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Observables of spheroidal magnetized strange stars
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We study stable spheroidal configurations of magnetized strange stars using an axially symmetric metric in
spherical coordinates that uses a gamma parameter to link the anisotropy in the equation of state due to the
magnetic field with the deformation of the star. The stars are composed by magnetized strange quark matter
described within the framework of the MIT bag model. Their masses, radii, eccentricity, redshift and mass
quadrupole moment are computed. Results are compared with spherical strange star solutions obtained with
Tolman-Oppenheimer-Volkoff equations and observational data of strange star candidates. In the spheroidal
model the observables depend directly on the deformation of the star, and, even though it is small, the
observables strongly deviate from the corresponding spherical configurations. Thus, the highest values of the
mass quadrupole moment correspond to the intermediate mass regime. These differences might allow us to
discriminate between models with and without magnetic field when compared with observations.
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I. INTRODUCTION

The core of neutron stars (NSs) reach densities beyond that
of nuclear saturation (n0 = 0.16 fm−3), which may induce
phase transitions from hadronic to quark matter. There are at
least two possible quark-related phases within a NS: (a) coex-
isting hadronic and quark matter at a finite transition pressure
and (b) strange quark matter, which is speculated to be the true
ground state of strongly interacting matter (Bodmer-Witten’s
conjecture) [1,2].

Experimentally, the quark-gluon plasma, in the limit of
high temperatures and low densities, has been explored in
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory (BNL) and in the Large Hadron Collider
(LHC) at CERN. Meanwhile, the opposite regime of low
temperatures and high densities will be studied in two ex-
perimental facilities that are currently under construction, the
Facility for Antiproton and Ion Research (FAIR) at GSI and
the Nuclotron-based Ion Collider Facility (NICA) at JINR.
Nevertheless, since NSs might be the natural habitat for quark
matter in the latter regime, the properties of matter under
those conditions could also be inferred through astronomical
observations.

If the Bodmer-Witten conjecture holds, a hadronic star
would only be possible in a long metastable state, even-
tually decaying into self-bounded strange stars (SSs) [3,4].
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Otherwise, hybrid stars [5,6], combining hadrons and quarks,
are conceivable as a fully stable constituent of a NS.

SSs models are interesting because they describe compact
objects with maximum masses around 1.5M� and radius of
4–8 km that could account for some observations of cold,
dense, and small compact objects (COs) that do not fit the
standard NSs models (see Table I) [7–13]. There are many
microscopic models proposed for SSs, all of which differ by
how the strong interaction is described and what sort of SQM
phases are considered within the star [14].

On the other hand, hybrid stars have received a lot of
attention because they can reach 2M�, which is a robust
observational constraint on NSs masses [15].1 Recently, these
models have gained a new support due to the works by Annala
et al. [17], where a wide set of theoretical equation of states
(EoSs) from particle and nuclear physics is compared with
benchmark results stemming from gravitational wave (GW)
measurements of NS collisions. According to their results, a
star with mass ≈2M� and radius ≈12 km is more likely to
have a quark core of approximately 6.5 km, than to be formed
exclusively by baryons.

The study of SSs starts by seeking the SQM EoS. Inside
SSs quarks might be unpaired or paired forming a color super-
conductor state [19]. However, so far there are neither ab initio
nor perturbative QCD calculations that lead to the desired EoS
in the regime of high densities and zero temperature [20].
Consequently, SQM inside COs is usually described through
phenomenological models that mimic the main features of
QCD [20]. One of the most used is the MIT bag model [21],

1Some hadronic models can explain objects with more than 2M�
(see Ref. [16] and references therein).
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TABLE I. Masses M and radii R for observed candidates of SSs.

Observed object M (M�) R (km)

HerX-1 1.73+0.358
−0.173 [13] 8.10 ± 0.41a [9]

4U1608-52 1.74 ± 0.14 [10] 9.30 ± 1.00 [10]
4U1820-30 1.58 ± 0.06 [11] 9.10 ± 0.40 [11]
4U1538-52 1.02 ± 0.17 [18] 7.866 ± 0.210a [9]
SMC X-1 1.21 ± 0.12 [18] 8.831 ± 0.09a [9]
LMC X-4 1.57 ± 0.11 [18] 8.301 ± 0.200a [9]
Cen X-3 1.57 ± 0.16 [18] 9.178 ± 0.130a [9]

aThe radii are obtained considering the masses as cited in Ref. [9], with a specific model for strange stars so they must be considered as
estimated values.

where quarks are considered as quasifree particles confined
into a “bag” and having fixed masses. This model reproduces
confinement and asymptotic freedom with the use of only one
external parameter, the bag energy BBag.

On the other hand, compact objects have extreme magnetic
fields [22]. The observed surface magnetic fields in neutron
stars are in the range of 109–1015 G [23,24], while their inner
magnetic fields are estimated to be as high as 5 × 1018 G
[20,25]. As is well known, the energy-momentum tensor of
matter under a magnetic field is anisotropic [19], a feature
that can be interpreted as the gas exerting different pres-
sures in the parallel and perpendicular directions with respect
to the magnetic axis [26], and that leads to nonspherical
stars [27–30]. To model the structure of magnetized COs,
we have previously used the Tolman-Oppenheimer-Volkoff
(TOV) equations independently for each pressure [31–34],
and an approximate solution of Einstein’s equations for an
axially symmetric metric in cylindrical coordinates [20]. This
leads to the description of two different stellar sequences (one
for each pressure), which prevents us from calculating the
total mass of the star. That is why, as an attempt to properly
describe the macroscopic structure of magnetized COs, we
derived a set of TOV-like structure equations from an axially
symmetric metric in spherical coordinates, the γ equations
[30], that allow us to describe spheroidal objects as long as
their shape is nearly spherical. These equations have been
used to model white dwarfs [30], the hypothetical magnetized
BEC stars [35] and, preliminary, strange stars [34].

In this paper we return to SSs [31,32,34], emphasiz-
ing the magnetic-field effects on the stability of the SQM
and the spheroidal stellar configurations. In addition, we com-
pute the eccentricity, the redshift, and the mass quadrupole
moment and compare them with those of spherical strange
stars. This study is the starting point of a more ambitious
project related to the study of magnetized hybrid stars.

In Sec. II we analyze the stability of magnetized SQM in
astrophysical conditions and its dependence on the density,
the bag energy and the magnetic field. Besides, we revisited
the magnetized EoS for SSs and discuss the magnetic-field
effects on the energy density and pressures. The γ equations
are presented in Sec. III with their corresponding numerical
results for magnetized strange stars. Section IV is devoted
to the computation of the redshift and the mass quadrupole
moment. Concluding remarks are given in Sec. V.

II. EQUATION OF STATE OF MAGNETIZED
STRANGE STARS

We consider SSs composed of SQM and electrons under
the action of a uniform and constant magnetic field oriented
in the z direction, B = (0, 0, B). This approximation for the
magnetic field is reasonable for the construction of the EoS
since the characteristic variation length of the macroscopic
magnetic field is much larger than the microscopic magnetic
scale [36]. The global configuration of a neutron star’s mag-
netic field is much more complex, since it is known that purely
poloidal or toroidal fields are unstable and, therefore, realistic
stars should be constructed with mixed fields [37,38]. Never-
theless, in this work, we assume a pure poloidal configuration
(uniform inside the star) for the magnetic field of the SSs as
a first approximation to show how the magnetic field modifies
the observables of the stars. This allows us to make direct con-
nections between its microscopic and macroscopic effects on
the stars and contribute to an easier physical understanding of
our results in a way that could be enlightening when working
with more complex magnetic-field configurations.

As pointed out before, we use the phenomenological MIT
bag model [21], where quarks are considered as quasifree
particles confined to a “bag” that reproduces the asymptotic
freedom and confinement through the Bbag parameter, a bind-
ing energy which is added to the quark energy and subtracted
from their pressure [21]. In this case, we fix the quark masses
and charges to mu = md = 5 MeV, ms = 150 MeV, me = 0.51
MeV, eu = 2

3 e, and ed = es = − 1
3 e.

For a magnetized gas of quarks and electrons, the pressure
and the energy density are obtained from the thermodynami-
cal potential [31]

� f (B, μ f , T ) = −e f d f BT
∫ ∞

−∞

d p3

4π2

∞∑
l=0

gl

×
∑

p4

ln
[
(p4 + iμ f )2 + ε2

l f

]
, (1)

where l stands for the Landau levels and f = e, u, d, s for the
electrons and each quark flavor; d f is the flavor degeneracy
factor2 and gl = 2 − δl0 includes the spin degeneracy of the

2de = 1 and du, dd , ds = 3.
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fermions for l �= 0. The sum over p4 corresponds to Matsub-
ara frequencies p4 = T (2n + 1)π , with n = 0,±1,±2, . . ..
Moreover, T is the absolute temperature, while μ f , m f ,
and e f are the chemical potential, the mass and the charge
of each particle, respectively. The spectrum of charged
fermions coupled to a magnetic field is εl f = (p2

3 + 2|e f B|l +
m2

f )1/2 [31].
Equation (1) can be divided in two contributions:

� f (B, μ f , T ) = �vac
f (B, 0, 0) + �st

f (B, μ f , T ), (2)

with

�vac
f (B, 0, 0) = −e f d f B

2π2

∫ ∞

0
d p3

∞∑
l=0

glεl f , (3)

�st
f (B, μ f , T ) = −e f d f BT

2π2

∫ ∞

0
d p3

×
∞∑

l=0

gl ln[1 + e−β(εl f ±μ f )]. (4)

The vacuum contribution (3) does not depend on the chemical
potential nor on the temperature and presents an ultraviolet
divergence that must be renormalized [39], in the strong-field
approximation (B � Bc

f ), the result is

�vac S
f (B, 0, 0) = d f m4

f

24π2

(
B

Bc
f

)2

ln
B

Bc
f

, (5)

while in the weak field (B � Bc
f ) we have [40]

�vac W
f (B, 0, 0) = − d f m4

f

90(2π )2

(
B

Bc
f

)4

. (6)

In Eqs. (5) and (6), Bc
f = m2

f /e f is the critical magnetic field.3

For electrons Bc
e ≈ 1013 G while for quarks up, down, and

strange we have Bc
u ≈ 1015 G, Bc

d ≈ 1016 G, and Bc
s ≈ 1019 G,

respectively.
COs have temperatures much smaller than the Fermi tem-

perature of the gases that compose them [14]. Hence, a good
approximation is to compute the thermodynamical potential
of these gases in the degenerate limit (T → 0) [14,22]. In
that case, the statistical part of the thermodynamical potential
becomes

�st
f (B, μ f , 0) = −e f d f B

2π2

∫ ∞

0
d p3

×
∞∑

l=0

gl (μ f − εl f )�(μ f − εl f ), (7)

where �(ζ ) is the unit step function. From Eq. (7), we obtain

�st
f (B, μ f , 0)=−e f d f B

4π2

lmax∑
0

gl

[
μ f pl

f −
(
εl

f

)2
ln

(
μ f + pl

f

εl
f

)]
,

(8)

3The magnetic field at which the cyclotron energy of the particles
is comparable to their rest mass. For electrons this is the so-called
Schwinger field.

where pl
f = [μ2

f − (εl
f )2]1/2 is the fermi momentum of the

particles, εl
f = (m2

f + 2qBl )1/2 their ground-state energies,

and lmax = I[
μ2

f −m2
f

2e f B ] the maximum number of occupied Lan-
dau levels for fixed magnetic field and chemical potentials.
I[z] denotes the integer part of z.

Due to the high fermionic densities inside the stars, the
vacuum contribution Eq. (5) is negligible with respect to the
statistical one (8) [19].

To illustrate this fact, we fixed the baryonic density and
the magnetic field to nB = 5n0 and B = 5 × 1017 G, respec-
tively, in order to compare �vac(B, 0, 0) = ∑

f �vac
f (B, 0, 0)

with �st(B, μ f , 0) = ∑
f �st

f (B, μ f , 0). The contribution to
the vacuum of the electrons and quarks up and down has to
be evaluated using the strong magnetic-field approximation
while the s quarks are in the weak magnetic-field one. The
numerical values show that �vac(B, 0, 0) ≈ 0.07 MeV/fm3

is much smaller than �st(B, μ f , 0) ≈ 232 MeV/fm3. Hence,
Eq. (2) is led by the statistical contribution (4) and
� f (B, μ f , 0) = �st

f (B, μ f , 0). From this point forward the st
superindex will be neglected.

Strange quark matter inside the star must be in stellar equi-
librium [31]. So, we impose β equilibrium, charge neutrality,
and baryon number (nB) conservation to the system in terms
of the particle densities Nf = −∂� f /∂μ f and the chemical
potentials. These conditions read [31]

μu + μe − μd = 0, μd − μs = 0, (9a)∑
f

e f Nf = 0,
∑

i=u,d,s

Ni = 3nB. (9b)

With these considerations, the magnetized SSs EoSs are

E =
∑

f

[� f + μ f Nf ] + Bbag + B2

8π
, (10a)

P‖ = −
∑

f

� f − Bbag − B2

8π
, (10b)

P⊥ = −
∑

f

[� f + BM f ] − Bbag + B2

8π
, (10c)

where M f = −∂� f /∂B is the magnetization. In Eqs. (10) we
can easily identify three different contributions. The first one
is given by the sum over the thermodynamical quantities of
the species and corresponds to the statistical contribution of
each kind of particle. In the case of the perpendicular pressure
(10c), this term includes a contribution that comes from the
particle magnetization: −BM f [41]. The second terms in the
EoS, ±Bbag, are those ensuring asymptotic freedom and con-
finement for quarks [2,20]. Finally, the last terms in Eqs. (10)
are the magnetic-field pressures and energy density PB

⊥ =
EB = −PB

‖ = B2/8π [19], or Maxwell contribution. These
terms are included since they also participate in the gravita-
tional stability of the star.
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FIG. 1. (a) Stability window for magnetized SQM in the plane B vs BBag for fixed values of baryon density nB/n0, taking n0 = 0.16 fm−3.
(b) Energy per baryon (E/nB) as a function of the perpendicular pressure (P⊥) at B = [0, 5 × 1017, 1018] G and for fixed values of the BBag =
[65, 75] MeV/fm3.

Equations (10) allow us to analyze the influence of the
magnetic field in the stability of SQM, so that

E

nB

∣∣∣∣
B

SQM

<
E

nB

∣∣∣∣
B=0

SQM

<
E

nB

∣∣∣∣
Fe56

= 930 MeV, (11)

is fulfilled inside the star. Fixing E/nB|BSQM = 930 MeV leads
us to the stability window of SQM in the plane B vs BBag.
This is shown in the Fig. 1(a), where the SQM is stable for the
pairs of B vs BBag below the curves and unstable otherwise.
We can also see from this plot that increasing the magnetic
field and the baryon density augments the stability region. So,
we can say that magnetic-field contributes to stabilize SQM
with respect to nuclear matter in astrophysical environments,
favoring the existence of SSs. This conclusion is reinforced by
the results shown in Fig. 1(b), which illustrates the energy per
baryon as a function of the perpendicular pressure. At P⊥ = 0,
E/nB|BSQM < E/nB|Fe56 , i.e., the magnetic field increases the
stability region, while the BBag diminishes it.

A more detailed stability analysis should take into account
the BBag dependency with the magnetic field and the baryon
density [19]. Nevertheless, the theoretical attempts to find
those dependencies or to constrain the BBag values are yet in-
conclusive and very model dependent [20]. Therefore, in what
follows we take BBag as an independent external parameter and
study SSs for two fixed, and reasonable, values of it: 65 and
75 MeV/fm3.

The SQM EoS obtained for those values of BBag at B =
[0, 5 × 1017, 1018] G are depicted in Fig. 2. Note that at
higher values of the magnetic field, the difference between
the perpendicular and parallel pressures is more appreciable.
On the other hand, for a fixed B, the pressures decrease when
increasing the BBag. These effects on the EoS will be reflected
in the macroscopic structure of the star, as we will see in the
next section.

III. MAGNETIZED STRANGE STARS: MASS AND RADII

The axial symmetry imposed in the star by the magnetic
field is irreconcilable with the spherical symmetry of stan-
dard TOV equations. Consequently, it is desirable to use of
axisymmetric metrics if one wishes to describe the structure of
magnetized COs (see Ref. [30] and references therein). Here,
we follow and use a set of axisymmetric structure equations
derived from the so-called γ metric [30]:

ds2 = −[1 − 2M(r)/r]γ dt2 + [1 − 2M(r)/r]−γ dr2

+ r2 sin θdφ2 + r2dθ2, (12)

where γ = z/r accounts for the deformation of the matter
source with respect to the spherical shape and parametrizes
the polar radius z in terms of the equatorial radius r.

Starting from this metric and considering the anisotropic
energy-momentum tensor of magnetized matter, the following
structure equations are obtained [30]:

dM

dr
= 4πr2 (E‖ + E⊥)

2
γ , (13a)

dP‖
dz

= 1

γ

dP‖
dr

= − (E‖ + P‖)
[

r
2 + 4πr3P‖ − r

2

(
1 − 2M

r

)γ ]
γ r2

(
1 − 2M

r

)γ , (13b)

dP⊥
dr

= − (E⊥ + P⊥)
[

r
2 + 4πr3P⊥ − r

2

(
1 − 2M

r

)γ ]
r2

(
1 − 2M

r

)γ . (13c)

This system of equations describe the variation of the
mass and the pressures with the spatial coordinate r for an
anisotropic axially symmetric CO as long as the parameter γ

is close to one [30,42]. Note that they are coupled through
the dependence with the energy density and the mass. To
solve Eqs. (13), one starts from a point in the star’s center
with Ec = E (r = 0), P‖c = P‖(r = 0), and P⊥c = P⊥(r = 0),
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FIG. 2. EoS for magnetized SSs at B = [0, 5 × 1017, 1018] G. (a) BBag = 65 MeV/fm3. (b) BBag = 75 MeV/fm3.

taken from the EoS, and ends the integration at P‖(Z ) = 0
and P⊥(R) = 0, the conditions that define the radii of the star.
But before doing so, one should deal with the fact that γ is
a free parameter that cannot be obtained from Eqs. (13). To
overcome this difficulty, in Ref. [30] we proposed the ansatz
γ = P‖c/P⊥c , which connects the geometry of the system with
the anisotropy produced by the magnetic field. This interpre-
tation of γ is based on the fact that, for spherical stars a lower
central pressure leads to a smaller radius for a fixed central
energy density, together with the relation γ = z/r. This ansatz
implies that the shape of the star is only determined by the
anisotropy of the EoS in its center and neglects the depen-
dence of the deformation on the pressures inner profiles. In
addition, when setting B = 0, P⊥ = P‖, γ = 1 and the stan-
dard nonmagnetized solution for the structure of COs (TOV
equations) is recovered. Therefore, depending on the EoS, the
parameter γ will be >1 (P‖c > P⊥c ), =1 (P‖c = P⊥c ), or <1
(P‖c < P⊥c ), and the corresponding stars will be prolate, spher-
ical, or oblate, respectively. Moreover, our ansatz inherits the
restriction that γ must be close to 1 and this limitation proved
to be essential to obtain reasonable results [30].

In Fig. 3 we show the solutions of Eqs. (13) with the use
of Eqs. (10) for several values of the magnetic field and the
bag energy. They are compared with the nonmagnetized case
and with the TOV solutions considering the pairs (E , P⊥) and
(E , P‖) as independent EoS. In the case of TOV solutions,
using one EoS or the other leads to different mass-radius rela-
tions, whose differences increase with the magnetic field. For
a given energy density range, a higher pressure implies bigger
and massive stars. Also, for a fixed value of the magnetic field
and the BBag, the difference in the stars size obtained with the
pairs (E , P⊥) and (E , P‖), is larger for heavier stars. This sug-
gest that more massive stars will have a greater deformation.
Unlike TOV equations, Eqs. (13) allow us to model the star
as a spheroidal with an equatorial radius R and a polar radius
Z . So, in Fig. 3 the M − R and M − Z curves correspond to a
unique sequence of stars, while the M − R⊥ and the M − R‖
curves stand for two different sequences with EoS (E , P⊥) and
(E , P‖), respectively.

The stellar configurations obtained with Eq. (13) are oblate
objects (R > Z), as expected since P⊥ > P‖ (see Figs. 2 and
3). On the contrary of what happens with TOV solutions, for
which the difference between R⊥ and R‖ increases with the
mass, the deformation of our spheroidal stars—the differences
between the equatorial and the polar radius—decreases with
the mass [34] (see Fig. 3). Hence, the importance of build-
ing a model, as the one we present, that takes into account
both pressures simultaneously. Note also in Fig. 3 that, in
the curves with B = 5 × 1017 G (for M � M�) and B = 1018

G, a lower mass corresponds to a bigger equatorial radius.
This behavior contradicts the typical proportionality between
masses and radii for nonmagnetized strange stars M ∼ R3 and,
since our structure equations are an approximation to describe
almost spherical stars, i.e., stars whose mass-radius behavior
are close to that of the B = 0 case, it needs further consid-
eration. The dot in the curves at B = 5 × 1017 G denotes the
largest value of equatorial radius for which our results are still
reasonable and it corresponds to the minimum of the R(E )
curve, as will be discussed below.

Figure 4(a) displays the equatorial radius R as a function
of the central energy density (Ec) of the stars for BBag =
65 MeV/fm3 and the magnetic field in the range of B = 0 to
B = 1018 G, with steps of 1 × 1017 G. For B = 0, the curve
presents a maximum, at whose left R decreases with Ec. Such
behavior is kept for relatively weak fields B � 3 × 1017 G.
Yet, for magnetic fields of 3–6 × 1017 G, there is a minimum
in the R vs Ec curve, shown as dots in Fig. 4(a). Below the
central energy density corresponding to the minimum, the
equatorial radius increases with decreasing energy and the
curve departs from the B = 0 behavior, thus widening the
difference between the polar and the equatorial radii in a
drastic way. Therefore, this minimum in R sets the maximum
allowed deformation by our model, i.e., the minimum value of
Ec for which our results are still reasonable. As a consequence,
it provides a physical criterion to separate the regions where γ

can be considered close or far from one for a given magnetic
field and bag energy. In Fig. 4(b), the dots highlight the values
of γ corresponding to the minimum in R for each EoS, and
lower values of γ should not be considered.
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FIG. 3. Solutions for spheroidal configurations in comparison with TOV solutions and the nonmagnetized configuration at B = 5 × 1017

G and B = 1018 G, where r represents both radii R and Z . (a) Bbag = 65 MeV/fm3. (b) Bbag = 75 MeV/fm3 [34].

For strongest magnetic fields (�6 × 1017 G), the extrema
of the R vs Ec disappear, with the equatorial radius always in-
creasing with decreasing central energy density. This explains
the extremely odd behavior of the B = 1018 G curve in Fig. 3
with respect to the spherical case and indicates that, for such
magnetic fields, γ is too far from one in the low-Ec region to
be admitted by our model. At higher central energy densities,
even though γ gets closer to one, the model is not trusted
for B = 1018 G, and the solutions are unstable, as shown in
Sec. III A.

It is interesting that other models of neutron star EoSs
and structure equations also present difficulties when treating
magnetic fields of the order of or higher than 1018 G. For
example, in Ref. [20], where the anisotropy is considered
through a metric in cylindrical coordinates, the metric coef-
ficients diverge for B � 1.8 × 1018 G. Besides, the theoretical

limit established by the Virial theorem for the maximum mag-
netic field that can be supported by a NS is precisely B �
1018 G [43]. Therefore, our results seem to support this limit,
indicating the relevance of going deeper to better understandf
the physical reasons behind it.

The effects of varying BBag and the magnetic field on the
deformation of the stars can also be seen through the elliptic-
ity, defined as [29]

ε =
√

1 − γ . (14)

In the spherical case, γ → 1 and ε → 0, while for the most
deformed stars, γ → 0 and ε → 1. In Fig. 5 we show the
ellipticity ε as a function of the mass and the central energy
density and show that the increase in the magnetic field and in
BBag leads to a greater deformation of the star.

FIG. 4. Equatorial radius (a) R and (b) γ as a function of the central energy density for Bbag = 65 MeV/fm3. The gray lines correspond to
different values of the magnetic field between B = 1017 G and B = 1018 G, taking steps of 1 × 1017 G.
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FIG. 5. Elipticity ε as a function of (a) mass M and (b) energy density E at B = [0, 5 × 1017, 1018] G and for fixed values of BBag =
[65 MeV/fm3, 75 MeV/fm3].

A. Stability of the solutions of the γ equations

The mass-radii curves obtained for SSs with Eqs. (13)
correspond to stellar configurations in hydrostatic equilibrium
[44]. However, equilibrium does not necessarily imply sta-
bility [22,45]. To find which of those solutions represents
stable COs we use two criteria. The first is related to the
stability with respect to radial oscillations and requires that
dM/dEc > 0 [22,46], so the CO will not fall apart. Although
this is the usual stability condition corresponding to isotropic
stars, stability studies of some anisotropic systems shows that
it may hold for some nonspherical stars [47–49]. Here, we
apply it to our model based on the assumption that, for the
validity of the γ equations, the deviation from the spherical
shape must be small and from a formal point of view there

is a similitude between this structure equation and the TOV
equations.

The second stability criterion requires the star’s gravita-
tional mass (the one calculated with the structure equations)
be lower than its baryonic mass MB, which is the sum of
the masses of all its particles. This last criterion is applied to
guarantee the stability of the CO with respect to the dispersion
of the matter that composes it [45].

In Fig. 6(a) the mass has been plotted as a function of the
central energy density. The points represent the maximum of
each curve. Therefore, the stars to the left of the maximum
are stable (dM/dEc > 0), while those to the right are not
(dM/dEc < 0) and must be discarded. For fixed magnetic
field, increasing BBag increases the stability region, whereas,
for a fixed Bbag, increasing B reduces it.

FIG. 6. Mass M as function of (a) energy density E and (b) ratio between M and the baryon mass MB at B = [0, 5 × 1017, 1018] G and for
fixed values of BBag = [65 MeV/fm3, 75 MeV/fm3].
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TABLE II. Maximum values of masses M (13) and the corresponding radius R, Z , and γ parameter.

B (G) BBag (MeV/fm3) M (M�) R (km) Z (km) γ

5 × 1017 65 1.74 9.79 9.41 0.96
75 1.62 9.16 8.84 0.96

1018 65 1.83 12.01 7.66 0.63
75 1.68 10.20 7.88 0.77

To apply the second stability criterion we start from the
definition of the baryonic mass MB [50]:

MB = mN

∫ R

0

4πr2nB(r)

[1 − 2Gm(r)/r]γ /2 dr, (15)

where mN is the neutron mass and nB(r) is the baryonic
density. The regions where M/MB < 1 are stable, while those
where M/MB > 1 correspond to unstable stellar configura-
tions. Therefore, these regions should also be discarded. But,
as shown in Fig. 6(b), all the stellar configurations here ob-
tained are stable with respect to this stability criterion.

The maximum masses and corresponding radii and γ are
shown in Table II. Note that the solutions for B = 1018 G are
unstable with respect to radial oscillations in the range of high
central energy densities [Fig. 6(a)], while they are out of the
validity range of γ equations for low central energy densities,
as discussed in the previous section. Therefore, in what fol-
lows, we will not calculate the observables corresponding to
this value of magnetic field.

B. Comparison of the model with strange-star candidates

In this section, we compare the spheroidal static configu-
rations obtained from γ equations with some observable data
for candidates to be SSs (see Table I). Given that spheroidal
SSs have two main radii, for the comparison we defined a
mean radius Rm so that the sphere it determines is equal to
the surface of the spheroidal star:

A = 2πR

[
R + Z

ε
arcsin ε

]
, (16)

where ε is the ellipticity. In this way, the radius Rm could be
connected with the surface of the COs and consequently, with
its emission properties [51].

Figure 7 shows our theoretical results for the masses and
radii together with the observational ones for the candidates.
The shaded regions are forbidden by theoretical requirements
(see the legend of Fig. 7). All configurations are in the
allowed region, and in the mass interval where the candi-
dates are concentrated. In particular, the M vs Rm curves fall
in the uncertainty intervals of the masses and radii of the
stars 4U1608-52 and 4U1820-30 for Bbag = 75 MeV/fm3 and
Bbag = 65 MeV/fm3, respectively. So our model is consistent
with the observations.

IV. MAGNETIZED STRANGE STARS: REDSHIFT AND
MASS QUADRUPOLE

A. Gravitational redshift

Gravitational redshift is one of the main effects predicted
by the Theory of General Relativity and, in turn, constitutes
one of its fundamental tests. The frequency of an atomic
clock depends on the value of the gravitational potential at
its location. So when a photon is observed from a point at a
higher gravitational potential, its wavelength is redshifted.

For a spheroidal static CO, the redshift is given by [52]

zrs = 1(
1 − 2M

R

)γ /2 − 1, (17)

where M and R are, respectively, the mass and the equatorial
radius of the CO. If γ = 1, the spherical case is recovered.

The definition of zrs explicitly includes the term M/R, so
its measurement can narrow these parameters. In addition, zrs

has a maximum at the star’s maximum point of mass, so it can
also be used to rule out EoSs that do not lead to observable
redshifts and therefore constitutes a benchmark to evaluate the
feasibility of NSs models [14]. Our results for zrs are shown
in Fig. 8 for TOV and γ equations solutions.

In the spherical case, the higher values for zrs are obtained
for the pairs (E , P⊥). In this case, for a fixed BBag, increasing

FIG. 7. Comparison of observational data for candidates of SSs
with the stars obtained from Eqs. (10) and (13). The shaded re-
gions correspond to theoretical constraints: Gravitational collapse
(I); requirement of finite pressure inside the star (II); causality (III);
rotational stability (IV) [25].
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FIG. 8. Gravitational redshift zrs as a function of mass M at B = [0, 5 × 1017, 1018] G for TOV and the γ equations. (a) BBag =
65 MeV/fm3. (b) BBag = 75 MeV/fm3.

the magnetic field increases zrs, while changing BBag barely af-
fects it. If we compare the results for B = 0 with the solutions
of γ equations for B = 5 × 1017 G, we see that, with these,
lower values of zrs are obtained and the curves are far apart.
This difference can be very useful to discriminate between
models with and without magnetic field when comparing with
observational values.

B. Mass quadrupole moment

Finally, we calculate the mass quadrupole moment of the
spheroidal stars. This magnitude is directly related to the
amplitude of the GWs [53], since they are only emitted in
situations where an asymmetry of mass is generated that
gives rise to a quadrupolar moment. Therefore, spherical
stars do not have a quadrupole moment and cannot generate
GWs. In contrast, magnetized stars, being deformed, have
nonzero quadrupole moments that will contribute to their
GWs emission. In the framework of our structure equations,
the quadrupole moment of the SSs is [42]

Q = γ

3
M3(1 − γ 2), (18)

where γ = 1, Q = 0, as corresponds to the spherical case.
Figure 9 shows the SSs quadrupole moment as a function

of the star mass. The oscillations in the curve are an effect of
the presence of the sum by the Landau levels in the EoS. Q
diminishes with BBag and its maximum is reached for stars
in the region of intermediate mass and deformation. This
behavior is due to the simultaneous dependence of Q on M and
γ and, in particular, is determined by the fact that γ depends
on the EoS and therefore varies between the stars. This result
is different from that obtained in Ref. [52], where structure
equations derived from the γ metric were solved by taking γ

as a free parameter set by hand. In that case, since the mass
quadrupole is led by the mass, its highest values are attained
for the more massive stars. Therefore, connecting γ with the
physics of the problem has a direct impact on the observables,

which again could serve as a way to discriminate between
models.

V. CONCLUSIONS

This work is a step forward in our studies about mag-
netized SSs [31–33]. We re-analyzed the stability of SQM
under the action of a magnetic field and found that its pres-
ence reinforces the Bodmer-Witten conjecture. To compute
the star’s observables the EoSs have been restricted to the sta-
bility region. The macroscopic properties of the SSs—mass,
radius, deformation, gravitational redshift, mass quadrupole
moment—were calculated using the γ equations [30] for
spheroidal compact objects. The mass-radius curves of the
obtained stable configurations comply with the theoretical
constraints and are consistent with the observed properties of

FIG. 9. Mass quadrupole moment Q as a function of mass M at
B = 5 × 1017 G for BBag = 65 MeV/fm3 and BBag = 75 MeV/fm3.
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SSs candidates, with masses below the observational maxi-
mum mass of neutron stars (≈2M�) [15,54–56].

In our model, less massive stars suffer bigger deforma-
tions in contrast with the results from TOV solutions for the
perpendicular and the parallel pressure independently. This re-
veals the model dependency of the results and highlights how
important is the construction of even more realistic models.
On the other hand, augmenting both BBag and B increases
the deformation. However, the effects of changing the bag
energy and the magnetic field in the stability with respect to
radial oscillations of the solutions of γ equations opposes:
the stability region increases with BBag and decreases with B.
Nevertheless, none of these parameters influences the stability
of the star with respect to the baryon mass criterion.

Another interesting feature of our model is that the redshift
and the mass quadrupole moment depend explicitly on the
deformation through the EoS—because γ appears on their

mathematical expressions. As a consequence, the curve of
the gravitational redshift of SSs has remarkable differences
with respect to those of the spherical case. Besides, the max-
imum values of the mass quadrupole moment occur for the
stars with intermediate values of masses and deformation,
suggesting that these are the stars that should produce the
most intense GWs emission, instead of those that have the
maximum masses or deformation. This result is as interesting
as unexpected and deserves deeper research in future work.
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