the four baryons (neutron,

proton, �, and �−) with their masses Mi and their Yukawa
interactions with the mesonic fields. We include the scalar
σ meson, the vector meson ωμ, and the isovector triplet �ρ μ,
which breaks isospin symmetry, and self-interactions for the
scalar and the vector mesons. Note that the Yukawa couplings
are different for every baryon-meson interaction. Their values
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FIG. 1. Logarithm of the ratios of all baryonic particle densi-
ties over the total baryon density at T = 2 MeV (solid lines) and
T = 50 MeV (dashed lines) plotted as a function of total baryon
density in units of the saturation density. In the used parametrization
PK1+H, saturation density is given by n0 = 0.148 fm−3. Although
the � hyperon is less massive than the �−hyperon, the order of their
onset is reversed because of charge neutrality.

are given in Appendix B. The leptonic Lagrangian Ll in-
troduces free electrons and muons, where we assume the
electrons to be massless. The particle fractions in or out of
chemical equilibrium are then obtained by solving the Euler-
Lagrange equations in the mean field approximation.

The resultant particle content for neutral matter in β equi-
librium is shown in Fig. 1. Chemical equilibrium, charge
neutrality, and baryon number can be expressed as

nB = nn + np + n�− + n� baryon number , (3a)

np = ne + nμ + n�− charge neutrality , (3b)

μp = μn − μe chemical equilibrium , (3c)

μe = μμ , (3d)

μ�− = μn + μe , (3e)

μ� = μn , (3f)

where ni and μi are the number density and chemical potential
for particle species i. The resulting dispersion relations for the
baryons are given by

Ei =
√

p2
i + (M∗

i )2 + gωi〈ω0〉 + gρiIi3〈ρ03〉 , (4)

with the modulus of the three-momentum pi = |pi|, the ef-
fective baryon mass M∗

i = Mi − gσ i〈σ 〉, where 〈σ 〉 is the
vacuum-expectation value (vev) of the σ meson, and 〈ω0〉 is
the vev of the temporal component of the ω. Only the temporal
part of the third isospin-vector component of the �ρ develops

a finite expectation value Ii3〈ρ03〉, where Ii3 denotes the third
component of the isospin projection of the ith baryon.

B. Rate calculation and matrix element

Computations of hyperonic bulk viscosity have been per-
formed using various nucleonic interactions, approximations,
and EOS in the past, but exclusively for low enough temper-
atures so that the FS approximation is valid, and often in the
context of the r-mode instability [25,27,28,31,32,50]. In this
work, we are interested in mergers where the temperature is
high enough to eliminate nucleonic or hyperonic superfluidity
and to invalidate the FS approximation.

Hyperonic bulk viscosity arises from β equilibration of
the strangeness fraction, which will be dominated by the
fastest strangeness-changing processes. We focus on nonlep-
tonic processes, which are typically faster than (semi)leptonic
ones [28,51]. The processes we are including in this work all
change strangeness by one unit and are mediated by the weak
interaction,

I : n + n ⇐⇒ p + �− , (5a)

II : n + p ⇐⇒ p + �, (5b)

III : n + n ⇐⇒ n + �, (5c)

IV : � + � ⇐⇒ � + n . (5d)

In general there are two main contributions to such pro-
cesses:

(a) Contact interaction. Exchange of a W boson between
the baryons, which at the energy scales relevant to our cal-
culations can be reduced to a contact interaction between the
baryons, depicted for process I in Fig. 2(c).

(b) One meson exchange (OME). A combined weak-strong
channel, depicted for process I in Figs. 2(a) and 2(b). In this
channel, the flavor-changing W-boson exchange occurs inside
one of the incoming baryons, creating an off-shell interme-
diate state. A strong interaction with the second incoming
baryon rearranges the quarks and improves the kinematics of
the process. We model that strong interaction as one-meson
exchange.

Early work by Jones [25] and Lindblom and Owen [27]
only included contact interactions, so they neglected pro-
cesses III and IV which would require exchange of a Z
boson between the baryons, and such flavor-changing neutral
currents are highly suppressed by the Glashow–Iliopoulos–
Maiani (GIM) mechanism [52].

However, there are OME contributions to all four processes
in Eq. (5), and at temperatures in the sub-MeV range the OME
channel is the dominant contribution. For processes I and II,
the OME contribution to the rate is an order of magnitude
larger than the contact interaction contribution [28]. Process
III, in particular, is non-negligible at most densities. This
can partially be attributed to the large phase space near the
neutron Fermi surface compared to the other baryon species.
We calculate the OME contribution to all four processes. The
rates 
12→34 can be calculated by computing the full phase
space integral:
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FIG. 2. Panels (a) and (b) show Feynman and quark-flow diagrams for the OME contribution to process I. The flavor-changing weak-
interaction vertex FW

n� connecting the incoming neutron n with a pion and the �−-hyperon represents a combination of a flavor-changing
W -boson exchange within the baryon and a quark exchange (modeled via one meson exchange) with the spectator baryon. The strong-
interaction vertex FS

np connects the nucleons n and p with a pion. For the matrix element in Eq. (7), we have to subtract a second Feynman
diagram with the two initial neutrons exchanged. Panel (c) shows the Feynman diagram for the contact interaction contribution, where the two
nucleons exchange a charged W boson that is integrated out. This is the basis for the matrix element in Eq. (12). All coupling constants can be
found in Appendix B. The remaining diagrams are shown in Appendix A.


12→34 =1

S

∫
d3 p1

(2π )3

d3 p2

(2π )3

d3 p3

(2π )3

d3 p4

(2π )3

∑
s |M1234|2

24E∗
1 E∗

2 E∗
3 E∗

4

(2π )4δ(E1 + E2 − E3 − E4)δ3(p1 + p2 − p3 − p4)

× f1(E1, μ1) f2(E2, μ2)[1 − f3(E3, μ3)][1 − f4(E4, μ4)] , (6)

with the symmetry factor S = 2 for all processes with two
identical baryons on one side of the reaction, i.e., processes
I, III, and IV, and S = 1 for process II. The spin-summed,
squared matrix element of the process

∑
s |M1234|2 turning

the incoming baryons with labels 1 and 2 into baryons 3
and 4, where the labels stand for the corresponding baryons
in Eqs. (5), can be obtained from the Feynman diagrams in
Fig. 2(a), which give the matrix element

M1234 = [
ū3F S

23u2 ū4FW
14 u1 Dϕ

(
k2

1

)
− ū3F S

13u1 ū4FW
24 u2 Dϕ

(
k2

2

)]
, (7)

where the Dirac bispinors are normalized following
Refs. [53,54] to u†u = 2E∗, which leads to the corresponding
energy denominators in Eq. (6). When we evaluate
|M1234|2, the spin summation over Dirac bispinors, which
follows equations of motion derived from meson exchange
Lagrangians as used here, leads to an expression in terms of
the quasimomentum (E∗,−p) where

E∗
i =

√
p2

i + (M∗
i )2 . (8)

In all other parts of the calculation, including the δ distri-
butions in the rate integral Eq. (6), on-shell nucleons are
characterized by four-momenta that obey the dispersion re-
lation Eq. (4). Therefore, the meson propagator Dϕ , defined
in Eq. (10), depends on the dispersion relations from Eq. (4)
as well, whereas the remaining matrix element is given in
terms of the quasimomentum. For a detailed calculation of
spin sums in RMFs, see Appendix B of Ref. [54].

The weak and strong interaction vertices are given by

FW
i j = GF m2

π (Ai j + Bi jγ5) , F S
i j = gi jγ5 , (9)

with the Fermi constant GF = 1.1663787 × 10−5 GeV−2, the
fifth γ matrix γ5, and the strong interaction coupling constants

gi j and weak interaction coupling constants Ai j and Bi j , which
depend on the baryons in the corresponding vertex and are
summarized in Appendix B. The coupling constants Ai j and
Bi j are rendered massless via the insertion of a factor of
the pion mass squared, m2

π , for all processes (whether the
exchanged meson is a pion or not). The meson propagator is
given by

Dϕ (k) = 1

k2
0 − k2 − m2

ϕ

, (10)

where the energy k0 and the momentum k of the meson ϕ,
which would be a pion in processes I to III and a kaon in
IV, is determined by energy-momentum conservation in the
vertices.

The Fermi-Dirac distribution functions

fi(Ei, μi ) = 1

1 + exp
(Ei−μi

T

) (11)

account for Pauli blocking and depend on the full dispersion
relation of the incoming (i = 1, 2) and outgoing (i = 3, 4)
baryons [see Eq. (4)], the chemical potentials μi, and the tem-
perature T . Since the effective masses become smaller than
the corresponding Fermi momenta at high densities, we treat
all baryons as relativistic particles. A nonrelativistic treatment
leads to nonphysical behavior of the bulk viscosity at medium
to high densities (around nB ≈ 3n0) [22].

Although they will turn out to be small compared to the
OME channel, we also compute the rates for the processes n +
n ↔ p + �− and n + p ↔ p + � in the contact interaction
channel. The corresponding matrix elements are derived from
the Feynman diagrams in Figs. 2(c), 10(c), and 11(c) and are,
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after spin summation, given by [26–28,32]
∑

s

|Mnnp�− |2 = cW M2
n MpM�−

(
1 + 3cnp

A cn�−
A

)2
(12)

and∑
s

|Mnpp�|2 = cW MnM2
pM�

(
1 + 3

∣∣cnp
A

∣∣2∣∣cp�
A

∣∣2
)

, (13)

where cW = 8G2
F sin2(2θC ). All numerical constants can be

found in Appendix B. Since the OME processes provide the
dominant contribution to the rates, we only need to make a
rough estimate of the subdominant contribution from contact
interactions. Following the approach used widely in the litera-
ture [25,26,31], we simplify the matrix element by applying
the ultranonrelativistic approximation, where Ei = M∗

i and
the energy denominators in Eq. (6) are replaced with the ef-
fective masses M∗

i . The contact interaction contribution to the
rates can then be computed analytically. We emphasize that
this is an extremely crude approximation: In cold hyperonic
matter, the ultranonrelativistic approximation underestimates
the rates by up to two orders of magnitude. However, even in
an improved relativistic treatment, the contact interaction pro-
duces rates which are still an order of magnitude slower than
the ones derived from the OME process [28,32]. The results
for the rates in the OME and contact interaction channel are
shown in Sec. III.

C. Bulk viscosity

In this section, we derive an expression for hyperonic
bulk viscosity, where we use the methods and notation of
Refs. [30,32]. As noted in Sec. I, these works calculated
the equilibration rate assuming low temperatures character-
istic of isolated neutron stars. In this work, we obtain results
which are valid at the densities and temperatures that arise
in mergers, where a thermal population of hyperons below the
zero-temperature onset is present. Bulk viscosity is defined by
the deviation from the equilibrium pressure P0 via

P − P0 = −ζ∇ · v , (14)

where P is the current pressure of the fluid element which
undergoes a harmonic oscillation of the form n = n0 +
δn exp(−iωt ), with the external oscillation frequency ω, the
equilibrium density n0, and the amplitude of the oscillation
δn 
 n0. The bulk viscosity ζ is given by the coefficient of the
divergence of the fluid element velocity v on the right-hand
side of Eq. (14). The oscillation will push the matter out of β

equilibrium, which causes a difference �
 between the back-
ward and forward rates of the individual processes in Eqs. (5).
In principle, the pressure P is a function of the six parti-
cle species numbers (proton, neutron, � and �−−hyperons,
electrons, and muons). We assume that thermal conduction
operates quickly enough that the temperature is time inde-
pendent, so we calculate isothermal susceptibilities and bulk
viscosity. For sufficiently low temperatures and long wave-
length of the density oscillations, an adiabatic calculation
might be appropriate [19], but we will reserve the exploration
of this regime for future work. Not all of the particle densities

are independent, since the total baryon number is given by

nB = nn + np + n� + n�− , (15)

and we assume local charge neutrality,

np = ne + nμ + n�− . (16)

We assume that strong interaction processes such as

n + � ⇐⇒ p + �− (17)

are in equilibrium. It is important to note that this strong
interaction, though it conserves strangeness, changes the neu-
tron number. This means that choosing the neutron number
as the equilibrating quantity (as done in Refs. [27,28], for
instance) is misleading [25,47]. We will calculate the bulk
viscosity arising from the equilibration of the strangeness
fraction, which is given by xH = nH/nB with the hyperon
number nH = n�− + n� [30,32].

We are now left with four independent variables, the hy-
peron number nH , baryon number nB, and the electron and
muon fractions xe = ne/nB and xμ = nμ/nB. The continu-
ity equations for baryon, electron, and muon numbers are
given by

∂nB

∂t
− nB∇ · v = 0 , (18)

∂ne

∂t
− ne∇ · v = 0 , (19)

∂nμ

∂t
− nμ∇ · v = 0 . (20)

The hyperon number is not conserved but changes due to
weak interactions. We assume [27,28,30,32] that semileptonic
Urca-type processes [19] and purely leptonic processes [51]
are very slow compared to the density oscillation timescale,
so the electron and muon fractions never deviate from their
equilibrium values: δxe = δxμ = 0.

Additionally, we ignore processes that change the hyperon
number by more than one unit and assume that they are slow
compared to the ones that only change it by one unit. The
source terms in the hyperon evolution equation are due to
the four strangeness-changing processes in Eqs. (5). The four
reactions lead to source terms

�
i = λiδμi with i = I, . . . , IV , (21)

where �
 are the differences between the back and forward
rates 
 from Eq. (6) which try to re-establish chemical equi-
librium. We have assumed that the oscillation amplitude δn is
small enough so that δμi 
 T , corresponding to the subther-
mal regime, where the linear approximation is valid. Taking
into account that δμn + δμ� = δμp + δμ�− due to the strong
reaction from Eq. (17), we find that all processes equilibrate
the same chemical potential, δμI = δμII = δμIII = δμIV ≡
δμ, with

δμ = 2μn − μp − μ�− = μn − μ� . (22)

Therefore, the hyperonic evolution equation is given by

∂nH

∂t
− ∇ · (nHv) = 
I + 
II + 
III + 
IV . (23)
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The pressure P and the chemical imbalance δμ, which
are functions of nB, nH , xe, and xμ, can be expanded around
equilibrium as

P = P0 + δP , (24)

δP = ∂P

∂nB

∣∣∣∣∣
xe,xμ,nH ,T

δnB + ∂P

δnH

∣∣∣∣∣
xe,xμ,nB,T

δnH , (25)

and

δμ = ∂δμ

∂nB

∣∣∣∣∣
xe,xμ,nH ,T

δnB + ∂δμ

δnH

∣∣∣∣∣
xe,xμ,nB,T

δnH ,

where we used that δxe = δxμ = 0. Inserting the harmonic
density oscillation into the continuity equations yields

δnB = −nB

iω
∇ · v , (26)

δnH = − 1

iω
[nH∇ · v − λδμ] , (27)

where λ = λI + λII + λIII + λIV. By inserting the expression
for δμ into Eq. (27), we find

δnH = −∇ · v

iω

[
nH + λ

nB

iω

∂δμ

∂nB

](
1 + iλ

ωnB

∂δμ

δxH

)−1

. (28)

We now use Eq. (24), and Eqs. (28) and (26) for the pertur-
bations δnH and δnB, to compute P − P0, from which we can
obtain the (real part of) the bulk viscosity as the coefficient of
∇ · v,

Reζ = λ
∂P

∂xH

∂δμ

∂nB

[
ω2 + λ2

n2
B

(
∂δμ

∂xH

)2]−1

= nB

(
∂δμ

∂xH

)−1
∂δμ

∂nB

∂P

∂xH

γ

ω2 + γ 2
, (29)

where we have defined

γ = Bλ , (30)

with the susceptibility

B ≡ 1

nB

∂δμ

∂xH

∣∣∣∣∣
xe,xμ,nB,T

. (31)

The various derivatives with respect to the hyperon and baryon
number of the pressure and δμ are computed numerically
from the EOS by changing the hyperon or baryon number
while holding the other variables constant and solving the
RMF equations.

III. RESULTS AND DISCUSSION

A. Full phase-space calculation of rates

In Fig. 3, we present our calculation of the individual rates
for the processes I to IV in Eqs. (5) as a function of baryon
density at a temperature of T = 5 MeV, while we show the
sum of all processes in Fig. 4. The plot in Fig. 3 shows
the four individual rates computed numerically from Eq. (6).
After analytical simplifications, we carry out the remaining

FIG. 3. Individual rates of all four strangeness-changing pro-
cesses defined in Eqs. (5) at T = 5 MeV as a function of baryon
density normalized to saturation density n0 in the OME channel. Be-
low the hyperon onset at nB ≈ 1.85 n0, the rates drop quickly to zero
as the thermal population of hyperons becomes highly suppressed.
The individual rates grow roughly as T 3. Extrapolation using this
scaling is accurate to within 40% up to T = 50 MeV.

five dimensional integration using the CUBA library [55]. At
vanishing temperature, T = 0, there exists a critical minimal
density below which no hyperons are present. The actual
value of the critical density depends on the choice of equation
of state. For the PK1+H EOS that we are using, the onset
density for hyperons at T = 0 is nB ≈ 1.85 n0. At nonzero
temperature, there is a thermal population of hyperons at and
below this density. The thermal hyperon population increases
with temperature and decreases when the density is lowered
further. In this regime, the hyperon density is exponentially

FIG. 4. Net strangeness changing rate (processes I + II + III
+ IV) at T = 5 MeV (solid blue line) in comparison to the FS
approximation (black, dashed line labeled “OME FS approx;” see
Appendix C). We also show the contribution to the rate from the
contact interaction (black, dotted line), estimated using the FS ap-
proximation and the nonrelativistic limit [Eqs. (12) and (13)] . Rates
in the FS approximation are only defined above the hyperon density
threshold.
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FIG. 5. Comparison of the rate for process III for the PK1+H
EOS, which we use in in this work, and the GM1’B EOS (see Sec. II)
at T = 5 MeV. Above the hyperon onset density, the rates level out to
similar values, and below the onset they show the same exponential
suppression.

sensitive to temperature and density, so we observe that the
rates span many orders of magnitude. They are much less
sensitive at densities above the hyperon threshold. We also
observe that the rate of process IV is, especially at low den-
sities, suppressed compared to all other rates. This is because
this process involves three hyperons and only one nucleon,
and therefore has less phase space available. Furthermore, the
strong interaction in this case is mediated by kaon exchange
instead of pion exchange, so the interaction is suppressed by
the higher mass of the kaon mK in the meson propagator, even
at high densities where the density of � hyperons becomes
comparable to the neutron density (see Fig. 1).

It is interesting to compare these features with the GM1’B
EOS, which we have noted above is less convenient to deal
with than PK1+H but is more consistent with phenomeno-
logical constraints. In GM1’B, the zero-temperature hyperon
onset involves the � rather than the �− and occurs at a higher
density, nB = 2.39 n0. However, the rates for processes II, III,
and IV for the GM1’B EOS show very similar behavior to
PK1+H, just shifted to slightly higher densities. Process I,
since it involves the �−, only occurs at higher densities. As
an example, a direct comparison of the rates for process III
is shown in Fig. 5 for a temperature of T = 5 MeV. For our
purposes, the important points are the following: (1) above the
hyperon onset density, the rate is the same to within a factor
of 2 for both EOSes; and (2) below the onset density, the rates
drop off with the same exponential suppression (same slope).
As we will discuss in Sec. IV, this gives some indication that
the main conclusions that we draw from PK1+H will hold for
other hyperonic EOSes.

Figure 4 shows how our calculation compares to one that
uses the FS approximation and one that only includes contact
interactions. The figure shows the sum of the OME contribu-
tions to the rate for all four processes, 
 = 
I + 
II + 
III +

IV at T = 5 MeV as a function of baryon density (solid
blue line). For comparison, we show the same rate in the FS
approximation (labeled OME FS approx; the calculation is

described in Appendix C). Rates in the FS approximation are
only computed above the hyperon threshold, since the Fermi
momenta are not properly defined below that density.

At high densities, where the thermal blurring becomes
negligible compared to the Fermi momenta of the participat-
ing particles, the FS approximation works well for the OME
contribution. At T = 5 MeV, the FS approximation agrees
with the full phase space calculation within 50% at densi-
ties of nB � 3.5 n0. However, it completely fails below the
hyperon onset and overestimates the rate immediately above
the onset by up to an order of magnitude. Contrary to what
one might expect, the FS approximation in the OME channel
gives a faster rate than the full phase space integral, although
the latter receives contributions from all thermally accessible
states, not only from states close to the Fermi surface. This is
because further approximations in the energy integral tend to
overestimate the rate; see Appendix B of Ref. [56] for more
information. We conclude that at merger temperatures the FS
approximation is unreliable, so we perform full phase space
integrals to obtain all the results shown in the rest of this paper.

To estimate the magnitude of the rates in the contact in-
teraction channel, we compute the sum of process I and II
in the ultranonrelativistic limit, using the FS approximation;
see the paragraph below Eq. (13) for more details. Processes
III and IV are, as mentioned earlier, heavily suppressed in
the contact interaction channel and therefore neglected. The
result is plotted in Fig. 4 with a black, dotted line labeled
“contact interaction FS approx.” As noted in Sec. II B, includ-
ing relativistic corrections can enhance it by up to two orders
of magnitude, but the figure shows that it is still subleading
compared to the comparable (FS approximation) contribution
from OME. In the results presented in the rest of this paper,
we will therefore neglect the contributions of the contact in-
teraction channel.

B. Re-equilibration rates γ

The chemical re-equilibration rate γ , defined in Eq. (30),
depends on the strangeness-changing rates and the suscep-
tibility B, defined in Eq. (31), which is proportional to the
derivative of the chemical imbalance δμ with respect to
the hyperon fraction xH . We plot this susceptibility, for the
PK1+H EOS, in Fig. 6 as a function of baryon density for
temperatures from T = 3 to T = 50 MeV. As the density
drops below the hyperon onset at a baryon density of nB ≈
1.85 n0, the susceptibility shows an exponential increase. This
can be understood in terms of the exponential density depen-
dence of the thermal hyperon population (see Fig. 1). In this
regime, the size of δμ necessary to change the strangeness
by a given amount therefore also increases exponentially as
the baryon density drops through the hyperon onset region.
Above the hyperon onset, the strangeness fraction rises more
slowly with increasing density, which leads to a leveling of B.
For higher temperatures, the hyperon fraction and therefore
the susceptibilities behave more smoothly. Combining these
results with the rates shown in Fig. 3 allows us to compute
the re-equilibration rate γ , which we show in Fig. 7. The
opposite exponential density dependencies of the rates λ and
the susceptibility B turn out to balance each other, so the
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FIG. 6. Susceptibility B for the PK1+H EOS [defined in
Eq. (31)] as a function of baryon density at temperatures T =
3, 4, 5, 10, 25, 50 MeV, where the highest (blue solid) curve at
low densities corresponds to T = 3 MeV and smaller susceptibilities
correspond to higher temperatures. As the density drops below the
hyperon onset at nB ≈ 1.85 n0 (marked by the thin, black, dashed,
vertical line), the susceptibility shows an exponential increase, aris-
ing from the exponential suppression of the hyperon fraction in this
regime.

re-equilibration rates do not change significantly when den-
sities drop below the hyperon onset. The horizontal black
dotted line shows where the equilibration rate would match

FIG. 7. Re-equilibration rate γ defined in Eq. (30) for the
PK1+H EOS as a function of baryon density. The color coding
is identical to Fig. 6. All rates are obtained by evaluating the full
phase space integral for the OME matrix elements. The black, dotted,
horizontal line marks the optimal equilibration rate for maximal bulk
viscosity where it would match the external oscillation, γ = ω. The
exponential behavior of the rates from Fig. 4 balances that of the
susceptibility B from Fig. 6, leading to nearly density-independent
re-equilibration rates γ . Therefore, the rates are, even at lower
temperatures, too fast to match the external oscillation. Only at
temperatures in the keV regime, γ matches ω; see the gray, dashed
line where we show γ for a temperature of 4.5 keV computed from
the EOS at T = 0 using the FS approximation for the rates.

the external frequency ω, which is where the bulk viscosity
would reach its resonant maximum. In all our calculations,
we assume an external oscillation frequency of ω = 2π kHz,
which is typical for the high-amplitude density oscillations
that occur immediately after the merger [17].

For densities above saturation density (below which nu-
clear matter might not be uniform [57]), and temperatures
down to about 2 MeV, the equilibration rate remains far above
the external oscillation frequency. This leads us to expect
that at the typical densities and temperatures of nuclear mat-
ter in neutron star mergers the hyperonic bulk viscosity and
the resultant attenuation of density oscillations will not be
significant. We also performed calculations at much lower
temperatures (gray dashed lines), where the FS approxima-
tion for the OME interaction yields rather accurate results.
Our calculations neglected hyperon and nuclear superflu-
idity which might become important at these temperatures
[26,58,59]. In this regime, the difference between the hyper-
onic rates out of equilibrium can be computed by calculating
the rate from Eq. (C3) while linearizing I (ξ ) for small ξ ; see
Ref. [28]. We computed the susceptibilities from the PK1+H
EOS at T = 0 and found that the bulk viscosity for 1-kHz
oscillations reaches a resonant maximum (neglecting super-
fluidity) at T ≈ 4 keV, which is in agreement with the findings
of Ref. [32]. We show this in Figs. 7 and 8 with a gray,
dashed line. The kink in the re-equilibration rate arises from
the sudden onset of the � hyperon at nB ≈ 2.2 n0 and is less
pronounced in the higher temperature calculation, where the
thermal population of hyperons blurs the onset.

C. Bulk viscosity and dissipation times

In Fig. 8, we show the bulk viscosity as a function of den-
sity at various temperatures. The solid, colored lines are from
Eq. (29). We calculated the OME contribution to the equi-
libration rate by numerically evaluating the full phase space
integral Eq. (6). We cover baryon densities nB ∈ [1.4 n0, 4 n0]
and temperatures ranging from T = 2 MeV to T = 50 MeV.
The vertical dashed line indicates the density at which
hyperons would first appear when the temperature is zero.
The various colored lines correspond to the temperatures of
2, 5, 10, 25, and 50 MeV.

At all densities for these temperatures, we observe a low
bulk viscosity compared to the bulk viscosity obtained from
nuclear semileptonic processes [19]. Above the hyperon on-
set, bulk viscosity decreases with temperature. The largest
bulk viscosity is therefore obtained at the lowest shown tem-
perature, T = 2 MeV. This is because the equilibration rate
is always too fast (faster than the typical density oscillation
frequency ≈1 kHz), so to increase the bulk viscosity one
must decrease the equilibration rate, e.g., by reducing the
temperature or density. As the density is lowered below the
hyperon onset, bulk viscosity drops off much more quickly for
smaller temperatures, since the thermal population decreases
more rapidly. For high temperatures, in the tens of MeV,
bulk viscosity only drops slowly with decreasing density, even
below the T = 0 hyperon onset. Therefore, the bulk viscosity
for densities below the onset is larger for higher temperatures.
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FIG. 8. Solid lines show the bulk viscosity as function of baryon
density at temperatures of T = 2, 5, 10, 25, 50 MeV for the finite
temperature PK1+H EOS computed from the full phase space in-
tegral. Above the hyperon onset, the bulk viscosity decreases with
temperature, since even for T = 2 MeV the re-equilibration rate,
which generally further increases with temperature, is too fast to
match the external frequency (see Fig. 7). Below the hyperon onset
(marked by a black dashed vertical line), the bulk viscosity drops
more drastically for low temperatures due to the faster decrease of the
hyperon fraction. For temperatures of 2 MeV or below, the rates and
susceptibilities cannot be computed reliably below the hyperon onset
because of the small hyperon fraction. At temperatures of over 20
MeV, bulk viscosity is completely smooth due to the higher thermal
hyperon population. The dashed lines show the bulk viscosity for
T = 0.5 MeV and T = 4.5 keV. At temperatures of a few keV, the
re-equilibration time and the external oscillation match, leading to a
maximal bulk viscosity. The kink at nB ≈ 2.2 n0 is a result of the �

onset.

In order to achieve a resonant match between the equili-
bration rate and the assumed density oscillation frequency of
1 kHz, we would have to extend our results down to tempera-
tures in the keV range. In this regime, nucleonic-hyperonic
superfluidity may become important, but to get a lower
limit on the resonant temperature we can neglect superflu-
idity, compute the susceptibilities from the zero-temperature
PK1+H EOS, and calculate the rates in the FS approximation.
We find that bulk viscosity peaks, for a given density above
the hyperon onset, at temperatures around 4 keV, which is
in agreement with Ref. [32]. We show these results in Fig. 8
using dashed, gray lines. The kink in the bulk viscosity is
a result of the onset of the � hyperon at a baryon density
of nB ≈ 2.2 n0 and is more pronounced for smaller temper-
atures, where few thermal hyperons are present. If we took
superfluidity into account, this would exponentially suppress
the strangeness changing rates at temperatures below the su-
perfluid critical temperature Tc, so the resonant temperature
would rise to a value closer to Tc [30,47].

For oscillations in mergers, one important measure of the
importance of bulk viscosity is the dissipation time τdiss,
which quantifies how quickly a density oscillation of a fluid

FIG. 9. Density and temperature dependence of the dissipation
time for density oscillations, using the PK1+H EOS. Within the
1-ms contour, the shortest dissipation time occurs at a temperature of
T = 4 keV, where the re-equilibration time γ matches the external
frequency ω, leading to maximal bulk viscosity. For lower tempera-
tures, the re-equilibration rate is slower than the external oscillation,
whereas for higher temperatures the rates are too fast.

element is damped. Following Refs. [19,60,61],

τdiss ≡ ε

dε/dt
= κ−1

S

ω2ζ
, (32)

where ε is the energy carried by an oscillation in baryon
density with frequency ω and amplitude δn,

ε = κ−1
S

2

(
δn

nB

)2

, (33)

where

κ−1
S = nB

∂P

∂nB

∣∣∣∣∣
T,xH ,xe,xμ

, (34)

and κS is the incompressibility. The dissipation times we com-
pute from the bulk viscosity for typical merger temperatures
in the MeV range is on the scale of seconds and above.
Dissipation times at and around the resonant temperature of
a few keV are considerably shorter, as can be seen in Fig. 9,
which shows a contour plot of the dissipation time in the
plane of baryon density and temperature. In this plot, the
resonant nature of the bulk viscosity is clearly visible: At a
given density, the re-equilibration rate for temperatures below
1 keV is too slow to match the external frequency, leading to
a smaller bulk viscosity and longer dissipation times. Raising
the temperature leads to a resonant maximum of the bulk vis-
cosity and a corresponding minimum of the dissipation times,
then at higher temperatures the rates become too fast and
the dissipation times rise again. The density dependence of
the dissipation time is much weaker than the T 3 temperature
dependence of the rates 
.
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IV. CONCLUSIONS

In this paper, we have presented a calculation of hyperonic
bulk viscosity and the resultant dissipation time for density
oscillations in the range of densities and temperatures that
are expected to exist in binary neutron star mergers. For this
purpose, we used the PK1+H EOS, whose maximum neutron
star mass is at the edge of compatibility with observations, but
we checked that comparable results for a typical strangeness-
changing rate are obtained for the GM1’B EOS. This indicates
that our main result, that the strangeness-changing rates are
much too fast to match the typical frequency of the external
oscillations in a merger, so the hyperonic bulk viscosity is
small compared to its nuclear counterpart in the MeV tem-
perature range, is likely to be a general feature of hyperonic
equations of state.

We calculated hyperonic equilibration rates by evaluating
the one-meson exchange contribution, which, as first dis-
cussed in Ref. [28], is the dominant channel in all of the
studied parameter space.

Previous studies of hyperonic bulk viscosity used the Fermi
surface approximation, since they were concerned with tem-
peratures in the keV range. The typical temperature in mergers
is in the MeV range, which is high enough to invalidate the
FS approximation. We therefore numerically evaluate the full
phase space integral for the rates. This allows us to study the
behavior of the system at densities below the zero-temperature
hyperon onset, where there is only a thermal population of
hyperons and the Fermi surface is not well defined. We find
that at temperatures T � 1 MeV the hyperonic bulk vis-
cosity for kHz density oscillations is always much smaller
than its nuclear counterpart [19,21]. This is because the β

re-equilibration rate is always too fast to match an external
frequency oscillation of ω ≈ 2π kHz.

Consequently, it seems that hyperonic bulk viscosity is
not a significant source of damping of density oscillations in
neutron star mergers.

In future work on viscosity, the influence of large-
amplitude oscillations and magnetic fields on the hyperon
bulk viscosity could be studied. Above a temperature of
roughly 5 MeV, neutrino trapping, which plays a less dom-
inant role for the nonleptonic processes we studied in this
paper, would likely become important, so semileptonic β

equilibration processes with neutrinos in the initial state
should be investigated.

Finally, we note that hyperonic decays might play an
important role in other transport phenomena, like radiative
dissipation [35] or phase conversion dissipation [36].
The rate calculations presented in this paper are a
necessary step toward extending these calculations to
the higher temperatures that occur in mergers. We also
computed the dissipation times at keV temperatures,
where the bulk viscosity reaches its resonant maximum.
For temperatures around T ≈ 4 keV, we find dissipation
times of a few ms. This suggests that hyperonic bulk
viscosity might play an important role in the damping of
induced oscillations in highly eccentric neutron star mergers,
where temperatures are much lower than in the postmerger
phase.
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APPENDIX A: FEYNMAN AND QUARKFLOW DIAGRAMS

In this Appendix, we present the Feynman diagrams and
the corresponding quark flow diagrams for three of the four
strangeness-changing processes we take into account; see
Eqs. (5). Process I is depicted in the main part of this pub-
lication; see Fig. 2. For the computation of the matrix element
in Eq. (7), a second Feynman diagram with the initial baryons
exchanged has to be subtracted. Only for process II (see Figs.
10 and 11) does this lead to a nontrivial change, since in all

FIG. 10. Feynman- and quark-flow diagram for process II, n +
p → p + �, in the OME channel [panels (a) and (b)] and the contact
interaction channel [panel (c)].
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FIG. 11. Feynman- and quark-flow diagram for process II, n +
p → p + �, in the OME channel [panels (a) and (b)] and the con-
tact interaction channel [panel (c)], both with the initial nucleons
exchanged.

other cases the initial particles are identical. In these trivial
cases, we do not draw the second Feynman and quark flow
diagram.

FIG. 12. Feynman- and quark-flow diagram for process III, n +
n → n + � in the OME channel. The corresponding contact interac-
tion channel would be mediated by neutral Z-boson exchange and is
therefore suppressed by the GIM mechanism. For the calculation of
the OME matrix element, a diagram with the two incoming neutrons
exchanged has to be subtracted from the depicted one.

For processes I and II, we additionally show the diagrams
for the same process in the contact interaction channel, where
the baryons directly exchange a charged W boson. These
diagrams are the basis for the matrix elements in Eqs. (12)
and (13). The corresponding diagrams for process III and IV
are depicted in Figs. 12 and 13.

APPENDIX B: NUMERICAL PARAMETERS AND
COUPLING CONSTANTS

In this Appendix, we collect all numerical parameters and
coupling constants from the EOS [Eq. (1)] and the Feynman

TABLE I. Numerical parameters for the nuclear part and the hyperonic extension of the PK1+H equation of state. The nuclear EOS and
all parameters are taken from Ref. [49]. The meson-nucleon Yukawa couplings are identical for neutron and proton, i.e., gσN ≡ gσn = gσ p etc.
All masses are given in MeV.

Mn = 939.5731 Mp = 938.2796 mσ = 514.0891
mω = 784.254 mρ = 763 gσN = 10.3222

gωN = 13.0131 gρN = 4.5297 g2 = −8.1688 [fm−1]
g3 = −9.9976 c3 = 55.636 me = 0
mμ = 106 mπ = 134.976 mK = 497.611
M� = 1115 M�− = 1197 gσ� = 0.642 gσN

gσ�− = 0.453 gσN gω� = 0.66 gωN gω�− = 0.66 gωN

gρ� = 0 gρ�− = −2 gρN
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FIG. 13. Feynman- and quark-flow diagram for process IV, � +
� → � + n in the OME channel. The corresponding contact inter-
action channel is suppressed due to the GIM mechanism. For the
calculation of the OME matrix element, a diagram with the two
incoming hyperons exchanged has to be subtracted from the depicted
one.

diagrams in Fig. 2 and present them in Table I, and Ap-
pendix A (see Table II and III).

APPENDIX C: FERMI SURFACE APPROXIMATION

In this Appendix, we derive the Fermi surface approxima-
tion for the rates defined in Eq. (6). At low temperatures, the
Fermi spheres are sharply defined and only particles close to
the Fermi surface can participate in the processes given in

TABLE II. Coupling constants for the matrix element in the
OME channel taken from Refs. [28,32]. The kaon couplings were
originally published in Refs. [62,63]. The vertices are defined in
Eq. (9).

Vertex gi j Ai j Bi j

ppπ 13.3
npπ 13.3

√
2

nnπ −13.3
�nπ −1.07 −7.19
�pπ 1.46 9.95
�−nπ 1.93 −0.63
�nK −14.1
�KK 0.67 −12.72

TABLE III. Coupling constants for the matrix element in the
contact interaction channel taken from Refs. [27,28].

cnp
A cp�

A cn�−
A sin2(2θc )

−1.26 −0.72 0.34 0.18742

Eqs. (5). In this case, we can simplify the full phase space
integral from Eq. (6) by using the FS approximation: We fix all
the momentum magnitudes to their respective Fermi momenta
and split the integral into angular and energy contributions.
The FS approximation can be applied to the OME and contact-
interaction contributions. For details on the FS approximation,
see Refs. [64,65]. The validity of this approximation depends
on the temperature and the density. Whereas in cold neutron
stars with temperatures in the keV range this approximation
is certainly valid, we can observe noticeable deviations from
the FS approximation at temperatures in the MeV range,
especially at densities close to the hyperon threshold. For
a momentum-independent matrix element, like the contact
interaction channel matrix element in the ultranonrelativistic
approximation, the rate is


12→34 = T 3|M1234|2
(2π )523S

I (ξ )Q(4) , (C1)

where

I (ξ ) = eξ

eξ − 1

4π2ξ + ξ 3

6
, (C2)

and the squared matrix element |M1234|2 comes from Eqs. (12)
and (13), the symmetry factor S and where ξ ≡ δμ/T , and
δμ is the chemical potential that measures the deviation from
chemical equilibrium [Eq. (22)]. Q(4) depends on the relations
of the various Fermi momenta and is defined in Table 1 of
Ref. [65].1 For the full momentum-dependent matrix element
from Fig. 2, the rate in the FS approximation is


12→34

= M∗
1 M∗

2 M∗
3 M∗

4

S(2π )824
pF4T 3I (ξ )

∫ 2π

0
dϕ

∫ s+

s−
ds

× k+
1 |M1234|2(k+

1 )θ (r2
+−1) + k−

1 |M1234|2(k−
1 )θ (r2

+−1)√
p2

F2 − (1 − s2)p2
F4

,

(C3)

where pFi is the Fermi momentum of the ith particle in
Fig. 2, with momentum transfers k1 = p1 − p3 and k2 =
p4 − p2. Energy-momentum conservation demands that the
moduli of the momentum transfer vectors are equal, k1 = k2.
Furthermore, the δ distribution has two zeros, which lead to

1In Ref. [65], the baryons are ordered by the magnitude of their
Fermi momenta.
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the two separate contributions to the rate integral with the
modulus for k1 (and therefore k2) given by k±

1 = pF4s ±√
p2

F4(s2 − 1) + p2
F2, and θ being the Heaviside function of

r± = (p2
F1 − k±2

1 − p2
F3)/(2k±

1 pF3). The angles ϕ and s =
cos θ are the azimuthal and polar angles between p4 and
k1. The integration boundaries for s ∈ [−1, 1] have to be

chosen such that k±
1 is real and positive. |M|21234(k±

1 ) is the
spin summed, squared matrix element evaluated on the Fermi
surface, i.e., |p3| = pF3, |p4| = pF4, and |k1| = |k2| = k±

1 .
Energy momentum conservation sets the polar angle cos θ3 ≡
r between k1 and p3 to r = r± defined above. Note that in
chemical equilibrium, ξ = 0 and limξ→0 I (ξ ) = 2π2/3. The
remaining integrals are evaluated numerically.
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