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Limiting masses and radii of neutron stars and their implications
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We combine the equation of state of dense matter up to twice nuclear saturation density nsat obtained
using chiral effective field theory (χEFT) and recent observations of neutron stars to gain insights about the
high-density matter encountered in their cores. A key element in our study is the recent Bayesian analysis of
correlated EFT truncation errors based on order-by-order calculations up to next-to-next-to-next-to-leading order
in the χEFT expansion. We refine the bounds on the maximum mass imposed by causality at high densities and
provide stringent limits on the maximum and minimum radii of ∼1.4 M� and ∼2.0 M� stars. Including χEFT
predictions from nsat to 2 nsat reduces the permitted ranges of the radius of a 1.4 M� star, R1.4, by ∼3.5 km. If
observations indicate R1.4 < 11.2 km, then our study implies that either the squared speed of sound c2

s > 1/2 for
densities above 2 nsat or that χEFT breaks down below 2 nsat . We also comment on the nature of the secondary
compact object in GW190814 with mass � 2.6 M� and discuss the implications of massive neutron stars
>2.1 M� (2.6 M�) in future radio and gravitational-wave searches. Some form of strongly interacting matter
with c2

s > 0.35 (0.55) must be realized in the cores of such massive neutron stars. In the absence of phase
transitions below 2 nsat , the small tidal deformability inferred from GW170817 lends support for the relatively
small pressure predicted by χEFT for the baryon density nB in the range 1–2 nsat . Together they imply that the
rapid stiffening required to support a high maximum mass should occur only when nB � 1.5–1.8 nsat .
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I. INTRODUCTION

The maximum mass, Mmax, and radii of neutron stars (NSs)
are related to each other by the equation of state (EOS) of
dense matter and both can be accessed by observations. Pri-
mary constraints on Mmax come from observations and have
a number of astronomical and physical implications. Mmax is
predominately determined by the EOS at densities higher than
three times nuclear saturation density, nsat � 0.16 fm−3 [1],
and is therefore a probe of the nature of high-density matter.
Pinning down Mmax enables the exploration of the phases of
cold and dense matter in the strongly coupled region of quan-
tum chromodynamics (QCD) as well as the determination of
the pressure vs energy density relation (or the EOS) of such
phases. The radii of canonical NSs with masses �1.4 M�,
however, are largely determined by the EOS at densities less
than 3 nsat [2].
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Mmax also fixes the minimum mass of a stellar mass O(M�)
black hole (BH). It is therefore a crucial factor in determining
the final fate of core-collapse supernovae and binary neu-
tron star (BNS) mergers. In core-collapse supernovae, the
formation of a BH will depend on the amount of fall-back
matter and will be sensitive to the nature of the progen-
itor and neutrino emission after the initial formation of a
proto-neutron star. In BNS mergers, the formation of a BH
depends on the total inspiralling mass, mass ejection, and
the extent of rotational and magnetohydrodynamic support
[3,4]. Now that at least a few mergers involving NS have
been detected through gravitational-wave (GW) radiation, and
many more are anticipated in the near future, improved con-
straints on Mmax will become available. As the high-frequency
capabilities of GW detectors are improved, the detection of
post-merger radiation will profoundly influence our knowl-
edge of Mmax. Already, knowledge of Mmax would determine
the nature of the components of the recently observed mergers
GW190425 and GW190814, both of which show indications
of having a component with a mass larger than 2 M� that
either could be a heavy NS or a light BH. If concomitant
electromagnetic (EM) signals are also detected from future
GW events, as they were in the BNS merger GW170817
[5–7], then additional information about Mmax becomes
available [3,4].
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On the theoretical front, Mmax plays a crucial role in deter-
mining both the minimum and maximum radius as a function
of the NS mass M. Therefore, besides the important con-
tributions from radio and x-ray binary pulsar observations
that have accurately measured several NS masses and pro-
vided a lower bound Mmax � 2 M� [8–13], GW and x-ray
data that can simultaneously determine NS masses and radii
offer important constraints. So far, the radii inferred from
x-ray observations (see Ref. [14] for a review) of quiescent
low-mass x-ray binaries (QLMXBs) [15], photospheric ra-
dius expansion bursts (PREs) [16], and pulse-profiles from
rotation-powered millisecond pulsars [17], together with the
first GW detection of the BNS merger GW170817 [5,6],
have mostly been of NSs with canonical masses around
1.4 M�. Consequently, the Neutron Star Interior Composition
ExploreR (NICER) proposal [18] to measure the radii of rel-
atively massive NSs such as PSR J1614-2230 (M � 1.91 M�
[8,10,11]) and PSR J0740+6620 (M � 2.14 M� [12]) is of
considerable interest. The same is true of future radio obser-
vations using the Square Kilometre Array (SKA) telescope
[19], etc. from binary pulsars that could reveal even more
massive NSs.

The purpose of this paper is to explore the interplay
between Mmax and NS radii and to confront theoretical ex-
pectations with currently available observational constraints.
An earlier study [2] showed that the radii of �1.4 M� NSs
are strongly correlated with the pressure of matter in the
density range 1 − 3 nsat. In the important regime �2 nsat,
chiral effective field theory (χEFT) with pion and nucleon
degrees of freedom [20–23] has become the dominant mi-
croscopic approach to describing nuclear interactions. χEFT
has enabled significant progress in predicting the EOS of
infinite nuclear matter and the structure of neutron stars with
quantifiable theoretical uncertainties (see Refs. [24–27] for
recent reviews). An important step toward the full uncertainty
quantification of the EOS has been achieved recently. The
Bayesian Uncertainty Quantification: Errors in Your EFT
(BUQEYE) collaboration [28] has introduced a Bayesian
framework [29,30] for quantifying and propagating correlated
EFT truncation errors in infinite-matter calculations using
Gaussian processes (GPs). They also conducted a statisti-
cal analysis of the zero-temperature EOS based on χEFT
nucleon-nucleon (NN) and three-nucleon (3N) interactions
and inferred posterior distributions for nuclear saturation
properties as well as key quantities for neutron stars, includ-
ing the nuclear symmetry energy and its density dependence.
This study was motivated by recent advances in many-body
perturbation theory (MBPT) [31] that have enabled improved
χEFT predictions of the pure neutron matter (PNM) EOS and
first order-by-order calculations in symmetric nuclear matter
(SNM) up to next-to-next-to-next-to-leading order (N3LO) in
the chiral expansion [29,31,32].

In this paper, we use BUQEYE’s analysis of the EOS in
the limits of PNM and SNM at baryon densities nB � 2 nsat to
construct the EOS of charge neutral and β-stable neutron-star
matter (NSM). This is coupled to a standard NS crust for
nB � 0.5 nsat and extrapolations for nB � 2.0 nsat to assess the
overall impact on NS structure. One goal of this study is to
address quantitatively the extent to which EOS knowledge

at ∼2.0 nsat can inform us about the NS maximum mass,
and how it can be combined with observations of massive
NSs to constrain the properties of matter encountered at the
highest densities in their cores. Another goal is to derive
model-independent bounds on the radii of NSs with masses
in the range 1 − 2 M�.

As the squared speed of sound c2
s reflects the stiffness

of the EOS, we probe both maximum and minimum radius
bounds by matching the N3LO results, including possible
extrapolations up to 3 nsat, with a constant sound speed beyond
a matching density nm. The existence of nuclei, observations
of accreting NSs that implicate the presence of neutron-rich
nuclei in the NS crust, and heavy ion collisions (HICs) at inter-
mediate energies together provide compelling circumstantial
evidence to indicate that nm > nsat, and in this work we con-
sider nm = 1–3 nsat. The use of the maximally stiff EOS with
c2

s = 1 (the causal limit) for nB > nm establishes firm upper
bounds both on Mmax and the radius as a function of mass.
In addition, we also consider energy density discontinuities at
nm to refine minimum bounds on radii as functions of mass
for specified values of Mmax. We also explore models with
smaller c2

s at high density to ascertain maximum possible
sound speeds from values of Mmax and mass-radius (M-R)
observations.

The discovery of a massive secondary compact object with
mass ∼2.6 M� through GW observations of the binary merger
GW190814 generated a flurry of articles addressing if this ob-
ject can be a NS, and, if so, its possible implications [33–40].
Our results complement earlier studies, but go beyond in
several aspects. Most significantly,

(i) we consistently include statistically meaningful EFT
truncation errors in the EOS of NSM up to N3LO,
and determine its range of applicability, to provide a
framework for constraining Mmax and NS radii,

(ii) we identify correlations of NS radii and tidal de-
formabilities with Mmax, together with their possible
implications for the EOS at nB � 2 nsat, and

(iii) we show how these correlations and future observa-
tions can tighten current bounds on NS masses and
radii.

This paper is organized as follows. Section II contains
details of the various EOSs used along with the rationale
for their choice. Our results and their discussion in light
of the current observational constraints and possible future
findings are presented in Sec. III. An overall discussion and
comparison with pertinent recent works are contained in
Sec. IV. Our concluding remarks are given in Sec. V. Ap-
pendix A examines the most conservative bounds and the
scaling relations for the masses and radii of NSs imposed by
causality. The current shortcomings and prognosis for future
improvements to χEFT are discussed in Appendix B. Ap-
pendix C quantifies the density ranges for which R1.4 and
R2.0, the radii of 1.4 M� and 2.0 M� stars, respectively, and
the neutron star maximum mass Mmax are most sensitive.
We use natural units in which h̄ = c = 1 unless explicitly
specified.
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II. CONSTRUCTION OF THE EOS

A. General considerations

Since the pressure-energy density relation, which we call
the EOS, completely determines the neutron star M-R rela-
tion through the general relativistic TOV equations, bounds
of the allowed M-R space are determined by assumptions
concerning the EOS. From the perspective of this paper, the
three most important regions for the EOS of a NS are the
crust, outer core, and inner core. The EOS up to the outer
core-crust boundary at ncc ≈ 0.5 nsat is generally considered
to be well-understood [41,42]. Because nucleons contribute
�10% to the crust pressure, uncertainties in the NN potential
only weakly propagate into the crust EOS. The proton fraction
x in the uniform nucleonic matter at densities higher than ncc

in the outer core is relatively small, so that the EOS in the
vicinity of nsat is dominated by that of PNM. The admixture
of protons and leptons produces small corrections, which are
effectively minimized because of the requirement that NSM
be in β equilibrium; that is, the total energy is minimized with
respect to x.

A causal maximum radius bound Rmax,c(M ), as detailed in
Appendix A, can be obtained by assuming a causal EOS at
densities greater than that of a fiducial density n0, generally
greater than that of the core-crust boundary, while below n0,
the pressure and energy density are taken to be zero. Rmax,c

will depend on the values of the associated fiducial energy
density, ε0. This calculation explicitly ignores the existence of
a crust. Appendix A also highlights the important role Mmax

plays in determining bounds on the radii of neutron stars. In
the extreme case, in which only causality is assumed with the
EOS ε = ε0 + P, absolute upper bounds on Mmax � 4.09 M�
and RMmax � 17.1 km exist as long as ε0 > εsat [see Eqs. (A4)
and (A5)]. Firm lower bounds on Rmin(M ) and RMmax that scale
with Mmax can also be established. For the case that Mmax =
2.0 M�, Rmin(1.4 M�) = 8.2 km and RMmax = 8.4 km.

However, there are no observations that indicate the ab-
sence of a crust. More realistic bounds to the allowed M-R
space (as well as for other relations such as M-� for the tidal
deformability or M-Ī for the moment of inertia) are obtained
by including the presence of the neutron star crust and also
imposing theoretical limits to the properties of neutron-rich
matter in the outer core up to a matching density nm, with
associated energy density εm and pressure Pm (which replace
ε0 and P0 = 0, respectively). Above the matching density, in
now what is effectively the inner core, a constant sound speed
EOS is assumed, and the maximum radius bounds occur when
this sound speed is the speed of light.

Initially, we will explore radius bounds assuming the va-
lidity of theoretical studies up to the transition density nm =
2.0 nsat and imposing the causal EOS at higher densities. If
the causal EOS is imposed exactly at nm, then one obtains
maximum radius contours Rmax(M ) and the greatest value
for Mmax. The artificial introduction of a first-order phase
transition between the two densities nm and nu > nm with the
imposition of the causal EOS for nB > nu, however, results
in a smaller value of Mmax but a minimum radius contour
Rmin(M ) unique to that Mmax (or nu). We will also explore how
Rmin and Rmax change if the value of nm is changed, or if the

EOS above nm or nu is assumed to have a subluminal sound
speed.

B. The EOS of the outer core

To construct the EOS of charge-neutral, β-equilibrated
NSM in the outer core between ncc and ∼2.0 nsat, we use the
standard approximation of keeping only the quadratic term in
the nuclear energy expanded in the isospin asymmetry param-
eter β = 1 − 2x, where x = np/nB is the proton fraction, and
np the proton density. The total energy per baryon of NSM is
then

ENSM = EPNM(1 − 2x)2 + ESNM 4x(1 − x) + Ee + Eμ, (1)

where EPNM and ESNM (Ee and Eμ) are the energies per baryon
of PNM and SNM (electrons and muons), respectively. Mi-
croscopic calculations of asymmetric matter based on chiral
NN and 3N interactions at nB � nsat have confirmed that the
quadratic expansion Eq. (1) is a reasonable approximation of
the full isospin dependence of the EOS [43–47]. β equilibrium
follows then from the condition that the total charge-neutral
energy be minimized with respect to x, i.e.,

∂ENSM

∂x
= 0, (2)

or in terms of the associated chemical potentials

μn − μp = 4Esym(1 − 2x) = μe = μμ. (3)

Using the Jupyter notebooks [28] provided by the BUQ-
EYE collaboration we extract the mean values, standard
deviations (encoding the EFT truncation errors), and corre-
lation information of the energy per particle, pressure and
speed of sound in PNM and SNM, and also the symmetry
energy. These data sets form the microscopic input of our
interpolation to NSM.

Specifically, BUQEYE’s EFT truncation error analysis
[29,30] is based on recent order-by-order MBPT calculations
in PNM and SNM with chiral NN and 3N interactions up
to N3LO [29,31,32]. More details on the underlying nuclear
interactions can be found in Appendix B. The range in density
covers nB = 0.05–0.34 fm−3. These calculations significantly
improved previous MBPT studies in PNM at N3LO [48–50],
and assessed, for the first time, the SNM EOS with NN and
3N interactions order-by-order up to N3LO. The high-order
MBPT calculations were performed by the novel Monte Carlo
framework introduced in Ref. [31], which enables MBPT cal-
culations of the EOS with controlled many-body uncertainties
for these χEFT interactions. The statistical analysis indicates
that the EFT truncation error is strongly correlated. In other
words, perturbing the EOS at one point in the density (or
the proton fraction) perturbs neighboring points as well. In
general, the range of these correlations, called the correlation
length, depends on the density and the underlying nuclear
interactions. Chiral 3N forces make for important contribu-
tions to the EOS in PNM and SNM at nB � nsat, and typically
have a markedly different density-dependence than NN con-
tributions. The correlation lengths inferred are comparable to
the kF associated with nsat in PNM and SNM, respectively.
Without including these correlations, uncertainties in derived
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quantities of the EOS, such as the nuclear symmetry energy,
can be overestimated.

Our approach considers correlations between the EOSs in
PNM and SNM explicitly, neglecting correlations in density.1

The extracted observables are then given by independent nor-
mal distributions sampled on a fine grid in density using the
GPs; e.g.,

EPNM ∼ N (
μPNM, σ 2

PNM

)
, (4)

ESNM ∼ N (
μSNM, σ 2

SNM

)
. (5)

The nuclear symmetry energy is defined as

Esym = EPNM − ESNM ∼ N (
μNSM, σ 2

NSM

)
, (6)

and, hence, has mean and variance (see, e.g., Ref. [51]):

μsym = μPNM − μSNM, (7)

σ 2
sym = σ 2

PNM + σ 2
SNM − 2ρσPNMσSNM, (8)

where ρ is the correlation coefficient between the energies
per particle in PNM and SNM. For subsequent discussion,
we introduce here also the usual parameters Sv and L in the
density expansion of the nuclear symmetry energy Eq. (6),

Esym = Sv + L

3

(
nB − nsat

nsat

)
+ · · · . (9)

The correlation between the coefficients in the χEFT ex-
pansions for the PNM and SNM energy per particle was
quantified to be ρ∗ = 0.934, corresponding to very strong
correlations [52,53]. A detailed discussion can be found in
Sec. IV A of Ref. [30]. We have checked that ρ � ρ∗ by
comparing Esym against the values obtained in Ref. [30]:
the maximum deviation between the mean values of two
approaches is 37 keV (340 keV for its ±1σ bounds) at the
highest density, nB = 0.34 fm−3, which is negligible com-
pared to the overall EFT truncation error at that density.

We also found that numerical integration of the pressure of
PNM and SNM agreed well with the energy found in the GP
approach, the maximum deviation of the mean values being 3
and 1 keV for PNM and SNM, respectively (290 and 500 keV
for their respective ±1σ bounds), at the highest density. There
are mainly two related reasons why finite differencing for the
pressure, discrete integration for the energy, and subtraction
for the symmetry energy, works so well. First, the correlation
length of the EOS is much longer than the length scale used
for finite differencing. That means numerical differentiation
follows closely the curves μ ± σ , which are two realizations
of the underlying GP. Second, the raw EOS data has already
been preprocessed by BUQEYE’s truncation error model. Nu-
merical noise from the many-body method has been smoothed
out, and the EOS has been sampled on a fine grid in density
using the GP interpolant. This underlines that GP interpolants

1Such correlations could be implemented in future work by directly
sampling from the GPs, which the BUQEYE collaboration uses to
model the correlated EFT truncation errors.

are efficient tools for analyzing χEFT calculations of the
EOS.

Propagating the EFT uncertainties to ENSM associated with
Eq. (1) is straightforward because of the condition (2). We
obtain

σ 2
ENSM

=
(

∂ENSM

∂EPNM

)2

σ 2
EPNM

+
(

∂ENSM

∂ESNM

)2

σ 2
ESNM

+ 2ρ
∂ENSM

∂EPNM

∂ENSM

∂ESNM
σEPNMσESNM , (10)

with the derivatives ∂ENSM/∂EPNM = (1 − 2x)2 and
∂ENSM/∂ESNM = 4x(1 − x).

Figure 1(a) shows the pressure of NSM (including con-
tributions from the leptons) PNSM = n2

B(dENSM/dnB) in the
outer core. The blue (orange) uncertainty band corresponds to
the N3LO (N2LO) results at the 1σ level. Figure 1(b) displays
the difference in pressures between PNM and NSM. The zero
crossings indicate where the pressure of NSM equals that of
PNM. Depending on the chiral order, these crossings occur
at n ≈ 1.6–2.1 nsat. They are due to a softening of Esym at
the higher densities; nevertheless, ENSM is always less than
that of EPNM. In no case does x exceed about 0.055 for nB �
0.34 fm−3.

III. RESULTS

A. Minimum and maximum radius bounds
with χEFT and causality

Earlier work has shown that canonical-mass (1.1–1.7 M�)
neutron star radii are most sensitive to the EOS in the den-
sity interval 1.5–3.0 nsat [2], and this is further quantified in
Appendix C.2 As a result, calculations up to �2.0 nsat are ade-
quate to place stringent bounds on the NS radius [1,54,55]. We
assume a typical crust EOS [41,42] below 0.5 nsat, the EOS
for NSM based on MBPT-χEFT calculations [30] in the outer
core, and a matching linear EOS P(ε) = Pm + c2

s (ε − εm )
characterized by c2

s in the inner core.
Figure 2(a) shows the M-R relation for N3LO-NSM,

N2LO-NSM outer core EOSs in Fig. 1(a) matched at nm =
2.0 nsat to the stiffest linear EOS (c2

s = 1); the solid colored
curves refer to the central values and the color-shaded bands
refer to ±1σ uncertainties in the MBPT-χEFT calculations.
Results for matching at a lower density nm = 1.5 nsat are
shown in Fig. 2(b). As expected, for a given value of nm, the
largest radii result from the largest matching pressure Pm, and
thus N2LO +1σ ; note that N2LO-1σ shows little difference
compared to N3LO-1σ . In general, the lower is nm, the larger
are the maximum radii [Fig. 2(b)]. Any discontinuities in the
energy density for nB � nm, such as from a phase transi-
tion, would serve to decrease R(M ), emphasizing the results
in these figures as being upper bounds. The extreme case,
described in Appendix A, self-bound (crustless) stars with

2Appendix C also quantifies the sensitivity of the key observables
R1.4, R2.0, and Mmax to the pressure as a function of density P(nB).
The highest correlations, i.e., the most sensitive regions, involve
the density ranges 1.0–3.0 nsat , 1.5–4.0 nsat , and 2.0–6.0 nsat , respec-
tively.
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FIG. 1. (a) Pressure of neutron-star matter (NSM) in the outer core as a function of the baryon number density at N2LO (orange-shaded
band) and N3LO (blue-shaded band) in the chiral expansion; (b) differences of the PNM and NSM in the outer core with the same notation.
Uncertainty bands depict 1σ confidence regions.

P0 = 0 and c2
s = 1 for a given Mmax represent the “maximally

compact” configurations that exhibit the smallest possible
radii at all masses, and for comparison their mass-radius re-
lations are also displayed (black solid lines). The causal limit
c2

s = 1 in all cases shown leads to maximum masses as high
as ≈2.93 M�, as predicted by

Mmax � 4.09
√

εsat

ε0
M�, (11)

using ε0 = εm � 2.0 εsat [see derivation in Eq. (A4)]. Differ-
ences at low densities, e.g., between N3LO and N2LO, have
negligible effects on Mmax, as already noted in the crustless
case of Appendix A. For a given value of c2

s,match, Mmax is
essentially determined by nm and is relatively insensitive to

Pm. With smaller values of c2
s,match for a given nm, the maxi-

mum mass decreases. It can be seen that the upper bounds on
R1.4 (where the bands intersect with the M = 1.4 M� horizon-
tal line) are about 12.9 km (13.6 km) if nm = 2.0 nsat (nm =
1.5 nsat). Although Mmax is not sensitive to the low-density
EOS (see also Appendix C), Rmax(M ) for canonical-mass
neutron stars (1.1–1.7 M�) is. The relatively soft N3LO EOS
up to 2.0 nsat guarantees that the typical NS radius �13 km,
even with very stiff matter at higher densities that can lead to
Mmax > 2.6 M�.

In contrast to Rmax, it is possible to deduce a minimum
radius Rmin for a given low-density (nB < nm) EOS by in-
troducing a finite discontinuity in the energy density 	εm

at nm. Above the density εm + 	εm, the EOS is assumed
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FIG. 2. (a) M-R diagram for NSM based on MBPT calculations shown in Fig. 1(a), including N2LO-NSM (orange-shaded band) and
N3LO-NSM (blue-shaded band) in the outer core matched to a linear causal (c2

s,match = 1.0) EOS at nm = 2.0 nsat , and the maximally compact
EOS for self-bound stars with the same value of Mmax (black solid). Horizontal lines indicate M = 1.4, 2.0, 2.6 M�. The colored bands
above nm = 2.0 nsat represent upper bounds on the NS radius for a given mass, as the high-density matter is assumed maximally stiff without
discontinuities in the overall EOS (see detailed discussions in Sec. III A). (b) Similar to panel (a) but with a lower matching density, nm =
1.5 nsat .
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FIG. 3. Radius bounds obtained by combining N3LO-χEFT pre-
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shown. The orange bands show the upper bound on the NS radius,
while the black and purple bands depict the lowers bounds corre-
sponding to Mmax = 2.0 M� and Mmax = 2.6 M�, respectively.

to be the causal EOS with c2
s = 1. The larger is 	εm, the

smaller is the resulting value of Mmax, which has a one-
to-one relation with it. If the pressure at nm is vanishingly
small, then this effectively gives the Rmin,c(M ) relation for the
maximally compact EOS of self-bound stars as described in
Appendix A but with ε0 = εm + 	εm. With finite pressure
at nm based on χEFT calculations, Rmin(M ) is larger and
is the minimum radius for normal NSs. In the self-bound
case, the magnitude of 	εm is related to the maximum mass
according to Eq. (11) by imposing ε0 = εm + 	εm. Even in
the case with a crust, since the maximum mass is reached at
very high densities, this relation remains relatively accurate.
For Mmax = 2.0 M�, we find that 	εm ≈ εnuc(nm ) � 2.0 εsat.
To accommodate a maximum mass of 2.6 M�, for example,
requires a much smaller discontinuity, 	εm ≈ 0.25 εnuc(nm ).
Furthermore, all the trajectories within any ±2σ band for each
value of Mmax have nearly identical values of 	εm resulting
from the fact that Pm � εm. The relation between 	εm at
2.0 nsat and Mmax is indeed relatively insensitive to the low-
density EOS.

Figure 3 shows the combined minimum and maximum
radius bounds. The central values of the minimum radii
Rmin(M ) for Mmax = 2.0 M� and Mmax = 2.6 M� are shown
as black and purple solid curves, respectively, while the
darker and lighter bands reflect 1σ and 2σ uncertainties,
respectively. To 2σ confidence, the minimum radius of a
1.6 M� star ranges from 9.2 − 12.2 km as Mmax is varied
from 2.00 M� to 2.93 M�; roughly, the minimum value of
R1.6 ∝ M3/4

max. Similarly, the minimum values of RMmax vary
from 9.0–12.6 km. It is interesting to compare these results
with claims that R1.6 > 10.68 km and RMmax > 8.6 km from
observations of GW170817 [56] using empirical relations es-
tablished in hydrodynamical simulations that relate R, Mmax,
and the threshold binary mass Mthres for prompt collapse of a

merger remnant. We can therefore provide a more restrictive
bound for RMmax since Mmax is believed to be �2.0 M�.

Figure 3 demonstrates how future discoveries of NSs with
large masses could constrain the radii of all NSs. Several
interesting insights can be gleaned from this figure. A striking,
albeit expected, feature is the convergence of the upper and
lower radius bounds with increasing Mmax. This is in accor-
dance with the facts that the discontinuity 	εm leading to
the minimum radii has to decrease to achieve a higher Mmax

[57] and that the limit 	εm → 0 defines the maximum radii.
For example, the uncertainty in theoretical predictions for the
radius of a 1.4 M� NS would be reduced from about 3 km
when Mmax = 2.0 M� to about 0.5 km when Mmax = 2.6 M�.
Another feature worth noting is the evolution of the 2σ lower
bound on the NS radius. It increases by about 2 km, from
9.2 km for Mmax = 2.0 M� to 11.2 km when Mmax = 2.6 M�.
Comparing the black and purple bands shows that the radii of
heavier neutron stars are even more tightly constrained with
increasing Mmax. Future observational constraints on NS radii
in the mass range 1.4–2.0 M� could be valuable in this regard
since x-ray and GW observations are best suited to provide
radius information at the level of 5% uncertainty in this mass
range [58]. Results in Fig. 3 also demonstrate that an upper
bound of about 13 km for R1.4 obtained from GW170817 is
consistent with NSs with Mmax � 2.6 M�.

The trends seen in Fig. 3 also have important implications
for the EOS of matter at the highest densities encountered
in the NS inner core. Our results imply that Mmax > 2.5 M�
and/or radii >12.5 km for neutron-star masses �1.4 M� can
only be achieved if c2

s � 1 over a wide density range encoun-
tered in the NS core. We emphasize here that this insight
relies on the relatively soft EOS predicted by N3LO-χEFT
calculations. Improving the EOS, especially the EFT trunca-
tion errors in the vicinity of nB � 2.0 nsat, will be critical in
extracting better constraints on the EOS at higher densities
in the core if future observations favor these large radii or
masses. Supporting c2

s � 1 from 2–5 nsat requires a form of
strongly interacting relativistic matter that poses significant
challenges for dense-matter theory and QCD [59].

B. Consequences of increasing nm or decreasing c2
s

Encouraged by the apparent convergence of χEFT cal-
culations over the density interval 1 − 2 nsat, it is natural to
ask if a nuclear physics based description of dense matter
can be extended to higher density. Extrapolating the EOS
from 2.0 nsat to 3.0 nsat will be model-dependent, even in the
absence of phase transitions to nonnucleonic matter, since we
presently do not have reliable calculations at higher densities.
We climb this rung of the density ladder with some reservation
to motivate and explore the impact of future calculations of the
EOS in this density interval.

We first consider a polytropic model where P = κεγ in
which the parameters κ and γ are determined by fitting to
the behavior predicted by χEFT calculations in the density
interval 1.9–2.1 nsat to extrapolate the EOS from 2.0 nsat to
3.0 nsat. This choice is somewhat arbitrary and is chosen to
approximately capture the key features of the density depen-
dence of the EOS predicted by χEFT. The resulting radius
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FIG. 4. Similar to Fig. 3 but obtained using the polytropic ex-
trapolation of the χEFT EOS up to nm = 3.0 nsat .

bounds are shown in Fig. 4. We have also found that an
alternative parametrization [60] of NSM matter, which has
a single parameter corresponding to the symmetry energy
coefficient L, to be a convenient extrapolation tool, referred
to hereafter as the ZL parametrization. Figure 5 shows M-R
curves for the ZL EOSs together with a standard crust. For
example, L = 45 MeV (65 MeV) successfully tracks N3LO,
while L = 45 MeV (75 MeV) tracks N2LO, for −σ (+σ ). We
have checked that alternate extrapolations using the polytropic
model, with parameters chosen to suitably match the χEFT
results at 2.0 nsat, do not significantly alter our conclusions.

A comparison between the results shown in Fig. 3 with
those in Fig. 4 reveals the following insights. First, the

FIG. 5. M-R relations for NSM EOSs extrapolated to nB �
2.0 nsat beyond the χEFT calculations using the ZL parametrization
[60]; the thin black line indicates where the NS central densities
are 3.0 nsat . From left to right, the colored dotted curves represent
L = 45 MeV to L = 75 MeV in increments of 5 MeV, and the black-
solid (black-dashed) curves refer to χEFT-N3LO (N2LO) with ±1σ

uncertainties. The L = 50 MeV (red) and L = 60 MeV (green) ZL
EOSs are used in Fig. 11 because they best represent ±1σ bounds.

increase in nm does not alter the bounds on Rmin(M ) (including
RMmax ), as a function of Mmax, except that in the extrapolated
case M and Mmax cannot exceed about 2.5 M�. These bounds
are therefore particularly robust for M < 2.5 M�.

The increase in nm results in more stringent upper bounds
on the NS radius for masses in the range 1.4–2.5 M�. For
example, the polytropic extrapolation to 3.0 nsat predicts
Rmax(1.4 M�) = 11.6+0.8

−0.6 km, which is to be contrasted with
Rmax(1.4 M�) = 12.5+0.3

−0.2 km obtained using nm = 2.0 nsat.
This reduction has implications for the interpretation of future
radius measurements which aim for an accuracy of better than
5% [58]. If these observations favor NSs in this mass range to
have radii >12 km, then it would require new mechanisms to
rapidly stiffen the EOS below 3.0 nsat.

It is also apparent, if the secondary component in
GW190814 were to be confirmed to be a massive NS, then
new mechanisms would also be implicated at a low density,
since the extrapolated EOS up to 3.0 nsat predicts Mmax in the
range 2.32–2.53 M� at ±2σ .

The results shown in Figs. 3 and 4 are summarized in Fig. 6
for the specific cases of R1.4 and R2.0, with a broader range of
nm explored between 1.0–3.0 nsat.

Figure 6 also conveniently illustrates the dramatic effect of
increasing the lower bound on Mmax for the allowed ranges
between Rmin(M ) and Rmax(M ), which improves (shrinks) the
R1.4 (R2.0) bounds by an average 3 km/M� (5 km/M�); these
limits could be further restricted by forthcoming observations.
We note that R1.4 or R2.0 < 10.7 km would be incompatible
with Mmax > 2.3 M� (assuming nm = 2.0 nsat). In addition, if
future measurements from different sources and messengers,
e.g., x-ray data from QLMXBs or PREs (or GW detections
of mergers by LIGO) versus NICER targets, were to exhibit
discrepancies in the radius inference close to or larger than the
gaps between the minimum and maximum bands shown on
this figure, then these are hints of a large energy-density dis-
continuity 	εm in the EOS (accompanied with high-density
stiff matter) occurring at nB � nm [61].

It is important to recall that Mmax depends monotonically
on nm (or εm + 	εm) for fixed c2

s,match. So far, we have
only considered causal EOSs (c2

s,match = 1). However, it is
almost certain that the EOS in this high-density region will be
subluminal. To keep the discussion straightforward, we now
consider the consequences of fixing the sound speed in this
region to a constant value c2

s,match � 1. Therefore, assuming
a crust EOS, the validity of χEFT up to nm, and a constant
sound speed for the highest density region, implies that M-R
trajectories, and Mmax, will depend on three quantities: nm,
	εm and c2

s,match. Instead of using the polytropic parametriza-
tion, we extend the nucleonic EOS to 3.0 nsat with the ZL
parametrization. We find that the ZL EOSs corresponding
to L = 60 MeV and 50 MeV, respectively, smoothly join the
Mmax(nm ) relations for the N3LO +1σ and N3LO-cen EOSs,
even though those corresponding to L = 65 MeV and L = 45
MeV seem to match the ±1σ M-R results below 2.0 nsat;3

3Note that Mmax(nm ) for the extrapolated EOSs will eventually bend
upwards at sufficiently large nm, which is a generic feature whenever
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FIG. 6. Similar to Figs. 3 and 4, but displaying the minimum and maximum radii of 1.4 M� (a) and 2.0 M� (b) stars as a function of the
matching density nm = 1.0 − 3.0 nsat . Additionally, Rmin contours and uncertainty bands for the case Mmax = 2.3 M� are shown.

the reason is that the masses of stars with central density
ncent = 2.0 nsat are similar in both cases. If χEFT-N3LO is as-
sumed valid up to 2.0 nsat, then the upper and lower bounds on
NS radii are substantially tightened in comparison with using
χEFT-N3LO only up to nsat; for example, if Mmax � 2.0 M�,
then R1.4 must lie between 12.5+0.3

−0.2 km and 9.7+0.4
−0.3 km at the

1σ level, which is consistent with earlier studies in Ref. [55].
Radius constraints are further tightened if χEFT-N3LO is
assumed valid to higher densities, but there is a diminishing
return.

Figure 7 shows how Mmax depends on nm and c2
s,match.

We find, for example, that Mmax � 2.6 M� requires c2
s,match >

0.35 (i.e., the conformal limit c2
s � 1/3 is violated) if nm =

nsat, and c2
s,match > 0.7 if nm = 2.0 nsat. The conformal limit

is also violated for nm > 1.7 nsat, even if Mmax is as low as
2.0 M�. If Mmax > 2.45 M�, then nm must not exceed 3.0 nsat

no matter what the value of c2
s,match is. The calibrated uncer-

tainties in χEFT-N3LO lead to relatively small uncertainties,
less than 0.1 M�, in Mmax(nm, c2

s,match ).
There has been speculation that the speed of sound in QCD

at finite baryon density may be bounded by the conformal
limit which requires c2

s < 1/3 [62]. This speculation is in
part based on strong-coupling calculations of SU(Nc) gauge
theories for which a holographic or gravity dual exist. In these
theories the speed of sound can be calculated at finite baryon
density in the large-Nc limit using classical supergravity meth-
ods in a curved spacetime [63], and for a large class of such
theories (for exceptions, see Refs. [64,65]) c2

s < 1/3 [62,66].
In addition, at finite temperature and zero baryon density,
where lattice QCD calculations provide reliable predictions,

a “standard” nucleoniclike EOS (i.e., gradually increasing c2
s without

kinks or discontinuities that naturally extends from low-density e.g.
χEFT calculations) is switched to a linear EOS at some critical
density, with or without discontinuities in ε (see, e.g., Fig. 5 in
Ref. [57]). However, we limit our studies to nm � 3.0 nsat , as there
is little guidance for the validity of nucleonic degrees of freedom at
higher densities from theory.

c2
s < 1/3 at all temperatures. The sound speed increases

rapidly in the hadronic phase (dominated by pions) reaching a
maximum value c2

s � 0.2, then decreases across hadron-quark
cross-over region, corresponding to temperatures in the range
100–200 MeV, and eventually increases again to reach its
asymptotic value of c2

s � 1/3 at T � 500 MeV [67].
Motivated by the discussion above, we briefly comment on

the astrophysical implications of the conjecture that c2
s < 1/3

in QCD [62] in light of our results. It was already noted in
Refs. [68,69] that it is difficult to accommodate c2

s < 1/3 at
high density and Mmax > 2.0 M� while still allowing for a
soft EOS at intermediate density needed to ensure that R1.4 <

13 km. This is also evident from Fig. 7 which shows that when

FIG. 7. Mmax contours on the (c2
s,match, nm ) plane, obtained when

	εm = 0. For each value of Mmax, the central solid curve shows
results with the central value of χEFT-N3LO; dashed lines indicate
±1σ bounds. Extensions to nm > 2.0 nsat for the central and +σ

bound are also shown as solid curves. The gray-shaded region is
excluded by the binary tidal deformability constraint �̃1.186 � 720
from GW170817 at the 90% credibility level [6] if N3LO-cen is
assumed; the dot-dashed lines refer to constraints with the N3LO
±1σ boundaries. The GW170817 bounds will be shifted downwards
if there is a first-order transition at such low densities.
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FIG. 8. The maximum (orange) and minimum (black) bounds on R1.4 and R2.0 assuming c2
s � 1/3 above nB = nm; χEFT-N3LO uncer-

tainties are indicated (darker bands: ±1σ ; lighter bands: ±2σ ). The bands merge and terminate at critical matching densities above which
Mmax < 2.0 M�.

c2
s < 1/3, it is impossible, at the 1σ level, to simultaneously

satisfy the tidal deformability constraint from GW170817 and
Mmax > 2.0 M� if χEFT-N3LO is valid beyond 1.8 nsat.

Figure 8 shows how the bounds on the radius are influ-
enced when c2

s < 1/3 at high density. The rapid decrease in
the maximum value of R1.4 with nm is striking and implies
that if c2

s < 1/3 and χEFT-N3LO is valid up to 1.5 nsat, then
R1.4 must lie between 12.4+0.2

−0.2 km and 13.1+0.3
−0.3 km at the 1σ

level. Further, requiring that Mmax > 2.0 M� excludes a sig-
nificant fraction of the χEFT-N3LO predicted range for the
pressure for densities between 1.5–2.0 nsat. A tiny sliver of
high pressure close to the edge of the 2σ boundary remains,
and implies that R1.4 = 13.1 ± 0.1 km! Predictions for R2.0

are shown in the right panel. In Fig. 9 we show the max-
imum and minimum bounds on R1.4 and R2.0 obtained by
imposing an intermediate limit of c2

s � 1/2. In this case for
nm = 2.0 nsat, we find that 11.5+0.3

−0.3 km < R1.4 < 12.5+0.3
−0.2 km

and Mmax < 2.29 ± 0.04 M� [Fig. 11(b)], to 1σ confidence.
The corollary to this implies that measurements of R∼1.4 that
are smaller than 11.2 km would favor a stiff EOS with c2

s �

1/2 above 2.0 nsat, or that nm < 2.0 nsat. This is particularly
interesting because a recent analysis of the tidal deformability
constraints from GW170817 in Ref. [70] suggests 11.0+0.9

−0.6 km
(90% credible interval).

C. Tidal deformability constraints

Gravitational waveform fitting using the standard Phe-
nomPNRT model [6,71] directly sets constraints on the binary
chirp mass M = 1.186 ± 0.001 M� and the binary tidal de-
formability �̃ � 720 (90% credibility). In what follows, we
will denote this constraint as �̃1.186 � 720, where the chirp
mass is

M = m3/5
1 m3/5

2

(m1 + m2)1/5
, (12)

and the binary tidal deformability is defined as

�̃ = 16

13

�1m4
1(m1 + 12m2) + �2m4

2(12m1 + m2)

(m1 + m2)5
. (13)

FIG. 9. Similar to Fig. 8, but assuming c2
s � 1/2 above nB = nm.
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FIG. 10. The left panel shows bounds on the tidal deformability � obtained using χEFT N3LO EOS up to nm = 2.0 nsat , and the right panel
extends the low-density EOS to nm = 3.0 nsat using the polytropic extrapolation. As in Fig. 3, the orange bands show the upper bound, while
the lower bounds corresponding to Mmax = 2.0 M� and Mmax = 2.6 M� are shown by the black and purple bands, respectively. The vertical
solid line depicts the constraint inferred from GW170817, 70 � �1.4 � 580. When nm = 3.0 nsat , Mmax < 2.6 M�.

Here �1 and �2 refer to the individual deformabilities of
the binary components with masses m1 and m2, respectively.
It can be shown [72] that � is approximately proportional
to (R/M )6 and �̃ is approximately proportional to (R̄/M)6,
where R̄ is the average radius of stars with masses constrained
by �̃ � 1.2 M� and q > 0.7, where q = m2/m1, i.e., the com-
ponent masses are confined to the interval between 1.1 M�
and 1.6 M�. Therefore, the maximum radius Rmax(M ) bound
is tantamount to a maximum �̃ bound, and vice-versa. The
�̃-M constraint can be translated to a constraint on � at the
mass M, �M , but it is subject to small additional uncertainties
from the poorly determined mass ratio q of GW170817 and
EOS systematics. Using the resulting quasi-universal EOS
relation �1 = q6�2, which is valid to 10%–20% for M =
1.186 M� and q > 0.7 [72], one finds

�M � 26/5(M/M )6�̃M, (14)

valid to a few percent. Absolute bounds from causality on
the tidal deformability � can be derived in the same way
as radius bounds: upper bounds are determined by smoothly
matching a low-density EOS to a causal EOS at nm [73],
whereas lower bounds are determined by introducing a dis-
continuity 	εm (which lowers Mmax) [72,74]. The bounds
for the N3LO-χEFT EOS with nm = 2.0 nsat are shown in
Fig. 10. The role of Mmax is clear from comparison of the
Mmax = 2.0 M� and the Mmax = 2.6 M� cases. This figure
also shows the effects of increasing nm using the polytropic
extrapolation from χEFT from 2.0 nsat to 3.0 nsat. In this case,
Mmax < 2.6 M�. The fact that uncertainties in the GW170817
constraint of � extend almost precisely between the lower
(Mmax = 2.0 M� with a large discontinuity 	εm at nm) and
upper bounds (c2

s,match = 1 without discontinuity) to within
2σ for both nm = 2.0 nsat and nm = 3.0 nsat cases is not a
coincidence. It is a consequence of the fact that for those
values of nm, �̃1.186 < 720 is always satisfied for all values
of c2

s,match � 1 (see Fig. 11).

A comparison between the results shown in Fig. 10 pro-
vides quantitative insights into how access to the EOS at
higher density will impact predictions for the tidal deforma-
bility �, especially for more massive NSs. It illustrates how
constraints on � from future GW detections from binaries
with massive NSs can provide insights on the evolution of c2

s
in the density interval 2–3 nsat. For example, if �2.0 � 100,
then it would pose a serious challenge for χEFT predictions
even in the density interval 1–2 nsat, and �2.0 � 50 would
be difficult to accommodate without new mechanisms to sig-
nificantly stiffen the EOS in the density interval 2–3 nsat.
However, if �1.4 � 100, then it would imply a soft EOS
between 1–3 nsat, a near-causal EOS at higher densities, and
Mmax not significantly larger than 2 M�.

Results for Mmax using subluminal sound speeds for the
high-density EOS are shown in Fig. 11(a) for the cases
nm = 1, 1.5, 2.0 nsat. This figure, in Mmax − c2

s,match space, is
a permutation of Fig. 7 that instead shows Mmax contours in
nm − c2

s,match space. The dotted curve at 2.6 M� intersects the
contours for those cases for c2

s,match = 0.35, 0.502, and 0.695,
respectively.

The derived bounds on nm and c2
s,match illuminate the

importance of including nuclear-matter calculations in the
density range 1–3 nsat. Standard extrapolations based on
nucleonic models, similar to the ZL parametrization, are
usually associated with a more gradual profile of c2

s (nB)
at low-to-intermediate densities, which cannot reconcile the
small radii and/or small tidal deformabilities inferred for
canonical-mass NSs with large maximum masses. The nec-
essary rapid change in the sound speed guided by the simple
matching scheme serves to indicate the breakdown of such
extrapolations at high densities. A very high NS mass, e.g.,
�2.45 M� (2.6 M�), would be in conflict with causality and
standard extrapolation up to 3.0 nsat (2.66 nsat); therefore in-
dicating something unusual in the EOS should be taking
place near this density. This is consistent with the findings of
Refs. [33,34].
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FIG. 11. (a) The solid lines show contours of nm in the Mmax-c2
s,match plane, and the dashed lines bracket N3LO ±1σ uncertainties. The

upper horizontal line indicates Mmax = 2.6 M�; see also examples later in Fig. 14. The gray-shaded region is excluded by the binary tidal
deformability constraint �̃1.186 � 720 from GW170817 at the 90% credibility level [6] if N3LO-cen is assumed; the dot-dashed lines refer to
constraints with the N3LO ±1σ boundaries. The thin dotted line indicates a lower upper bound with N3LO-cen and �̃1.186 � 600. (b) Same as
panel (a), except that contours of c2

s,match are displayed in the Mmax-nm plane; the upper-right gray-shaded region is excluded by causality. For
nm ∈ [2.0, 3.0] nsat , extrapolations from χEFT using ZL models with L = 50 MeV and L = 60 MeV are applied (see Fig. 5).

A more conservative estimate for the maximum mass,
such as 2.2–2.3 M�, increases the allowed range for nm

and c2
s,match to be consistent with data; the generic trend

is shown in Fig. 11. Specifically, Fig. 11(a) demonstrates
how Mmax scales with c2

s,match using the N3LO-NSM EOS
for nm = 1.0, 1.5, 2.0 nsat. The solid curves correspond to
results for N3LO-cen and the dashed ones with ±1σ un-
certainties. The dots indicate the intersections of the central
curves with Mmax = 2.6 M� for the same EOSs as shown
later in Fig. 14(b). The χEFT uncertainties at the respective
densities only slightly broaden these correlations. Together
with GW170817, the constraint Mmax � 2.1 M� rules out
very weakly interacting matter (c2

s ≈ 0.33) at high densities,
whereas Mmax � 2.5 M� rules out matter with c2

s � 0.5.
The third permutation of Fig. 7 is displayed in Fig. 11(b).

It is noteworthy that the GW170817 boundary (edge of
the gray-shaded region) for N3LO-cen is nearly parallel
to the nm contours. For matching densities �1.5 − 1.8 nsat,
all constructed EOSs result in �̃1.186 > 720 and can be
therefore considered ruled out by GW170817 [see also ex-
amples later in Fig. 15(a)]. If an even lower upper bound
on �̃1.186 were to be established, then the excluded region
would become larger, increasing the threshold of minimally
allowed nm.

Compatibility with GW170817 is readily satisfied if the
χEFT calculations (with uncertainties) are assumed valid up
to 2.0 nsat consistent with previous studies [55]. The evolution
of Mmax with c2

s,match has been known [75–78], but it was
unclear how the uncertainty in the low-density EOS translates
to an uncertainty in the derived upper bound. As shown in
Fig. 11(b), we find that for nm = 2.0 nsat, the uncertainty in
Mmax ranges from ≈0.1 M� for c2

s,match = 0.33 (blue-dashed
line) to ≈0.05 M� for c2

s,match = 1 (black-dashed line) with
N3LO ± 1σ inputs at low densities.

In summary, satisfying the GW170817 tidal deformabil-
ity constraint �̃1.186 < 720 and imposing Mmax > 2.1 M�
requires nm > 1.5 nsat and c2

s > 0.35. This limit is not very
sensitive to Mmax. Even if Mmax > 2.6 M�, it is required that
1.7 < nm/nsat < 2.6 and c2

s,match > 0.55. The existence of a
2.6 M� star evidently requires a significant change from nor-
mal hadronic EOSs to a much stiffer EOS between 1.7 nsat

and 2.6 nsat. In the presence of a discontinuity in ε, the lower
bound nm � 1.7 nsat can decrease, whereas the upper bound
nm � 2.6 nsat remains unaffected as it is imposed by causality.

For stars with a normal crust, refined upper limits to
RMmax can be found using the GW10817 constraint and an
assumed value for Mmax, while lower limits follow from the
causal EOS: 9 km < RMmax < 12.2 km for Mmax � 2.1 M� and
11.3 km < RMmax < 12.8 km for Mmax � 2.6 M�.

D. Mmax scalings compared to the maximally compact case

In Fig. 12(a) we show the absolute upper limit on Mmax

[see, e.g., Eq. (A7)] as a function of nmax, the highest possible
baryon density from the maximally compact EOSs, as repre-
sented by the dot-dashed boundary. The slightly lower black
dashed boundary matches the maximally compact EOS to a
low-density nuclear EOS at some density nm varying from nsat

to about 3.0 nsat (from left to right). The relatively small differ-
ence between these two boundaries suggests that effects on the
absolute upper bound on nmax and Mmax from the low density
EOS is small, and for Mmax � 2.6 M�, nmax should be smaller
than 5.3–5.6 nsat. This is in good agreement with ≈5 nsat

obtained in Ref. [33]. For nm � 2.0 nsat, we employ χEFT cal-
culations with uncertainties, and the ZL parametrizations (see
Fig. 5) are applied for nm between 2.0–3.0 nsat. If the high-
density matter is assumed to be much softer with c2

s,match =
0.33, then matching it to the nuclear EOS at different
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FIG. 12. (a) Scaling relations between Mmax and nmax; (b) scaling relations between Mmax and RMmax . Both relations, shown as dot-dashed
lines, follow from the maximally compact EOS (see Appendix A). The black dashed curves correspond to the presence of a low-density nuclear
mantle (crust + N3LO EOS) for nB � nm, with fixed sound speeds c2

s,match = 0.33 and c2
s,match = 1.0 for nB > nm. The gray-shaded region is

excluded by GW170817 (�̃1.186 � 720 and N3LO-cen). The solid colored curves show contours of nm = 1.0, 1.5, 2.0 nsat for N3LO-cen;
dashed colored curves show ±1σ uncertainties. For EOSs that accommodate Mmax � 2.6 M�, the permitted ranges of nmax and RMmax are
severely restricted.

matching densities nm gives rise to the predicted Mmax-nmax

relation shown by the lower dashed curve. The gray-shaded
region is ruled out by tidal deformability constraints inferred
from GW170817, prohibiting small values of nm below
1.5–1.8 nsat. As a result, c2

s,match � 0.33 is incompatible with
Mmax � 2.1 M�; see also Fig. 11. Furthermore, imposing
Mmax � 2.0 M� leads to 5.23 < nmax/nsat < 5.79.

The colored curves in Fig. 12 indicate where the matching
densities are fixed at nm/nsat = 1.0 (blue), 1.5 (green), and
2.0 (red), and they track decreasing values of c2

s,match from 1
to below 0.33. In each case, the highest Mmax as well as the
smallest nmax correspond to where they end at the c2

s,match = 1
upper boundary (black dashed line). The N3LO ±1σ uncer-
tainty at 2.0 nsat translates to ≈0.4 nsat uncertainty in nmax

(5.9 − 6.3 nsat) if Mmax = 2.0 M�, and ≈0.1 nsat uncertainty
for Mmax = 2.6 M�. Beyond nm � 2.0 nsat, extrapolation of
the χEFT calculations is needed for which the curves would
move to the lower-right while remaining under the c2

s,match = 1
bound. Using the ZL parametrization to extrapolate up to
3.0 nsat (not shown), we obtain nmax � 5.71 − 5.92 nsat and
Mmax � 2.45 − 2.48 M�.

As discussed in Appendix A, the maximally compact EOS
with c2

s = 1 determines the smallest possible radius at a given
mass. Figure 12(b) displays the absolute bound on the radius
of the maximum mass star, RMmax , as well as a more realistic
bound taking into account the low-density EOS below nm.
Assuming χEFT up to nm = 2.0 nsat and Mmax = 2.0 M�, the
N3LO ± 1σ uncertainties induce an uncertainty ≈0.5 km in
RMmax = 11.14–11.66 km. For Mmax = 2.6 M�, an uncertainty
≈0.3 km is found with RMmax = 12.09–12.38 km. Extrapolat-
ing to higher densities nm � 2.0 nsat, Mmax � 2.6 M� leads to
RMmax � 11.49 km. The tidal deformability constraint inferred
from GW170817 instead corresponds to limits on the radii
of canonical-mass stars. With the simple matching condition

used here, that constraint simultaneously rules out too large
RMmax , e.g., RMmax � 12.18 km if Mmax = 2.0 M� and RMmax �
12.79 km if Mmax = 2.6 M�.

However, introducing a finite discontinuity in ε would
decrease RMmax and increase nmax, but to reach the same
Mmax necessitates the transition density to be smaller than the
matching density nm when there is no discontinuity [61]. The
overall effect is that larger nmax and smaller RMmax are possible
but must still lie within the bounds set by the maximally
compact EOSs.

IV. DISCUSSION

It is worth mentioning that so far we have largely avoided
finite discontinuities in the energy density ε, except when
located at nm, which would otherwise introduce an additional
parameter that characterizes the strength of a sharp first-order
phase transition. In that scenario, the Mmax bounds will be
shifted downwards due to the softening induced by the phase
transition, while GW170817 boundaries may become more
complicated depending on the possible formation of discon-
nected branches at intermediate densities on the M-R diagram
[74,79]. However, given the systematic uncertainties involved
in obtaining �̃ from gravitational waveform data, the previ-
ously inferred bounds should still apply [72]. In any case, as
discussed in Appendix A, useful information on the minimal
radii Rmin(M ) can be obtained from matching to the causal
EOS with a discontinuity 	εm specified by Mmax, and we have
elaborated on these lower bounds on R with χEFT inputs up
to nm in Sec. III A.

A. Current and future constraints

To shed light on the properties of dense matter, the observa-
tional constraints used in this work are taken from (i) a handful
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FIG. 13. Radius differences 	R = R2.0 − R1.4 using the ZL ex-
trapolations with L = 50 MeV and L = 60 MeV joined continuously
to linear EOSs at nm between 2.0 nsat and 3.0 nsat .

of well measured NS masses from radio observations [8–12],
(ii) the chirp and combined masses as well as bounds on tidal
deformabilities of NSs deduced from GW detections in the
binary NS-NS merger event GW170817 [5–7], and (iii) radius
estimates from NICER for a NS of mass �1.4 M� [80,81].
An upper bound of Mmax � 2.3 M� on the maximum gravita-
tional mass of a cold, spherical NS was inferred from several
studies using EM and GW data from GW170817 [3,4,82–84],
but an upper bound on Mmax itself does not provide further
limits on the sound speed or bounds to NS radii since the EOS
could suddenly soften above nm.

The NICER M-R constraints on J0030+0451,
namely, R = 13.02+1.24

−1.19 km, M = 1.44+0.15
−0.14 M� [81] and

R = 12.71+1.14
−1.19 km, M = 1.34+0.15

−0.16 M� [80], and some EM
observations of GW170817 [85–87] favor larger radii than
indicated by GW observations from GW170817, 10 − 13 km
[6,7], but the degree of tension is slight. Joint analyses of
these data yield tighter but still consistent constraints on
the typical NS radius ∼12.3 km [88–91]; Ref. [92] found
11.8+1.0

−0.7 km to 68.3% confidence.
It is fortunate that NICER targets also include several

pulsars for which the masses are independently measured to
high precision, e.g., PSR J1614-2230 �1.91 M� and PSR
J0740+6620 �2.14 M�, and PSR J0437-4715 [93] with mass
≈1.44 M�. The possibility to measure radii of both interme-
diate as well as very massive NSs opens up the possibility
to contrast the radii of ∼2.0 M� stars, R2.0, and more typical
∼1.4 M� stars, R1.4, to further constrain the EOSs [61,94].

We show in Fig. 13 the difference 	R = R2.0 − R1.4 for
stars with the N3LO EOS up to 2.0 nsat, ZL EOS extrapola-
tions up to a range of matching densities nm = 2.0–3.0 nsat,
and various linearly matched EOSs with different c2

s,match at
higher densities. The ZL extrapolation with L = 50 MeV in-
dicates that roughly above nm � 2.8 nsat, all values of c2

s,match
lead to R2.0 � R1.4. The boundary between positive and neg-
ative 	R shifts a bit when using the slightly stiffer ZL
extrapolation with L = 60 MeV: in this case nm � 2.6 nsat

will guarantee R2.0 � R1.4; note that 2.98 nsat is already the
central density of a 1.4 M� star. We also checked radii differ-

ences between 2.1 M� and 1.4 M� stars, 	R′ = R2.1 − R1.4,
and found that 	R′ is generally less than 	R, with the
largest decreases of a few tenths of a km occurring for the
smaller values of c2

s,match. For c2
s,match � 0.7, there are negli-

gible differences. 	R or 	R′ being negative is typical when
extrapolations to even higher densities are applied, or if there
is additional softening in the EOS before reaching the cen-
tral density of the maximum-mass star. Should observations
suggest R2.0 > R1.4 or R2.1 > R1.4, standard extrapolations
such as ZL-models predict some unusual stiffening should
occur below �2.6–2.8 nsat. Furthermore, if 	R turns out to
be greater than 0.5 km, then we should expect that this stiff-
ening occurs for nm � 2.0 nsat, which suggests a very high
Mmax and less compatibility with radius constraints from
GW170817; see Fig. 11(b). However, NICER observations
may not achieve the needed O(0.5 km) resolutions in the
near future. Since central densities of ∼2.0 nsat correspond
to 0.5–1.0 M� within 1σ uncertainties of χEFT calculations
(Fig. 3), it will be greatly helpful if radii of very low-mass NSs
∼1.1 M� can be obtained through x-ray observations, or tidal
deformability measurements of binary systems with very low
chirp masses.

From a different perspective, more accurate experimental
determinations of Sv and L at nsat from, e.g., PREX, CREX,
and FRIB/MSU, will be important to test χEFT predictions
of properties of neutron-rich matter. At the present time, Sv

and L are believed to be understood to the 10% and 40%
levels, respectively [95]. For nB > nsat, constraints from the
analyses of the collective flow of matter in HICs could be
informative.

The best available information for the present comes from
the analysis of HICs of Au nuclei using Boltzmann-type
kinetic equations. The elliptic and sideways flow observ-
ables from these collisions are sensitive to the mean-field
potential and to in-medium NN collisions at central densi-
ties of 2–5 nsat, and suggest SNM pressures of 7.5 MeV fm−3

to 14 MeV fm−3 at 2.0 nsat [96]. In comparison, N3LO cal-
culations for SNM predict somewhat larger pressures of
10.5 MeV fm−3 to 18.5 MeV fm−3 at 2.0 nsat [29], which
are, nevertheless, consistent within their stated 1σ un-
certainties. However, the predictions from HICs involve
model-dependent assumptions concerning the density- and
momentum-dependencies of the assumed nuclear interactions,
which have not been systematically explored; see Ref. [97]
and references therein for the relevance of single-particle
potentials in HICs. In addition to these uncertainties, HICs
probe nearly symmetric matter, and to apply their observables
to NSM requires an additional extrapolation involving the
symmetry energy at supra-nuclear densities.

To improve the current status, heavy-ion facilities across
the world, such as RHIC, FAIR, NICA, J-PARC, and HIAF,
have launched programs to map out the QCD phase diagram
of strongly interacting matter. The study of more neutron-
rich matter in HICs, together with improved, systematic,
modeling would be very valuable for dense-matter physics,
not only for cold neutron stars, but also for understanding
mergers involving NSs. As the analyses of HIC data have
largely been done with nucleonic degrees of freedom, it would
be also interesting and desirable to extend such analyses
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FIG. 14. (a) M-R diagram for matched linear EOSs that give rise to Mmax = 2.6 M� with N3LO-NSM (±1σ ) applied for low densities
� 2.0 nsat . Corresponding values of nm and c2

s,match are indicated [see also Fig. 11(a)]. (b) Sound speed profiles c2
s (nB) for N3LO-NSM only

(black-solid for the central value and black-dashed for ±1σ uncertainties) and matched linear EOSs with different values of c2
s,match associated

with Mmax = 2.6 M� in panel (a) (colored horizontal lines). The open triangles mark the central densities of the maximum-mass stars Mmax =
2.6 M�.

to include quark degrees of freedom and their subsequent
hadronization as in RHIC and CERN experiments at higher
energies.

B. 2.6 M� neutron stars and the nature of the components
of GW190425 and GW190814

It is also of interest to examine what matching condi-
tions relating nm and c2

s,match ensue from a restriction such as
Mmax = 2.6 M�. Figure 14(a) depicts the M-R relations for
nm and c2

s,match that lead to Mmax = 2.6 M�, and the corre-
sponding c2

s profiles are explicitly shown in Fig. 14(b). The
required values of c2

s,match are indicated in the plot (solid
horizontal lines for the N3LO-central (denoted as N3LO-cen)
and dashed for ±1σ uncertainties), which increase with the
matching density nm. At fixed matching density indicated by
the vertical dotted lines, the variation in c2

s,match above nm is
consistent with the uncertainties in c2

s from χEFT calcula-
tions at nm, and a softer EOS (smaller c2

s ) at low densities
is compensated by a stiffer EOS (larger c2

s,match) at higher
densities.

The simple linear parametrization of high-density EOS
used here can be viewed as a guide to assess the stiffness
required at higher densities to achieve Mmax � 2.6 M�. As-
suming χEFT-N3LO is valid up to nm = 2.0 nsat (1.5 nsat), to
reach 2.6 M� the “averaged” c2

s above 2.0 nsat (1.5 nsat) has to
be greater than ∼0.7 (∼0.5). This is probably not achievable
by using standard extrapolations of nonrelativistic nucleonic
models (for which c2

s is gradually increasing) without violat-
ing causality below the central density of the maximum mass
star.

Figure 15(a) shows an application of the deformability
constraints from GW170817 (see discussions in Sec. III C) in
the case that Mmax is fixed to 2.6 M�. As mentioned before,
a small matching density nm results in a large radius for a
given c2

s,match. An EOS stiffening drastically from N3LO be-

low 1.5 nsat ends up violating �̃1.186 � 720 if Mmax � 2.6 M�
[green band in Fig. 15(a)].

Even considering the q and EOS uncertainties, one
sees that nm � 1.5 nsat violates the GW170817 constraint
[Fig. 15(b)]. There exists a minimum nm ≈ 1.7 nsat for N3LO-
NSM to survive the �̃ � 720, or � � 580 constraint (when
Mmax � 2.6 M� is assumed), and an even smaller upper
bound, e.g., �̃ � 600 [70,98,99], which would increase the
minimum required nm. It is noteworthy that the posteriors of �̃

for GW170817 suggest a peak value around ≈225, noticeably
smaller than the upper bound of 720 (90% credible level).

The ranges of 1.6–2.5 M� in GW190425 [100] and
2.59+0.08

−0.09 M� in GW190814 [101] for one of the components
in these merger events have raised the possibility that those
compact objects could be NSs as opposed to being low-mass
BHs. The data from GW190425 was inconclusive concerning
the nature of the inspiralling binary [100], but some works
favored the scenario in which the more massive component
is a BH instead of a very heavy NS [102]. If it is a pri-
ori assumed that Mmax � 2.3 M�, a possibility motivated by
EM and GW data from GW170817, then the interpretation
that it was a BNS merger instead statistically favors masses
of approximately 1.5 ± 0.2 M� and 1.9 ± 0.2 M�, while a
neutron-star-black-hole (NSBH) merger interpretation favors
a 1.3 ± 0.1 M� NS and a 2.2 ± 0.2 M� BH [102]. While both
scenarios are statistically equally likely, the fact that the BNS
masses are incompatible with those of observed galactic BNS
systems, while the NS mass in the NSBH scenario is com-
patible, seems to favor the NSBH interpretation. However, in
either scenario according to this analysis, GW190425 would
likely not contain a NS >2.1 M�. In the case of GW190814,
there is no additional information, aside from one’s assump-
tion about Mmax, to decide if the primary is a high-mass
NS or a low-mass BH. However, statistical analyses suggest
that the probability of its secondary being a NS is very low
[35,36,101]. If either GW190425 or GW190814 contains a
∼2.5–2.6 M� NS, then questions to address are: What is the
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FIG. 15. �̃-M and �-M relations confronted with constraints from GW170817 [6,7] (vertical lines with arrows), with fixed Mmax =
2.6 M� as an example. Parameters for matched EOSs are the same as in Fig. 14, except for the special case with nm = 1.674 nsat (with
c2

s,match = 0.5643), which refers to the minimum matching density that survives �̃(M = 1.186 M�) � 720.

physical state of dense matter that could support such a heavy
NS, and what radius constraints would follow?

The scenario that GW190814’s secondary component was
an approximately 2.6 M� NS does not itself violate theo-
retical limits from causality and the GW170817 constraint
that �̃ < 720 for M = 1.186 M�, but challenges remain
finding physical mechanisms that can connect very stiff
high-density matter with the relatively soft nuclear matter
at �2.0 nsat predicted from modern χEFT calculations. As
Fig. 11 shows, the conformal limit c2

s � 1/3 must be violated
[88] below the central density of the maximum-mass star
even by the requirements from pulsar timing that Mmax �
2.1 M� and from GW170817’s tidal deformability constraint.
Standard extrapolations that assume gradually increasing c2

s
profiles are unlikely to be compatible with Mmax � 2.6 M�
[101].

In particular, the requirement that c2
s remains above ∼0.6

for a wide range of densities �2.0 nsat is hard to explain.
Extrapolations of nonrelativistic potential models generally
result in steadily increasing sound speeds with density, and it
becomes problematic to prevent them from becoming acausal
within NSs. At densities relevant to the center of very massive
NSs, it is reasonable to expect the emergence of exotic de-
grees of freedom. A sharp first-order transition to stiff quark
matter at some intermediate density is capable of reconcil-
ing small radii and high masses �2.4 M� [see examples of
Rmin(M ) in Sec. III A]. With an increasing lower bound on
Mmax and/or smaller assumed values of c2

s at high densities,
the transition threshold has to be pushed downward approach-
ing 1.5–2.0 nsat (similar to the results shown in Fig. 11 but
involving a discontinuity 	εm that further decreases Mmax and
favors lower values of nm [61]).

For most microscopic quark-matter models, for ex-
ample the original MIT bag model [103], the original
Nambu-Jona–Lasinio (NJL) model [104], and their varia-
tions, perturbative QCD matter [105], and quartic polynomial
parametrizations [106], the speed of sound turns out to

be weakly density-dependent. To be consistent with mas-
sive pulsars ∼2 M�, strong repulsive interactions that stiffen
the quark EOS, possibly reaching c2

s � 0.4, have been
implemented [107–109]. The maximally achievable c2

s is
model-dependent, and requiring c2

s � 0.6 on average in quark
matter is expected to push model parameters to extreme
values.

In contrast to sharp phase transitions, hadron-to-quark
crossovers as in quarkyonic models [59,60,110] or with in-
terpolation schemes [111] provide a natural stiffening to
support high masses, but can also induce large radii. Quarky-
onic models generate large values of c2

s by restricting the
nucleonic momentum phase space when quarks appear,
and in some cases are capable of simultaneously reaching
>2.5 M� and satisfying the GW170817 constraint �̃1.186 <

720. Some versions [60], in which quarks come to rapidly
dominate the composition, leading to a high, but narrow,
c2

s peak behavior, cannot jointly satisfy these conditions,
reaching at most Mmax � 2.4 M�. However, we find that
other versions [59,110], in which the quark abundances grow
more slowly and that can retain large abundances of nu-
cleons at high density, can simultaneously achieve these
conditions.

Using extrapolation functions in terms of c2
s and μ, Annala

et al. [112] found that the risk of hadronic EOSs violat-
ing causality at high-enough densities (�4.0 nsat) to achieve
high masses is remedied if a transition to perturbative QCD-
like (soft c2

s ≈ 1/3) quark matter occurs at high densities.
However, considering that current calculations in perturbative
QCD itself are only valid at densities nB � 40 nsat, interpola-
tions down to NS densities are problematic. The main feature
of such a transition can be reproduced by simply requiring
c2

s → 1/3 for nB � 6 nsat, but at intermediate densities the
conformal limit c2

s � 1/3 being violated is strongly favored
[88]. Moreover, despite the fact that hadronic matter breaking
the causal limit is never a necessity, it is nearly impossible to
distinguish such high-density transitions using observations of

045808-15



CHRISTIAN DRISCHLER et al. PHYSICAL REVIEW C 103, 045808 (2021)

the M-R relation or tidal deformabilities due to the masquer-
ade problem [106].

C. Comparison with other works

As noted earlier, the uncertain nature of the less compact
object in GW190814 with mass �2.6 M� has piqued the
interest of the dense-matter and nuclear-physics communities.
Below we briefly discuss how our study differs from or com-
plements the findings of several other recent articles [33–40]
that have addressed the implications of the possible existence
of NSs with such high masses.

Several of these articles, including Refs. [33,35,37], have
relied on nuclear physics based EOSs to describe matter in
the crust and outer core to show that the existence of a 2.6 M�
NS would require c2

s � 0.6 in the inner core. The authors of
Ref. [40] use the upper bound on the tidal deformability of
NSs set by GW170817 to further strengthen the need for a
large c2

s in the inner core. Most notably, Ref. [39] derives
strict upper bounds on the maximum mass of NSs that depend
only on bulk properties of NSs, such as the radii and the tidal
deformabilities to find that a NS in GW190814 would not
be inconsistent with present astronomical constraints if c2

s is
large in the inner core. Our finding suggests that a 2.6 M�
NS would require c2

s � 0.55–0.6 [see Fig. 11(a)] in the inner
core, which is in general agreement with these earlier studies.
A unique feature of our study is the use of the N3LO-χEFT
EOS that allows us to properly incorporate EFT truncation
errors at nB � 2.0 nsat.

Lim et al. [34] combine nuclear models valid in the vicinity
of normal nuclear densities and a maximally stiff EOS at
higher density to show that 2.5–2.6 M� NS can exist without
strongly affecting the properties such as radius, tidal deforma-
bility, and moment of inertia of canonical NSs with mass
∼1.4 M�. They argue that properties of NSs with masses
∼2 M� such as R∼2.14 would be significantly different de-
pending on whether the secondary component of GW190814
was a black hole or a NS. Our results support these findings,
but go beyond by delineating how the lower and upper bounds
on the radii of NSs in the mass range 1.4–2 M� would be con-
strained if future observations were to confirm the existence
of NSs with masses �2.5–2.6 M�.

Using FSU-type relativistic mean field-theoretical (RMFT)
models, Fattoyev et al. [38] found that the rapid increase in
pressure with density required to support a 2.6 M� NS, while
barely accommodating the deformability constraint from the
first analysis of GW170817 data that indicates �1.4 � 800
[5] but not the updated bounds 70 � �1.4 � 580 [7] (see
Ref. [113] for a similar study), is inconsistent with energy
density functionals tuned to reproduce properties of nuclei
and flow data from HICs. Note that Fattoyev et al. [38]
only applied �1.4 constraint without a comparison of the bi-
nary tidal deformability �̃. We have confirmed that FSU-like
RMFT interactions cannot accommodate both �̃1.186 � 720
and Mmax � 2.54 M� [92].

Other recent works studied hyperonic matter in the EOS
and/or rapid rotations that stabilize more massive stars than
nonrotating configurations, which may or may not be con-

FIG. 16. The mass as a function of the radius for the EOS
Eq. (A9) with P0 = 0, P = 0 for ε < ε0, and various values for
c2

s with fixed Mmax = 2.6 M�, are shown as five black curves (see
legend). These curves correspond to the minimum possible radius
Rmin(M ), for different maximum values of the sound speed. The
four red curves correspond to ε0 = εsat , either c2

s = 1 (and Mmax �
4.09 M�) or c2

s = 1/3 (and Mmax � 2.48 M�) for P > P0, and either
P0 = 0 (self-bound) or P0 = 0.02 ε0 � 3 MeV fm−3 and a normal
crust EOS for P < P0 [maximum possible radii Rmax(M )]; the con-
figuration where εc = εsat is indicated by a diamond.

sistent with GW190814 [114–117]; we do not consider these
effects in the present paper.

V. CONCLUSION AND OUTLOOK

We determined the NSM EOS in β equilibrium from
MBPT calculations of PNM and SNM up to N3LO in χEFT.
For a given nB, the NSM EOS always has a lower ε than the
PNM EOS. The pressure of NSM is less than PNM at the
same nB, typically by <1 MeV fm−3, except for nB � 2.0 nsat

when it becomes greater [Fig. 1(b)]. The proton fraction below
2.0 nsat never exceeds the critical minimum value required
for the direct URCA process of enhanced neutrino emission
[118,119].

The existence of the NS crust together with a nucleonic
EOS below a matching density nm establishes Rmax(M ). Ex-
tremes are again found by assuming c2

s,match = 1 for densities
above nm, for which the EOS is now ε = εm + P − Pm. As-
suming εm = εsat, and that Pm is given by χEFT-N3LO, the
upper bounds are R1.4,max ≈ 15.1 km and R2.0,max ≈ 16.2 km
(see Fig. 6 where nm = nsat), which are nearly identical to the
case shown in Fig. 16 with a slightly different value of Pm at
εm = εsat. These values are not in tension with observations,
and with increasing nm, the corresponding upper bounds on
R1.4 and R2.0 decrease. For the same εm or nm, Mmax is not
sensitive to the value of Pm or the nucleonic EOS between
the crust and nm, and is close to that of the case P0 = 0
(self-bound stars) for the causal EOS; see also Fig. 2.

The merger events GW190425 and GW190814 are each
consistent with at least one component �2.5 M� which
could be either a massive NS or a low-mass BH, although
GW190425 could instead involve two ∼1.7 M� NSs. Should
either system contain a NS with M � 2.5 M�, the implica-
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TABLE I. Maximum mass solutions for the EOS Eq. (A9) with
P0 = 0. The last two columns give the minimum radii in km for
1.4 M� and 2.0 M� stars, respectively, assuming Mmax = 2.6 M�.

c2
s xmax,s ymax,s zmax,c Rmin,1.4 Rmin,2.0

1 0.2405 0.08513 2.023 9.75 10.8
5/6 0.2329 0.07992 1.884 10.1 11.2
2/3 0.2234 0.07328 1.705 10.7 11.7
1/2 0.2105 0.06439 1.499 11.6 12.7
1/3 0.1908 0.05169 1.277 13.3 14.5

tions would be that the conformal limit c2
s � 1/3 is almost

certainly violated (since nm is likely larger than nsat); if nm >

1.5 nsat (2.0 nsat ), then the average c2
s above nm should be

>0.5 (0.67). More importantly, to also satisfy the small binary
tidal deformability inferred from GW170817, nm � 1.65 nsat

(could be lowered if there is sudden softening in the EOS
induced by a strong first-order transition) and c2

s,match � 0.6
are necessary. These conditions are typically not satisfied
by most microscopic quark models unless parametrizations
with explicit large sound speeds, or some crossoverlike
transitions that can be realized in, e.g., quarkyonic mat-
ter, are assumed. Even in the crossover scenario, severe
constraints would follow and require fine-tuning of model
parameters.

Assuming Mmax � 2.6 M�, we find Rmin(1.4 M�) >

9.75 km and Rmin(2.0 M�) > 10.8 km (Table I). If instead an
upper limit c2

s < 1 is assumed so that ε = ε0 + P/c2
s , then

Rmin(M ) and Mmax depend sensitively on c2
s and decrease

with it. For the case c2
s = 1/3 and ε0 = εsat, for exam-

ple, Mmax = 2.48 M�, Rmin(1.4 M�) = 12.8 km, and RMmax =
13.3 km (Fig. 16).

We showed that positive values of 	R = R2.0 − R1.4,
potentially possible with NICER, would indicate low match-
ing densities �2.0 − 2.5 nsat and relatively large values of
c2

s,match � 0.45 − 0.6, which would also imply large values
of Mmax. In the absence of a dramatic stiffening of the EOS
near 2.0 nsat, the expectation is that 	R < 0. This is usually
the case if extrapolations based on nucleoniclike models are
used up to even higher densities and/or there is extra softening
below Mmax.

Our studies have highlighted the interplay of Mmax, the
radii of NSs, and the role of the nucleonic EOS for densities
beyond nsat. We also have illustrated that systematic order-
by-order calculations up to N3LO in the χEFT expansion
provide an EOS for NSM up to ∼2.0 nsat whose EFT trunca-
tion errors [29,30] are small enough to have relatively minor
influence on our major conclusions. Nevertheless, our results
also reveal that theoretical studies at nB � 2 nsat can have a
significant impact on NS properties, especially on the correla-
tion between Mmax and the NS radii. Detailed studies of EFT
truncation errors at these higher densities and for a wide range
of chiral interactions would be valuable. This requires the
development of improved order-by-order χEFT NN and 3N
potentials within different regularization schemes [120–122].
Further, models that include additional degrees of freedom
such as pions, hyperons, and quarks (while still being able to

accommodate massive NSs) can provide new insights but need
to be improved. Work along these lines is in progress. The
advances in nuclear-matter calculations from χEFT at low
densities (see, e.g., Refs. [31,123]) combined with Bayesian
uncertainty quantification (see, e.g., Refs. [29,124,125]) will
enable astrophysical applications over a wide range in density
and proton fraction, which would soon be confronted with
x-ray, radio, and GW observations.
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APPENDIX A: BOUNDS IMPOSED BY CAUSALITY

The assumption of causality, i.e., that the maximum sound
speed cs = √

dP/dε is unity in units of c, can establish rela-
tions limiting both minimum and maximum radii, as functions
of mass, for NS. These limits will explicitly depend on as-
sumptions concerning the NS maximum mass Mmax. These
causal bounds can be improved with the consideration of
nuclear physics inputs as will be discussed in Sec. III. The
causality limit is imposed by using the EOS

P(ε) = P0 + (ε − ε0) (A1)

for the pressure P > P0 and the energy density ε > ε0.
The minimum radius as a function of mass Rmin(M ) for

any EOS is conjectured [126] to result from using Eq. (A1)
with P0 = 0, P = 0 for ε � ε0 (i.e., a self-bound star). In this
case, the EOS has a single parameter (ε0) and solutions of
the Tolman-Oppenheimer–Volkoff (TOV) equation [127,128]
scale with it. Letting m be the mass enclosed within the radius
r, one can define

r = x
c2

√
Gε0

, m = y
c4√
G3ε0

, and P = zε0, (A2)

where y(x) and z(x) are dimensionless functions, with the
boundary conditions yc = y(x = 0) = 0 and zc = z(x = 0) >

0 at the stellar center, and ys = y(x = xs) and z(x = xs) = 0
at the stellar surface xs. The quantities ys and xs depend on zc.
For small xs, ys ∝ x3

s , as expected. It should also be noted that
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the EOS Eq. (A1) implies that the baryon number density is

nB = n0

√
ε + P

ε0 + P0
, (A3)

with n0 = (ε0 + P0)/μ0 and μ0 being the baryon chemical
potential at ε0.

In the case that P0 = 0, the central baryon density is ncent =
n0

√
1 + 2zc. Also, the maximum mass configuration occurs

for dys/dxs = 0, or when xmax,s = 0.2405, ymax,s = 0.08513,
and zmax,c = 2.023 (and therefore nmax,c/n0 = 2.246). The
maximum mass can then be expressed as

Mmax = ymax,sc4√
G3ε0

� 4.09
√

εsat

ε0
M�, (A4)

and the radius of the maximum mass configuration is

RMmax = xmax,sc2

√
Gε0

� 17.1
√

εsat

ε0
km. (A5)

The central energy density for the maximum mass configura-
tion is εmax,c = (zmax,c + 1) ε0, or using Eq. (A4) to eliminate
ε0,

εmax,c � 50.8

(
M�

Mmax

)2

εsat, (A6)

where εsat � 150 MeV fm−3 is the energy density at nsat. This
must be the largest energy density found in any NS and it
scales with M−2

max. The maximum baryon density is

nmax,c � 37.6
mB

μ0

(
Mmax

M�

)2

nsat, (A7)

where μ0 ∼ mB, the baryon mass. As an example, if one
assumes that Mmax = 2.6 M� and μ0 = mB, then it is found
that ε0 = 2.475 εsat, εmax,c = 7.48 εsat , and nmax,c = 5.56 nsat .

The dimensionless M-R curve for the causal self-bound
configuration is thus defined by ys(xs). Its dimensionful radius,
as a function of mass, is conjectured to be the minimum radius
for any configuration, Rmin(M ). It scales with ε0 and therefore
with the assumed value of the maximum mass:

Rmin = GMmaxxs

ymax,sc2
= GMmax

ymax,sc2
y−1

s

(
ymax,s

M

Mmax

)
, (A8)

where y−1
s = xs is the inverse function. Rmin increases as

Mmax increases. The cases with Mmax = 2.6 M� and Mmax =
4.09 M� for which ε0 is 2.48 εsat and εsat, respectively, are
shown in Fig. 16. For the case that Mmax = 2.0 M� for which
ε0 = 4.2 εsat, we obtain Rmin(1.4 M�) = 8.2 km and RMmax =
8.4 km.

If the assumed maximum sound speed is less than c, then
Rmin(M ) will increase. Assuming the sound speed never ex-
ceeds a given value of cs, Rmin(M ) can be found using

P = P0 + c2
s (ε − ε0), (A9)

with P0 = 0 and P = 0 for ε < ε0. Once again, the TOV equa-
tion can be rendered into dimensionless form using Eq. (A2).

Now, however, the baryon number density becomes

nB = n0

(
P + ε

P0 + ε0

)1/(1+c2
s )

(A10)

and

ncent = n0
[
1 + zc

(
1 + c−2

s

)]1/(1+c2
s )
. (A11)

The dimensionless M-R curve ys(xs) changes, as do the
properties of the maximum mass configuration xmax,s, ymax,s

and zmax,c. Figure 16 shows M-R solutions for c2
s =

1, 5/6, 2/3, 1/2, and 1/3, all scaled so that Mmax = 2.6 M�.
In the case c2

s = 1, one finds

Rmin,1.4 = 9.75 km and Rmin,2.0 = 10.8 km. (A12)

Approximately, the minimum radii for smaller values of cs

scale as c−1/2
s [75], and for c2

s = 1/3, one finds that

Rmin,1.4 � 13.3 km and Rmin,2.0 � 14.5 km. (A13)

εmax,c/εsat is proportional to zmax,c + 1, which for c2
s < 1, is

seen to scale roughly as c3/2
s . Relevant properties of these

solutions are given in Table I.
Stars with P0 = 0 are often referred to as self-bound stars.

In contrast, normal NSs have a low-density crust with P0 > 0.
For normal stars, Rmin(M ) will be larger than those shown
in Fig. 16. Generally, the radius will increase with the as-
sumed values of ε0 and P0 for a given value of cs, and, to a
lesser degree, will also depend on the crust EOS for P < P0.
Most importantly, since Mmax and ε0 remain closely related,
Rmin(M ) will be very sensitive to the lower limit to Mmax.
Details and implications are discussed in Sec. III A.

Ironically, the maximum radius as a function of mass
Rmax(M ) can also be found by appending the same EOS
Eq. (A9) at a matching density nm or εm onto an assumed
lower-density (crust) EOS. This is because Eq. (A9) is the
stiffest possible EOS for an assumed maximum value of the
sound speed cs. Although the same EOS is used, the Rmin(M )
bound involves a finite surface energy density ε0 = εm, while
the Rmax(M ) bound is assumed to lack a discontinuity in ε

when appending the crust.4 The resulting Rmax(M ) trajec-
tory, and Mmax, will depend on the matching density εm and
pressure Pm, the crust EOS, and assumed maximum sound
speed cs, and both roughly scale as ε

−1/2
m . Since there is no

evidence that a transition to a nonhadronic EOS occurs for
densities smaller than εsat, a limiting set of Rmax(M ) curves
is found assuming εm = εsat. As the matching pressure Pm is
not negligibly small, Pm � 0.02 εsat for εm � εsat, the M − R
curve is considerably altered, and forms a maximum radius
trajectory Rmax(M ) which lies at a larger radius for each mass
than Rmin(M ), as can be seen by comparing the two solid
red curves for c2

s = 1 in Fig. 16. Rmax for c2
s = 1 can be

safely assumed to give, approximately, the largest possible
radii for normal NS (it varies with the assumed EOS below
εm). It is interesting that the maximum masses with εm = εsat

4Note that if a discontinuity in ε is assumed at εm, a smaller Rmax

trajectory is obtained, but one with a correspondingly smaller Mmax

as well. This situation is briefly discussed in Sec. III D.
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for a self-bound star (left red solid curve) and for a normal
star with a crust (right red solid curve) are nearly identical
and are substantially larger than 2.6 M�, for example. Lower
maximum masses are obtained if the matching density is in-
creased, which decreases Rmax(M ) as well. An observed upper
limit on Mmax below 4.09 M� will automatically alter the Rmax

boundary, however, because in this case either εm would have
to increase or cs would have to decrease to correspondingly
reduce Mmax.

The situation is similar if a lower fixed sound speed is
assumed. Figure 16 also displays Rmin(M ) and Rmax(M ) tra-
jectories for c2

s = 1/3 for the self-bound and realistic crust
cases (the left and right red dot-dashed curves, respectively),
which have smaller radii and Mmax values than for c2

s = 1.
Note that Rmax(M ) for c2

s = 1/3 (right red dot-dashed curve)
can become smaller than Rmin(M ) for c2

s = 1 and P0 = 0 (left
red solid curve) for M � 2.3 M�, suggesting that c2

s = 1/3
is incompatible with the assumption that Mmax = 2.6 M�; the
maximum value of c2

s must be larger than 1/3 in the interior
of a 2.6 M� star, or P0 > 0 (i.e., there is a crust), or Mmax <

2.6 M�.
A more realistic maximum radius boundary will depend

on both the matching density and the EOS below that den-
sity. In the next section we discuss realistic constraints on
this portion of the EOS stemming from theoretical studies
of NSM.

APPENDIX B: CHIRAL INTERACTIONS USED AND
THEIR NUCLEAR SATURATION PROPERTIES

The chiral nuclear interactions this work is based on were
constrained in Ref. [31] as follows: NN potentials by Entem,
Machleidt, and Nosyk [129] up to N3LO were combined with
3N forces at the same order and momentum cutoff so as to
construct a set of order-by-order NN and 3N interactions. The
two 3N low-energy couplings cD and cE , which govern the
intermediate- and short-range 3N contributions, respectively,
at N2LO were constrained by the triton binding energy and
the empirical saturation point of SNM. Several combinations
of cD and cE with reasonable saturation properties could be
obtained at N2LO and N3LO for the momentum cutoffs � =
450 and 500 MeV. A momentum cutoff is a typical scale in
the regulator function that is applied to χEFT interactions
to suppress contributions from high-momentum modes. Note
that the EFT breakdown scale �b is a physical scale inherent
to the EFT, whereas the results should not be sensitive to the
artificial scale �; in practice, however, this has not yet been
achieved in χEFT for infinite matter. The BUQEYE collab-
oration found that their results do not significantly dependent
on which cD and cE combination is chosen for a given momen-
tum cutoff. Furthermore, the 3N contributions proportional to
cD and cE vanish in PNM for nonlocal regulator functions
[130]. Consequently, they considered only one combination
for each cutoff, and focused their analysis on the Hamiltonian
with � = 500 MeV, while the results for the � = 450 MeV
interaction were provided in the Supplemental Material there.

We follow this strategy here, and note that the
residual cutoff dependence is well within the EFT
truncation-error estimates at the 1σ level; i.e., for

� = 450 MeV, PPNM(2.0 nsat ) = 17.29 ± 4.56 MeV fm−3

and EPNM(2.0 nsat ) = 42.86 ± 5.01 MeV, whereas for
� = 500 MeV, PPNM(2.0 nsat ) = 18.53 ± 5.14 MeV and
EPNM(2.0 nsat ) = 41.55 ± 5.77 MeV fm−3.

Experimental validation of χEFT predictions for the EOS
of bulk matter relies on comparisons to the empirical satura-
tion point, and constraints on the nuclear symmetry energy
and its derivative with respect to density at nsat. While the
region in the Sv-L plane predicted by the nuclear interactions
used in this work are well within the joint experimental con-
straint [29], the � = 500 MeV Hamiltonians—as discussed
in Ref. [31]—actually do not saturate inside the empirical
range for the saturation point, nsat = 0.164 ± 0.007 fm−3 with
(E/A)sat = −15.86 ± 0.57 MeV. Note, however, that this
empirical range was obtained in Refs. [31,44] from a set of en-
ergy density functionals, and thus only has limited statistical
meaning. The predicted 2σ confidence ellipses for the nuclear
saturation point at N2LO and N3LO are shown in Fig. 9 of
Ref. [30].

In contrast to the properties of neutron-rich NSM EOS,
nuclear saturation in SNM is sensitive to the short- and
intermediate-range 3N interactions at N2LO that do not con-
tribute to the PNM EOS; e.g., the 3N contact interaction (∝cE )
is Pauli-blocked in PNM [130]. Together with the fact that the
proton fraction is small, this means that the nuclear saturation
properties are of relatively minor importance for constructing
the NSM EOS. Nonetheless, a better understanding of nuclear
saturation properties may help identify and quantify system-
atic uncertainties in the nuclear interactions. This might also
lead to a better understanding of the link between (saturation)
properties of infinite matter and medium-mass to heavy nuclei
[120,121] to explain why χEFT potentials generally tend to
underestimate charge radii [122,131,132]. In this context, it
is worth noting that systematic EFT calculations of the EOS
of NSM, which is characterized by a small proton fraction,
would obviate the need to rely on the quadratic expansion
Eq. (1) (see, e.g., Ref. [133] in which the energy of adding
a proton to PNM was calculated). When such calculations
become available one can gauge the extent to which the
EOS of NSM is correlated with the empirical properties
of SNM.

APPENDIX C: SENSITIVITY TO EOS DENSITY RANGES

It is apparent that the limits to NS radii and tidal deforma-
bilities are sensitive to the EOS in the density range 1–3 nsat,
precisely where the restrictions from χEFT are important.
This is not surprising given the tight correlation between R1.4

and the NSM pressure for 1–2 nsat discovered by Ref. [2].
However, up to this point, we have assumed fixed sound
speeds above nm. In this section, we demonstrate that this
correlation is insensitive to the details of the assumed EOS at
all relevant densities; furthermore, we quantify this correlation
and extend it to include the quantities R2.0 and Mmax.

We evaluate these correlations by considering several
parametrization schemes to construct families of high-density
NSM EOSs at densities larger than about 0.5 nsat, the assumed
core-crust boundary. All configurations are assumed to have
a crust modeled with the SLy4 EOS [134]. Each EOS is
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given as a function of nB only and is implicitly considered
to represent β-equilibrium matter. The parameters for each
parametrization scheme are constrained to ensure causality,
c2

s � 0, a minimum value Mmax = 2.0 M�, a lower limit to the
neutron-matter energy and pressure suggested by the unitary-
gas conjecture [135] at all supra-nuclear densities, and upper
limits to the NSM energy and pressure at nsat implied by
experimental limits of Sv = 36 MeV and L = 80 MeV [95].
Note that the latter two constraints are broader than the NSM-
χEFT ±1σ constraints, so that the correlations we find are
conservatively expressed. Also, for each parametrization, we
have ensured a minimum of 15,000 realizations that satisfy
our constraints. We quantify a correlation in terms of the
covariance between two quantities A and B,

cov(A, B) =
∑
i, j

(Ai − Ā)(Bj − B̄)

σAσB
. (C1)

The σ ’s represent standard deviations. We take A = P(nB) and
B = R1.4, R2.0, or Mmax. Here, j ranges over all realizations
of a given parameterized EOS and i over all values of nB

smaller than the central density of the relevant configuration
for B.

Figure 17 shows the correlations between the pressure
P(nB) and R1.4, R2.0 and Mmax as functions of the baryon
number density nB for a variety of NSM parametrizations in
common use. The parametrizations “n-EXP” and “k-EXP”
are three-parameter Taylor expansions of the NSM energy in
terms of nB and n1/3

B [135], respectively. “n-EXP” is com-
monly used to model the nuclear energy around saturation;
we take a Taylor expansion up to the fourth-order term
[(nB − nsat )/nsat]4. Two of the coefficients are set to match
the crust EOS, leaving three free parameters. “k-EXP” con-
tains a kinetic term ∝(nB/nsat )2/3 and a higher-order term
up to (nB/nsat )7/3. It also has three free parameters after us-
ing two coefficients to match the crust EOS. “Spectral4” is
the four-parameter spectral decomposition method [136–138].
“Quarkyonic” has two parameters, � and κ , specifying the
quarkyonic momentum shell thickness and the transition
density, and one parameter (effectively controlling L) for
the nucleon potential [59]. “PP3 + 1” is a four-parameter
piecewise-polytrope with three segments appended to the
crust [139]. The density n1 separating the first two segments is
a parameter, while n2 and n3 are chosen to scale as n2 = 2 n1

and n3 = 2 n2. The corresponding bounding pressures P1, P2,
and P3 are the other three free parameters.5 “RMF” is a rela-
tivistic mean field model based on the FSU2 EOS [140] and
contains σ , ω, and ρ meson exchanges. It has seven coupling
constants, of which three are fixed by saturation properties of
SNM; the remaining four free parameters can be mapped to
Sv , L, the effective nucleon mass at the saturation density, M∗,
and the ω self-interaction coupling ζ .

The covariance parameter cov(P(nB), R1.4) peaks
around nB = 1.65+1.32

−0.68 nsat, whereas cov[P(nB), R2.0] and

5The additional parameter n1 greatly increases the flexibility of
PP3 + 1 compared to the three-parameter (P1, P2, P3) set PP3 often
employed [139].

FIG. 17. Correlations among P(nB), R1.4, R2.0, and Mmax for six
EOS parametrizations (see text for details). “Average” refers to the
mean of all models. Blue histograms show the summed distributions
of the central densities of the relevant stars.

cov[P(nB), Mmax] peak around nB = 2.17+2.14
−0.81 nsat and

nB = 3.90+2.00
−1.81 nsat, respectively. The uncertainties correspond

to 50% of the peak covariance. Figure 17 also quantifies the
extent to which the central baryon densities, and the width of
their distributions, increase with the NS mass. Notably, the
central baryon number densities peak at about 30% higher
density than do the peak covariance in all three cases, but the
widths of the central density distributions rapidly increase
with NS mass.

The correlation between the pressure P(nB) and R1.4 is
strongest between nsat and 3.0 nsat, as expected, and that be-
tween the pressure and R2.0 is strongest at about 40% higher
densities. Significantly, these results appear to be relatively
insensitive to the details of the parametrizations. The standard
deviations of both cov[P(nB), R1.4] and cov[P(nB), R2.0] for
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the six parametrizations are small, being σcov,R < 0.2 for all
densities and σcov,R < 0.05 near the covariance peaks. The
bottom line is these results demonstrate, at present, that χEFT
greatly constrains R1.4 and, to a slightly lesser degree, R2.0.
The situation is somewhat different for Mmax, where pressures
at densities between 2.0 nsat and 6.0 nsat dominate. In addition,
the standard deviation of cov[P(nB), Mmax] among the six
parametrizations are somewhat larger, being σcov,Mmax < 0.25

at all densities and σcov,Mmax < 0.1 near the covariance peak.
Thus, the Mmax results are more model-dependent, and the
significant densities likely lie above the validity range for
χEFT. However, further refinement of EFT techniques at high
densities combined with Bayesian uncertainty quantification
might change that situation by providing improved constraints
on all three quantities, although the EFT truncation error in-
creases rapidly beyond nsat.
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