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Constraints on the nuclear symmetry energy from asymmetric-matter calculations with chiral NN
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The nuclear symmetry energy is a key quantity in nuclear (astro)physics. It describes the isospin dependence
of the nuclear equation of state, which is commonly assumed to be almost quadratic. In this work, we confront
this standard quadratic expansion of the equation of state with explicit asymmetric nuclear-matter calculations
based on a set of commonly used Hamiltonians including two- and three-nucleon forces derived from chiral
effective-field theory. We study, in particular, the importance of nonquadratic contributions to the symmetry
energy, including the nonanalytic logarithmic term introduced by Kaiser [Phys. Rev. C 91, 065201 (2015)]. Our
results suggest that the nonquadratic contribution to the symmetry energy can be systematically determined from
the various Hamiltonians employed, and we obtain 0.74+0.11

−0.08 MeV (or −1.02+0.11
−0.08 MeV for the potential term with

the effective-mass contribution) at nuclear saturation density, while the logarithmic contribution to the symmetry
energy is relatively small and model-dependent. We also employ the meta-model approach to study the impact
of the higher-order contributions on the neutron-star crust-core transition density, and find a 5% correction.
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I. INTRODUCTION

The nuclear-matter equation of state (EOS) is of great
interest for nuclear physics, see recent reviews [1–3] and
references therein. It connects bulk properties of atomic
nuclei, with small isospin asymmetry, with neutron-rich
matter inside neutron stars (NSs) [4,5]. The isospin de-
pendence of the nuclear-matter EOS is described by the
nuclear symmetry energy which, for example, governs the
proton fraction in beta-equilibrium, determines the pressure
in the core of NSs, and hence, the NS mass-radius rela-
tion [6–8], or cooling via the direct URCA process [9]. Due
to its importance for many physical systems, the symmetry
energy and its density dependence were identified as key
quantities for nuclear (astro)physics in the 2015 DOE/NSF
Nuclear Science Advisory Committee Long Range Plan for
Nuclear Science [10], and are actively investigated by com-
bining information from nuclear theory, astrophysics, and
experiments.

Because NS observations still come with sizable uncertain-
ties, the symmetry energy and its density dependence cannot
be inferred from NS properties alone [9]. Hence, various
constraints on the symmetry energy have been inferred from
experimental data, e.g., determinations of neutron skins in
lead (PREX) and calcium (CREX) [11,12], collective modes
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such as giant dipole resonances [13], and heavy-ion colli-
sions [14,15]. Typically, experimental constraints are in the
range esym(nsat ) ≈ 29–35 MeV [9,16,17] at the nuclear sat-
uration density, 0.16 fm−3 ≡ nemp

sat (for a review see, e.g.,
Ref. [14]). The determination of the symmetry energy is on
the road-map for several future experiments conducted at
rare-isotope beam facilities such as FRIB at MSU, SPIRAL2
at GANIL, and FAIR at GSI. While there are nuclear EOS
models for a wide range of values for the symmetry energy
and its density dependence [18,19], microscopic EOS calcu-
lations based on chiral nuclear interactions have improved
theoretical constraints considerably over the last years (see,
e.g., Refs. [3,20,21] for recent reviews).

An extraction of the nuclear symmetry energy from nuclear
theory as well as experimental and astrophysical programs
requires that the measured quantities in these different ap-
proaches, as well as their relations, are well defined. Different
approximations for the symmetry energy are commonly used.
It is, therefore, important to clarify whether the symmetry en-
ergy measured in laboratory experiments is the same quantity
as that inferred from NS properties. For example, the energy
per particle of nuclear matter at zero temperature is a function
of the baryon density n = nn + np and isospin asymmetry
δ = (nn − np)/n, where nn (np) denotes the neutron (proton)
number density. The isospin-asymmetry expansion from sym-
metric nuclear matter (SNM, δ = 0) to pure neutron matter
(PNM, δ = 1) is often employed,

e(n, δ) ≈ e(n, δ = 0) + δ2esym,2(n) + δ4esym,4(n) + O(δ6).

(1)
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Here esym,2(n) and esym,4(n) are the quadratic and quartic
contributions to the symmetry energy, respectively. Given the
expansion (1), the quadratic contribution to the symmetry
energy is defined by the second derivative

esym,2(n) = 1

2

∂2e(n, δ)

∂δ2

∣∣∣∣
δ=0

, (2)

similar to the empirical Bethe-Weizsäcker mass formula for
finite nuclei. Hence, esym,2(n) is often referred to as the sym-
metry energy and is used in nuclear experiments. In practice,
however, the more commonly used definition of the symmetry
energy is given by the difference between the energy per
particle in PNM and SNM,

esym(n) = ePNM(n) − eSNM(n). (3)

While definition (3) requires the EOS only in the limits of
PNM and SNM, Eq. (2) necessitates explicit calculations
of isospin-asymmetric nuclear matter (ANM). Both esym,2(n)
and esym(n) are equal if the isospin dependence of the energy
per particle is purely quadratic, i.e., nonquadratic terms in the
expansion (1) vanish. However, there is no a priori argument
why this should be the case. In fact, nonquadratic terms have
been found to be relevant for, e.g., accurate studies of nuclear
matter in beta-equilibrium at supra-saturation density [22–25]
and the crust-core transition density in NSs [24,26].

In this work, we confront the expansion (1) with
the explicit ANM calculations based on chiral nucleon-
nucleon (NN) and three-nucleon (3N) interactions reported
in Ref. [27] and quantify the impact of nonquadratic con-
tributions to the symmetry energy. We also investigate to
which extent uncertainties in the microscopic approach affect
the extraction of nonquadratic contributions to the symmetry
energy. The paper is organized as follows: In Sec. II, we
give an overview of previous studies of nonquadratic contri-
butions to the symmetry energy. In Sec. III, we present our
computational setup and, in Sec. III A, we compare it with
other calculations. In Sec. III B, the derivation of the Landau
effective mass from the single-particle energy is presented.
General expressions for the energy expansion in terms of the
isospin-asymmetry parameter δ are given in Sec. III C, in
particular, for the total energy per particle as well as for the
contributions of the potential-energy terms. We then discuss
the EOS in the limits of PNM and SNM in Sec. IV, followed
by the symmetry energy in Sec. V. In Sec. VI, we study
the impact of the nonquadratic contributions to the symmetry
energy in determinations of the core-crust transition in NSs.
Finally, we conclude in Sec. VII. The Python codes used to
perform the analysis and generate the figures in this paper are
publicly available on GitHub [28] and briefly described in the
Supplemental Material [29] associated with this publication.

II. PREVIOUS STUDIES OF NONQUADRATIC
CONTRIBUTIONS

As stated above, there is no a priori reason for the isospin-
asymmetry expansion to be purely quadratic. In general, even

the free Fermi gas (FFG) energy per particle, given by

eFFG(n) = t sat
SNM

2

(
n

nsat

)2/3

[(1 + δ)5/3 + (1 − δ)5/3], (4)

with t sat
SNM = 3

5mN
( 3π2

2 nsat )2/3 ≈ 22.1 MeV, leads to non-
quadratic contributions to the expansion (1). For example, the
quartic term,

eFFG
sym,4(n) � 0.45 MeV ×

(
n

nsat

)2/3

, (5)

represents a ≈3.5% correction to the FFG symmetry energy
at nsat. Nuclear interactions also contribute to nonquadratic
terms; for example, the phenomenological Skyrme interac-
tion [30] gives the following quartic contribution to the
symmetry energy:

eSkyrme
sym,4 (n) � eFFG

sym,4(n) + k5
F

972π2
[3t1(1 + x1) + t2(1 − x2)],

(6)
where kF is the Fermi momentum. The Skyrme parame-
ters (t1, t2) represent the correction to the bare nucleon
mass generated by in-medium effects. Since the Skyrme in-
medium mass is generally ≈30%–40% lower than the bare
mass [30], these terms increase the eFFG

sym,4 by ≈30%–40% to
≈(0.7–0.8) MeV. In a recent work, Cai and Li [25] found
esym,4(nsat ) = (7.2 ± 2.5) MeV, which indicates a rather sig-
nificant difference between esym and esym,2. They employed
an empirically constrained isospin-dependent single-nucleon
momentum distribution and the EOS of PNM near the uni-
tary limit. Subsequently, Bulgac et al. found that esym,4(n =
0.1 fm−3) = 2.635 MeV is necessary in order to reproduce
properties of both finite nuclei and the PNM EOS, as cal-
culated in Ref. [31]. In contrast, previous works, e.g., based
on Brueckner-Hartree-Fock (BHF) approaches and hard-core
interactions [32–35] obtained only small nonquadratic contri-
butions to the symmetry energy.

In a recent study of nuclear matter in many-body
perturbation theory (MBPT) with contributions from 1π -
exchange, 2π -exchange, and three-body terms involving
virtual �(1232) isobars, Kaiser [36] could not confirm
such large values for esym,4. Instead, Kaiser found esym,4 �
1.5 MeV at nsat, which is still about three times larger than
the FFG contribution. Moreover, Kaiser found contributions
to the energy per particle whose fourth derivative with respect
to δ are singular at δ = 0. This was further substantiated by
analytic MBPT calculations based on an S-wave contact inter-
action, which gave rise to a singular term ∝δ4 log |δ|—a term
that only contributes to the ANM EOS when δ �= 0 and δ �= 1,
and which will be referred to as the leading-order logarithmic
term in the following.

Subsequently, Wellenhofer et al. performed a more detailed
analysis of such divergences by examining the δ depen-
dence of the nuclear EOS as a function of density and
temperature [37]. They found that the asymmetry expansion
is hierarchically ordered, i.e., the lower-order coefficients
are dominant at high temperature and low density, but the
expansion diverges at δ = 0 with alternating sign in the zero-
temperature limit. Around saturation density, their results
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TABLE I. Nonlocal N3LO NN and N2LO 3N interactions used
in the MBPT calculations of Ref. [27]. The interactions are based
on the N3LO NN potential EM 500 MeV [38] evolved to the SRG
resolution scale λ. The low-energy couplings cD and cE were subse-
quently fit to the triton binding energy and the charge radius of 4He in
Ref. [39] for different combinations of λ and the 3N cutoff �3N. The
3N two-pion exchange is governed by the πN low-energy couplings
c1, c3, and c4, which were taken from the NN potential, except for H7
which uses the values obtained from the NN partial-wave analysis
(PWA) of Ref. [40]. Hamiltonian H6 has been excluded as discussed
in Sec. IV B of Ref. [27].

Label λ [fm−1] �3N [fm−1] 3N c1,3,4 cD cE

H1 1.8 2.0 NN potential +1.264 −0.120
H2 2.0 2.0 NN potential +1.271 −0.131
H3 2.0 2.5 NN potential −0.292 −0.592
H4 2.2 2.0 NN potential +1.214 −0.137
H5 2.8 2.0 NN potential +1.278 −0.078
H7 2.0 2.0 PWA [40] −3.007 −0.686

indicate that the convergence of the series expansion is re-
stored for T � 3 MeV. Moreover, they have argued that the
logarithmic term at leading order considerably improves the
isospin-asymmetry expansion at zero temperature and sug-
gested to include this term in future fits of the EOS.

While mathematically well-defined, it is not clear whether
the aforementioned divergence of the series expansion in δ

substantially impacts the practical usability of the expan-
sion (1), because corrections remain small at nuclear densities.
Our knowledge of the symmetry energy, and, more fun-
damentally, of the nuclear interaction itself, is limited by
experimental precision and by the theoretical understanding
of strongly interacting systems. As a consequence, while the
series expansion in the isospin asymmetry can be determined
with high accuracy when the nuclear interaction and the
many-body treatment are fixed (with numerical limitations
as discussed in Ref. [37]), current theoretical uncertainties
reduce our ability to accurately determine high-order con-
tributions in general. In this paper, we analyze the impact
of these uncertainties on the determination of the symmetry
energy.

III. NUCLEAR-MATTER EQUATION OF STATE

In this work, we use the explicit ANM calculations of
Ref. [27] at zero temperature to study the importance of non-
quadratic contributions to the symmetry energy. Specifically,
we analyze their results obtained with the improved (an-
gle averaging) approximation for normal ordering 3N forces
and in a Hartree-Fock single-particle spectrum. The MBPT
calculations in Ref. [27] are based on the set of six chi-
ral NN and 3N interactions summarized in Table I. These
interactions are also commonly used in nuclear-structure cal-
culations [41–50]. They combine the N3LO NN potential EM
500 MeV [38] evolved to lower momentum scales λ using the
similarity renormalization group (SRG) with bare N2LO 3N
forces regularized by a nonlocal regulator with momentum
cutoff �3N. Hebeler et al. then fit the two 3N low-energy

FIG. 1. Comparison of the MBPT predictions for the (a) energy
per particle in PNM [27] (blue points) with the APR EOS [51] (green
squares), QMC calculations Wlazlowski et al. (2014) [31] (cyan
triangles), and Tews et al. (2016) [52] (black dots) using different
chiral EFT Hamiltonians with NN and 3N forces. The latter points
include simple estimates for the EFT truncation error of the chiral
expansion. We also show our fit posterior at 68% (95%) confidence
level as dark (light) red bands. (b) The same comparison but with a
different scaling.

couplings cD and cE for the different combinations of λ and
�3N shown in Table I to the triton binding energy as well as
the charge radius of 4He [39]. Assuming N2LO 3N forces
provide a sufficiently complete operator basis, and the long-
range low-energy couplings c1, c3, and c4 are SRG-invariant,
this approach captures dominant contributions from induced
three-body forces due to the SRG transformation. Note that
the ci appear both in the NN and 3N interactions at N2LO.
As discussed in Ref. [27], the spread in the energy per par-
ticle obtained from these nuclear interactions can serve as a
simple uncertainty estimate—though with limited statistical
meaning.

A. Energy per particle

The energy per particle in PNM obtained in Ref. [27]
is depicted in the upper panel of Fig. 1 by blue dots (the
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lower panel represents the ratio of the energy per particle over
the FFG energy). In this work, we perform least-squares fits
of nonlinear functions to the MBPT data. Each fit parame-
ter is guided by a (Bayesian) prior, which distinguishes our
parametric fits1 from a standard χ2 minimization (see the
Supplemental Material [29] for more details). The parametric
fits result in the posterior distributions shown as dark (light)
red bands corresponding to 68% (95%) confidence intervals
in Fig. 1.

In Fig. 1, we also provide comparisons with the varia-
tional calculation of Ref. [51] (APR), Fock-space formulated
quantum Monte Carlo (QMC) calculations of Ref. [31]
(Wlazlowski et al. 2014), and continuum QMC calculations
using auxiliary field diffusion Monte Carlo of Ref. [52] (Tews
et al. 2016). These calculations were not only conducted using
different many-body approaches, but also different nuclear
interactions: the APR result uses the Argonne v18 (AV18)
NN potential [54] and the Urbana IX (UIX) 3N force [55],
Ref. [31] employs the nonlocal momentum-space chiral N3LO
NN interactions of Ref. [56] combined with N2LO 3N forces
as specified in Ref. [57], and Ref. [52] uses local coordinate-
space chiral interactions constructed in Refs. [58–60]. The
first two calculations do not provide theoretical uncertainties,
while the latter estimates the standard EFT uncertainty [61].
Note that, in general, order-by-order calculations are re-
quired for estimating EFT truncation errors. Such calculations
are not possible with the chiral Hamiltonians given in
Table I.

When comparing the approaches using chiral EFT interac-
tions, the QMC calculations of Ref. [52] agree with the MBPT
approach employed in this work within uncertainties above
n ≈ 0.08 fm−3, while QMC finds slightly higher energies at
lower densities. In contrast, the QMC calculations of Ref. [31]
find a higher PNM energy per particle at all densities, by about
≈1 MeV. We also compare the ratio ePNM/eFFG

PNM as a function
of neutron Fermi momentum kF for the various calculations
in the bottom panel of Fig. 1. In the figure, we can identify the
density region where the ratio exhibits a plateau, indicating
a similar scaling of ePNM and eFFG with kF. For the MBPT
calculation, we find the ratio at the plateau to be ≈0.42(1) in
PNM at momenta kF ≈ 1.3(2) fm−1, which describes densi-
ties at ≈nsat/2.

The comparison of the different results in Fig. 1 pro-
vides a qualitative illustration of the uncertainties originating
from the nuclear interactions as well as from the different
many-body approaches. While the MBPT results of Ref. [27]
provide a simple uncertainty estimate, they do not quantify
EFT truncation errors, which can be significant at n � n0.
Future order-by-order calculations of ANM will enable statis-
tically robust EFT uncertainty estimates using the Bayesian
framework recently developed by the BUQEYE collabora-
tion [62,63]. In the present analysis, however, such systematic
ANM calculations are not available. Therefore, we follow
the approach in Ref. [27] and consider the spread of the
EOSs due to the Hamiltonians in Table I as an uncertainty
estimate.

1These fits were performed using the LSQFIT Python package [53].

B. Landau mass contribution to the symmetry energy

Nontrivial contributions to the symmetry energy can arise
due to the effective mass, see for instance Eq. (6). There-
fore we characterize these effects here before commencing
our analysis of the energy per particle. For this purpose we
start with the single-particle energy ετ (k) in a Hartree-Fock
spectrum (as in Ref. [27]),

ετ (k, n, δ) ≈ k2

2mτ

+ �(1)(k, n, δ). (7)

The first term in Eq. (7) is the single-particle kinetic
energy, while the second term �(1) denotes the spin-isospin-
averaged first-order self-energy. We refer the reader to, e.g.,
Refs. [27,64] for more details.

The momentum dependence of the nuclear interactions can
be absorbed by modifying the nucleon mass, which gives rise
to the so-called in-medium effective mass and the Landau
mass. Specifically, Eq. (7) can be approximated as

ετ (k, n, δ) ≈ k2

2m∗
τ (k, n, δ)

+ �(1)(k = 0, n, δ), (8)

where the in-medium effective mass is defined as [65]

m∗
τ (k, n, δ)

mτ

= k

mτ

(
dετ (k, n, δ)

dk

)−1

. (9)

Finally, the Landau mass is defined as the effective mass (9)
evaluated at k = kF.

Several comments regarding the features of the single-
particle energies, the in-medium effective mass, and the
Landau effective mass are given in Appendix A. Here, we
focus on the description of the Landau mass as a function of
the density n and asymmetry parameter δ. We consider the
following functional form:(

m∗
τ

m
(n, δ)

)−1

= 1 +
(

κsat

nsat
+ τ3δ

κsym

nsat

)
n

+
(

κsat,2

n2
sat

+ τ3δ
κsym,2

n2
sat

)
n2, (10)

where τ3 = 1 (−1) for neutrons (protons). Note that we have
neglected terms of higher order in δ in Eq. (10). The param-
eters κsat, κsat,2, κsym, and κsym,2 are obtained from fitting the
expression (10) (in SNM and PNM) to the results computed
using Eq. (9). The details of our parametric fits is discussed in
the Supplemental Material [29]. The relevant fit parameters,
pα , are

pα = {
κsat/nsat, κsat,2/n2

sat, κPNM/nsat, κPNM,2/n2
sat

}
. (11)

These fit parameters are determined from the predicted
Landau effective masses for each of the six Hamiltonians. The
results of the fits for the inverse of the Landau mass are given
in Table II, where we have considered both, a linear and a
quadratic fit function. The prior distribution for each of the
fit parameters is given by a normal distribution with mean 0
and standard deviation 100, providing an uninformative prior.
The fits are compared with three Skyrme-type interactions:
NRAPR [4], LNS5 [66], and SAMI [67] that satisfy the
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TABLE II. Fit parameters of the inverse Landau mass consider-
ing linear and quadratic density expansions. The fits are compared
with three Skyrme-type interactions: NRAPR [4], LNS5 [66], and
SAMI [67].

κsat/nsat κsat,2/n2
sat κPNM/nsat κPNM,2/n2

sat

[fm3] [fm6] [fm3] [fm6]

Linear 3.33(18) 0.89(19)
Quadratic 6.25(35) −16.9(16) 2.63(14) −11.1(19)
NRAPR [4] 2.75 1.40
LNS5 [66] 4.12 2.19
SAMI [67] 3.03 2.87

following conditions: 0.6 � m∗/m(SNM) � 0.7, �m∗/m >

0, and 40 MeV < Lsym < 60 MeV.
In Fig. 2, we compare the posterior distribution functions

for the Landau mass in SNM (top panel) and PNM (bottom
panel), and the input data. The predictions from the six Hamil-
tonians are plotted as solid lines, and, at each density, we

FIG. 2. Results of the Bayesian parametric fits of the Landau
mass in (a) SNM and (b) PNM. The 68% (95%) confidence
levels for the posterior distribution functions are shown as dark-
shaded (light-shaded) bands. The black lines represent the individual
Hamiltonians, and the black points show the average over the six
Hamiltonians with ±1σ uncertainty bands.

calculate the centroid and 1σ interval given the six Hamilto-
nians (black points with error bars). The ±1σ (±2σ ) contours
of the posterior, corresponding to the 68% (95%) confidence
region, are depicted in red (light red) for the quadratic fit and
dark blue (light blue) for the linear fit. We fit the models
to the data in the range n = 0.15–0.17 fm−3 for the linear
fit (three data points) and from n = 0.07–0.20 fm−3 for the
quadratic fit (14 data points). These values are chosen to
allow for the ranges to be as large as possible while, at the
same time, ensuring that the fits reproduce the data around
saturation density. While the quadratic fit performs well even
outside the fit interval, down to n ≈ 0.05 fm−3 in SNM and
PNM, the linear fit does not because of the strong curvature
of the Landau mass. The differences between the linear and
quadratic fits are further analyzed in Sec. V.

The fact that the Landau mass induces nontrivial contri-
butions to the symmetry energy can be seen by explicitly
including it in the effective kinetic energy

t∗(n, δ) = t sat
SNM

2

(
n

nsat

)2/3

×
[

m

m∗
n (δ)

(1 + δ)5/3 + m

m∗
p(δ)

(1 − δ)5/3

]
. (12)

We will now present our generalized framework to analyze
the EOS, using the Landau mass appearing in Eq. (12), in the
following subsection.

C. Energy expansion in the isospin asymmetry parameter δ

A general expression for the expansion (1) of energy ob-
servables in nuclear matter was suggested in Ref. [37], from
which we consider all contributions up to δ4, including the
logarithmic term, and rewrite it as

y(n, δ) ≈ ySNM(n) + ysym,2(n)δ2 + ysym,4(n)δ4

+ ysym,log(n)δ4 log |δ|, (13)

see Eq. (27) of Ref. [37] for more details. In the following,
we treat this expression as a parametrization of the EOS’s
δ dependence, in which the coefficients are determined by
parametric fits, rather than a formal expansion in δ. The term
ysym,log,4δ

4 log |δ| originates from the second-order contribu-
tion in the many-body expansion, as explained in Ref. [37].

The corresponding contribution to the symmetry energy
ysym is defined as

ysym(n) = yPNM(n) − ySNM(n). (14)

The nonquadratic contribution to the symmetry energy is de-
fined as

ysym,nq(n) = ysym(n) − ysym,2(n). (15)

Note that, since the logarithmic term vanishes in SNM
and PNM, it also does not contribute to the nonquadratic
term (15).

The quantity y in Eq. (13) can be the energy per particle
e, as originally suggested by Kaiser [36], or any other en-
ergy contribution. For instance, it can be the potential energy

045803-5



R. SOMASUNDARAM et al. PHYSICAL REVIEW C 103, 045803 (2021)

y = epot or the effective potential energy y = epot∗ defined as

epot(n, δ) = e(n, δ) − t (n, δ), (16)

epot∗(n, δ) = e(n, δ) − t∗(n, δ), (17)

where t and t∗ are the kinetic and effective kinetic energy, see
Eq. (12), respectively. In the following, we use these notations
for analyzing the δ-dependence of the total, potential, and
effective potential energies.

IV. META-MODEL FOR SYMMETRIC AND NEUTRON
MATTER

To describe the MBPT data for the energy per particle
in SNM and PNM, we use in this work a functional form
described by a meta-model (MM) for nuclear matter similar to
the one suggested in Ref. [17], but generalized to a potential
energy with nonquadratic δ dependence. The MM is adjusted
to MBPT data sampled on a given grid in the asymmetry
parameter δ [27]. This is in contrast to Ref. [37], who used
a finite-difference method [68] on an adjustable grid to de-
termine all derivatives with respect to the δ of interest. The
MM, instead, provides a flexible polynomial-type approach to
nuclear matter, which allows us to accurately determine the
higher-order coefficients in the δ expansion, even for the fixed
grid considered here.

For SNM and PNM, the energy per particle in the MM
reads

eMM
α (n) = t∗

α (n) + epot∗
α (n), (18)

where α stands for either SNM or PNM. The kinetic energy is
determined by Eq. (12) with the Landau mass, see Sec. III B.
The potential energies are expanded about nsat in terms of the
parameter

x ≡ n − nsat

3nsat

as follows:

epot∗
SNM(n) =

N∑
j=0

1

j!
vSNM, jx

j + vlow−n
SNM xN+1e

−bsat
n

n
emp
sat ,

epot∗
PNM(n) =

N∑
j=0

1

j!
vPNM, jx

j + vlow−n
PNM xN+1e

−bPNM
n

n
emp
sat ,

where the second term on the right-hand side is a low-density
correction. This correction represents the low-density contri-
bution of all higher-order terms neglected in the summation,
and scales like xN+1 at leading order, where N is the upper
limit of the power in the density expansion. In the original nu-
cleonic MM of Ref. [17], the low-density EOS correction was
simply parametrized by a fixed coefficient b = bsat = bPNM ≈
6.93. In the improved MM considered here, we introduce two
parameters (bsat and bPNM) controlling the density dependence
of the low-density corrections in PNM and SNM separately.
It was suggested in Ref. [17] that using an expansion up to
N = 4 allows for the reproduction of the pressure and sound
speed of about 50 known energy density functionals (EDFs)
up to about 4nsat. In principle, it is not necessary to consider

such a high N in the present analysis. The inclusion of high-
order contributions, however, affects the determination of the
low-order ones, as discussed in Ref. [69], even if the data do
not constrain the high-order terms themselves.

Imposing that the energies per particle vanish at n =
0 fm−3, we obtain the following relations:

epot∗
α (n) =

N∑
j=0

1

j!
vα, jx

juα, j (x), (19)

where

uα, j (x) = 1 − (−3x)N+1− je−bαn/nemp
sat , (20)

α indicates either SNM or PNM, and the corresponding bsat or
bPNM.

In the MM, the coefficients vα,1 to vα,N are related to
the nuclear empirical parameters (NEPs), such as Esat, Ksat,
Esym, Lsym, etc. These relations between the MM parameters
and the NEPs are given in Appendix B for both SNM and
PNM. Here we only note that these relations represent an-
other difference to the original nucleonic MM of Ref. [17],
where the isovector coefficients were determined assuming
a quadratic isospin-asymmetry dependence of the symmetry
energy. The isovector contribution of the present MM is built
on the global symmetry energy (3), which allows for possible
nonquadratic contributions to the symmetry energy. These
contributions will be estimated from the difference between
the global symmetry energy and its quadratic contribution, as
detailed in Sec. V.

In our MM there are five NEP in SNM, including nsat, and
five additional NEP in PNM. Considering the two parameters
controlling the low-density EOS, bsat and bPNM, there is a
total of 12 parameters that need to be determined. Note that
these parameters carry uncertainties that reflect the current
lack of knowledge of the nuclear EOS. In our Bayesian fits,
we use the priors for the NEP from the analysis presented
in Refs. [17,70] and summarized in Table III. Here, we ad-
ditionally vary the parameters bsat and bPNM to reproduce the
low-density behavior of the energy per particle in SNM and
PNM.

We show the fitted parameters in Table III. Note that both
the posterior and prior of each parametric fit is a normal
distribution with mean value and standard deviation (printed
in parentheses). The posteriors we obtain for the NEPs may
depend on the exact representation of the data points, i.e., if
the data are equidistant in n or kF. To gauge the sensitivity to
this choice, we investigate the following three possible data
representations. Figure 3 shows the results for these so-called
scalings.

Since we require our fit to provide a representation of low-
density nuclear matter (with a fair weight for the low-density
points) in order to fix bsat and bPNM, we adopt for scaling
1 the representation of e/eFFG as a function of the Fermi
momentum kF. Scaling 1 provides the best representation for
analyzing the low-density properties of the energy per particle
because an equidistant grid in kF leads to a very dense data
set at low densities. Note that, as mentioned in Sec. III, the
original MBPT data [27] are provided on an equidistant grid
in kF. The scaling of the y axis normalizes the energies to

045803-6



CONSTRAINTS ON THE NUCLEAR SYMMETRY ENERGY … PHYSICAL REVIEW C 103, 045803 (2021)

TABLE III. Priors and posteriors of the NEP from analyses of SNM and PNM. We report results for the different scalings described in
the text. Values within parentheses represent the error bars at the ±1σ level. NEPs for the following three Skyrme-type interactions are given:
NRAPR [4], LNS5 [66], and SAMI [67].

nsat Esat Ksat Qsat Zsat

Scaling (fm−3) (MeV) (MeV) (MeV) (MeV) bsat

Prior 0.160(10) −15.50(100) 230(20) −300(400) 1300(500) 0(50)
1 0.166(8) −15.48(58) 211(14) −573(133) 1055(474) 17(5)
2 0.163(8) −15.07(57) 227(18) −172(243) 1287(499) 9(5)
3 0.163(8) −15.07(57) 227(18) −172(243) 1287(499) 9(5)
3* 0.161(7) −15.17(57) 226(18) −306(186) 1324(497) 17a

NRAPR [4] 0.161 −15.85 226 −363 1611
LNS5 [66] 0.160 −15.57 240 −316 1255
SAMI [67] 0.159 −15.93 245 −339 1330

nsat EPNM LPNM KPNM QPNM ZPNM

Scaling (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) bPNM

Prior 16.00(300) 50(10) 100(100) 0(400) −500(500) 0(50)
1 0.166(8)b 16.61(93) 48(5) 40(37) −320(224) −388(494) 42(4)
2 0.163(8)b 16.30(93) 47(5) 75(40) 34(285) −504(497) 15(9)
3 0.163(8)b 16.30(93) 47(5) 75(40) 34(285) −504(497) 15(9)
3* 0.161(7)b 16.16(89) 46(5) 57(34) −110(206) −450(492) 42a

NRAPR [4] 0.161 18.33 65 108 −52 −236
LNS5 [66] 0.160 15.29 57 130 −34 −416
SAMI [67] 0.159 13.32 47 127 35 −873

aFixed parameter.
bQuoted values are the nsat priors considered in PNM and obtained from SNM posteriors.

the same order of magnitude at all kF. For scaling 2, we
choose the representation of e/eFFG on an equidistant grid
in density. We use cubic splines to interpolate the energies

per particle from the original Fermi momentum grid to a
equally spaced density grid. By switching from the equidistant
grid in momentum to one in density, scaling 2 reduces the

FIG. 3. Comparison of the Bayesian inference results for the MM of this work (red bands) with the MBPT data (blue points) for SNM
[panels (a)–(c)] and PNM [panels (d)–(f)] and the three different scalings described in the main text. The bands are given at the 65% (dark-
shaded) and 95% confidence level (light-shaded), whereas the data points are shown with the ±1σ uncertainty estimate.
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weight for the low-density data points and, therefore, is more
appropriate to fit the NEPs, which are determined around
saturation density. Finally, scaling 3 represents the energy per
particle on an equidistant grid in density, as is more often
presented in the literature. Hence, the only difference with
scaling 2 is the normalization of the energy. The results for
each of the three scalings are shown in Fig. 3 for SNM and
PNM, while the posteriors for the NEPs are given in Table III.
Note, that the NEP nsat is only meaningful in SNM, while
its uncertainty influences the determination of the NEPs in
PNM. In our approach, we therefore vary nsat in PNM within
the posterior uncertainty obtained from the fit in SNM. In
this way, the NEP in PNM naturally include the uncertainty
in nsat.

In the case of Scaling 1, when simultaneously varying the
12 MM parameters, we find bSNM = 17(5) and bPNM = 42(4)
as well as the values for the 10 NEP given in Table III. The
density dependence of the low-density correction is, thus, very
different in SNM and PNM, in contrast with the original
MM of Ref. [17]. We find some differences between the
NEPs obtained from scaling 1 and scalings 2 and 3. These
differences are usually small compared with the uncertainties,
except for Qsat in SNM, as well as QPNM in PNM. We note
that the fits from scalings 2 and 3 are identical and, hence,
the scaling of the energy with respect to eFFG has a negligible
effect.

Finally, we fix the values for bsat and bPNM from scaling
1, and refit all remaining NEP considering scaling 3. The
results are referred to as scaling 3∗. Fixing bSNM and bPNM

has the largest impact on Qsat and QPNM, as expected, but
differences between scaling 3 and 3∗ are small compared
with the overall uncertainties. Hence, we conclude that the
parameters bSNM and bPNM do not have a significant im-
pact on the determination of the NEPs and can be fixed
from the fit to low-density matter (scaling 1). We stress
that, for the higher-order NEPs Zsat and ZPNM, our analy-
sis simply returns the prior, which implies that they are not
constrained by our data. This is because the density range
of the MBPT data is limited to densities n � 0.21 fm−3.
However, they contribute to the uncertainty of the other
NEPs [69].

For the NEPs describing nuclear saturation we obtain from
scaling 3 nsat = 0.161(7) fm−3, Esat = −15.17(57) MeV,
and Ksat = 226(18) MeV. The results are consistent with
the original analysis in Ref. [27], which obtained nsat =
0.143–0.190 fm−3, Esat = −(15.1–18.3) MeV, and Ksat =
223–254 MeV using a Hartree-Fock spectrum. However,
our uncertainties are generally smaller because we explicitly
guide the fits in Fig. 3 by empirical (or “expert”) knowl-
edge [17] through prior distributions of the fit parameters.
In PNM, where empirical constraints are lacking, the fits are
therefore closer to the MBPT data.

V. SYMMETRY ENERGY

Using the results obtained in Secs. III B and IV, we
now determine the properties of the symmetry energy and
the relative contributions of the quadratic and nonquadratic
terms.

A. Global symmetry energy esym

The global symmetry energy esym is determined from our
fits in PNM and SNM, see Eq. (3) and Sec. IV, and the con-
tributions of the potential energies epot

sym, and epot∗
sym are obtained

from esym following:

epot
sym(n) = esym(n) − tPNM(n) + tSNM(n), (21)

epot∗
sym (n) = esym(n) − t∗

PNM(n) + t∗
SNM(n). (22)

We use the fits of the Landau mass discussed in Sec. III B to
determine t∗, including its uncertainties, as explained in the
following.

We present these quantities in Fig. 4 as functions of the
density n. For esym, the data points are obtained from the
PNM and SNM data, and their uncertainties are defined by
the arithmetic average of the PNM and SNM error bars. For
the model, we employ the symmetry energy determined from
the MM, which is defined as

eMM
sym (n) = eMM

PNM(n) − eMM
SNM(n). (23)

The results shown in Fig. 4 are obtained from the best fits to
SNM and PNM (scaling 3∗ in Table III), where the width of
the bands is defined as the arithmetic average of the widths in
SNM and PNM. The model results, therefore, depend on the
choice of prior in SNM and PNM, in particular, on the prior
knowledge of the saturation density and energy considered in
SNM, see the discussion of Fig. 3. For this reason, the MM un-
certainty for the symmetry energy is slightly smaller than the
uncertainty of the data in Fig. 4. At nuclear saturation density,
nsat = 0.161(7) fm−3, the data suggest esym = 30.70(140)
MeV, while the MM leads to esym = 31.33(106) MeV. Our
values for the symmetry energy are in good agreement with
the fiducial value of 31.6 ± 2.7 MeV in Ref. [71], with the
recent Bayesian analysis in Refs. [62,63] that fully quantifies
correlated EFT truncation errors with chiral NN and 3N inter-
actions up to N3LO, 30.9(11) MeV at the canonical saturation
density, with the value of 30(3) MeV in Ref. [72] (E1), and
the range 29–35 MeV obtained in Ref. [73]. Similarly, we pre-
dict Lsym = 46.2(49) MeV, while Lsym = 58.9(160) MeV was
found in Ref. [71], Lsym = 58.4(48) MeV in Refs. [62,63] at
the canonical saturation density, and the range Lsym ∈ [43, 67]
MeV in Ref. [73]. The determination of Lsym, however, is
sensitive to the densities at which the value is extracted as
well as to the interactions employed.

The data for epot
sym and epot∗

sym are obtained from esym us-
ing Eqs. (21) and (22). In the case of epot∗

sym , the effective
mass is fixed to be the best fit using either the linear or
the quadratic density expansion (depicted by dashed lines
in the right panel), and the uncertainty of epot∗

sym is defined
as the arithmetic average of the uncertainties of esym, t∗

PNM,
and t∗

SNM. Therefore, the uncertainty of epot∗
sym also includes the

uncertainties in the Landau mass parameters κsat and κPNM.
We observe that there is a large impact of the Landau mass
on epot∗

sym , compared with epot
sym with the bare mass. At nsat,

we obtain epot
sym = 18.1(7) MeV and epot∗

sym = 25.7(14) MeV.
Hence, the Landau mass increases the potential part of the
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FIG. 4. Results for the (a) symmetry energy, esym(n), (b) its potential contribution epot
sym, and (c) the effective potential epot∗

sym using (21)
and (22). The meaning of the individual bands and points is the same as in Fig. 3. In the right panel, the light- and dark-shaded red bands and
the data (blue points) correspond to calculations where the Landau mass is represented by a linear polynomial. The black squares (without
error bars) and the black dashed lines (enclosing a band) represent calculations where the Landau mass is represented by a quadratic fit.

symmetry energy by about 30%–40% as discussed in the
introduction. These numbers are compatible with the expec-
tations for the complementary contribution from the kinetic
energy. We find tPNM(nemp

sat ) − tSNM(nemp
sat ) = 13.0 MeV and

t∗
PNM(nemp

sat ) − t∗
SNM(nemp

sat ) = 5.4(13) MeV.
For epot∗

sym , we expect a difference when using either a Lan-
dau mass that is linear or quadratic in density, see Fig. 2. In
Fig. 4 we show two results for epot∗

sym . The blue data points and
the dark-shaded (light-shaded) red bands correspond to the
results at 68% (95%) confidence level when using a Landau
mass linear in density. The black squares and the black-dashed
lines, encompassing the corresponding 68% confidence inter-
val, represent calculations with a Landau mass quadratic in
density. Interestingly, the values for epot∗

sym obtained from these
two functions for the Landau mass differ only by about 1.8%,
which is quite small. We, therefore, use only the linear fit for
the Landau mass in the following.

B. Quadratic contribution to the symmetry energy

The quadratic contribution to the symmetry energy, esym,2,
is defined in Eq. (2) as the local curvature in the isospin-
asymmetry parameter δ in SNM. In the following, we extract
esym,2 using this expansion around SNM but also suggest
obtaining esym,2 from an expansion around PNM. We demon-
strate that both definitions provide comparable results.

1. Expansion around SNM

The quadratic contribution to the symmetry energy is de-
fined by Eq. (2) relative to the SNM EOS. To determine this
contribution directly from the MBPT data, we employ Eq. (1)
up to the fourth order in δ, and fit the coefficients esym,2 and
esym,4 using a standard least-squares minimization. The fits are
performed in the range, δ = 0.0–0.5. We have checked that
the results are insensitive (within variations of about 0.1 MeV)
to the upper limit of this range—as long as it is chosen to be
δ � 0.5.

For the model, we express esym,2(n) as a function of the
density using the MM contribution to the quadratic symmetry

energy,

eMM
sym,2(x) = 5

9
tSNM(x) +

N∑
j=0

x j

j!
[vsym2, ju j (x, δ = 0)

− vSNM,j[u j (x, δ = 0) − 1](1 + 3x)bsym], (24)

where the parameters vsym2,i are determined using a Bayesian
parametric fit (that was introduced in Sec. III A), as before
for other quantities. Their relation to the quadratic symmetry
energy NEPs are given in Appendix B. The parameter bsym ≡
bPNM − bSNM is fixed by the 3∗ fit.

The contributions to the symmetry energy due to the po-
tential energy are determined from the following expressions:

epot
sym,2(n) = esym,2(n) − 5

9
tSNM(n), (25)

epot∗
sym,2(n) = esym,2(n) − 5

9
tSNM(n)

[
1 + (κsat + 3κsym)

×
(

n

nsat

)
+ (κsat,2 + 3κsym,2)

(
n

nsat

)2]
. (26)

Our results for esym,2, epot
sym,2, and epot∗

sym,2 are shown in
the first row of Fig. 5. At nemp

sat , we find esym,2(nemp
sat ) =

30.0(4) MeV, epot
sym,2(nemp

sat ) = 17.7(4) MeV and epot∗
sym,2(nemp

sat ) =
26.4(1.7) MeV (with the linear density-dependent model for
the Landau mass). The large value of epot∗

sym,2(nemp
sat ), almost 90%

of esym,2(nemp
sat ), originates from the isospin dependence of the

Landau mass, encoded by κsym.
From the fit model (24), we obtain an estimate for the

NEPs that govern the quadratic contribution to the symmetry
energy at the inferred value of nsat. The values are given in
the first row of Table IV. Our result for Esym,2 is about 1 MeV
below the total symmetry energy, Esym—the difference is due
to nonquadratic contributions.

2. Expansion around PNM

An alternative approach is to determine the contribution
esym,2 from an expansion around PNM. Since the MBPT ap-
proach used here is able to explore asymmetric matter with
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FIG. 5. Comparison of the extracted esym,2, epot
sym,2, and epot∗

sym,2 using Eqs. (24)–(26) [panels (a)–(c)] and via an expansion around PNM, i.e.,
using Eq. (31) [panels (d)–(f)]. Panels (g)–(i) show the difference between the δ and η expansions.

arbitrary δ, we can test the accuracy of this alternative expan-
sion.

To this end, we introduce the parameter

η = 1 − δ = 2np/n, (27)

which is twice the proton fraction. Equation (1) can now be
reexpressed in terms of the this parameter,

e(η) = ePNM − 2(esym,2 + 2esym,4)η + (esym,2 + 6esym,4)η2

− 4esym,4η
3 + esym,4η

4 + O(η5). (28)

From Eq. (28), it follows then

ePNM
sym,2(n) = −3

4

∂e

∂η

∣∣∣∣
η=0

− 1

4

∂2e

∂η2

∣∣∣∣
η=0

. (29)

We determine ePNM
sym,2 and ePNM

sym,4 from fitting the function

e(n, η) = ePNM(n) + a1(n)η + a2(n)η2 + O(η3), (30)

with

ePNM
sym,2(n) = − 1

4 [3a1(n) + 2a2(n)], (31)

ePNM
sym,4(n) = + 1

8 [a1(n) + 2a2(n)] (32)

at each density to the computed energies per particle at η =
0.0, 0.1, 0.2, and 0.3. Again, we also perform a Bayesian fit
using Eq. (24). The two quantities are shown in the second
row of Fig. 5, together with the potential terms epot,PNM

sym,2 and

epot∗,PNM
sym,2 . The NEPs obtained from Eq. (24) are given in the

second row of Table IV. Note that the differences between the
NEPs extracted around SNM [using Eq. (2)] and around PNM

TABLE IV. Posteriors of empirical parameters obtained from the analysis of the δ and η expansions for esym,2. Values inside parentheses
represent error bars at the ±1σ level. Results for the following three Skyrme-type interactions are given: NRAPR [4], LNS5 [66], and
SAMI [67].

nsat Esym,2 Lsym,2 Ksym,2 Qsym,2 Zsym,2

Expansion (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) bsym

Prior 31.50(350) 50(10) −130(110) −300(600) −1800(800)
δ (SNM) 0.161(7)a 30.16(83) 47(3) −146(43) 90(334) −1865(793) 25b

η (PNM) 0.161(7)a 30.02(82) 46(3) −149(46) 93(352) −1875(793) 25b

NRAPR [4] 0.161 32.78 60 −123 312 −1836
LNS5 [66] 0.160 29.15 51 −119 286 −1672
SAMI [67] 0.159 28.16 44 −120 372 −2180

aPriors taken from the SNM posteriors in Table III.
bFixed value.
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FIG. 6. Nonquadratic terms (a) esym,nq, (b) epot
sym,nq, and (c) epot∗

sym,nq calculated via an expansion around SNM (blue) and PNM (red). For panel
(c), the Landau mass is described by a linear fit. The colored lines depict results for the six individual Hamiltonians.

[using Eq. (29)] are much smaller than the uncertainties of
these NEPs, which demonstrates that the two approaches are
consistent with one another. This is further illustrated in the
third row of Fig. 5, where the difference between eSNM

sym,2 and
ePNM

sym,2 is shown to be consistent with zero and a small width of
about 1.5 MeV at nsat. Note that the width here is calculated
as the arithmetic average of the widths of eSNM

sym,2 and ePNM
sym,2.

Determining the quadratic contribution to the symmetry
energy from an expansion around PNM might be beneficial
because PNM can usually be computed with much higher
accuracy since the uncertainties in the 3N interactions are
reduced. Furthermore, such an extraction is useful for mi-
croscopic approaches in which a small proton impurity can
be treated more easily than SNM, e.g., the auxiliary-field
diffusion Monte Carlo approach [72].

C. Nonquadratic contribution to the symmetry energy esym,nq

and esym,4

We now evaluate the contribution of the nonquadratic
terms, defined by Eq. (15), using the expansions around SNM
and PNM, respectively. For the global symmetry energy, we
use our model (23), while for describing the quadratic contri-
bution we use the fit (24). Figure 6 shows our results for the
expansion around SNM (blue) and the expansion around PNM
(red). Both expansions agree, and the differences are smaller
than the uncertainties by a factor of two to three. We also show
results for the six Hamiltonians. Their spread is much smaller
than the uncertainties of the data or the model. This is because
the latter are computed as arithmetic averages of the error bars
of the global symmetry energy and the quadratic contribu-
tion. Such an average neglects the correlations between the
two, leading to an overestimation of the error bars. At nemp

sat ,
we obtain from our model esym,nq = 1.3(10) MeV, epot

sym,nq =
0.6(10) MeV, epot∗

sym,nq = −0.5(22) MeV. For the individual
Hamiltonians, we obtain esym,nq = 0.74+0.11

−0.08 MeV, epot
sym,nq =

0.04+0.11
−0.08 MeV, epot∗

sym,nq = −1.02+0.11
−0.08 MeV, where the error

bars are due to the different Hamiltonians.
We find that these nonquadratic contributions represent a

correction of about 3%–5% to the symmetry energy. They
originate mainly from the kinetic energy, since epot

sym,nq remains
close to zero across all densities. Our model estimates for
the nonquadratic contributions to the symmetry energy and

the NEPs are summarized in Table V. We also compare the
present NEPs to the three selected Skyrme interactions, show-
ing a good agreement between the microscopic results and the
EDF approaches.

We calculate the quartic contribution to the symmetry en-
ergy esym,4 using Eq. (32), and show the resulting NEPs in
Table V. We find that the quartic term to the symmetry en-
ergy accounts for about 60%–70% of the total nonquadratic
contribution, while the remaining 30%–40% originate from
higher-order contributions. The convergence of these addi-
tional contributions is discussed in Ref. [37]. We stress that
this does not include any logarithmic contribution because
such a contribution would vanish in PNM.

A recent analysis based on a general EDF approach—
which was optimized to the properties of finite nuclei—
concluded that quartic terms ∝δ4 have little impact on
nuclei [74]. The result was interpreted as a consequence of
the fact that the asymmetry δ in finite nuclei is small: for
Z > 8 it varies between −0.33 and +0.38 in the latest Atomic
Mass Data Center mass table AME2016 [75]. A quartic term
was, however, found to be important to correctly reproduce
the PNM energy per particle. To reproduce the PNM energy
per particle predicted in Ref. [31], Ref. [74] found a quartic
term of esym,4 = 2.635 MeV at n = 0.1 fm−3. This term was
the only nonquadratic contribution considered in Ref. [74]
and is consistent within our upper 68% confidence interval
for the nonquadratic contribution to the symmetry energy. The
higher value for esym,4 obtained in Ref. [74] might be related
to the larger value in the PNM energy per particle obtained
in Ref. [31], as shown in Fig. 1. This affects the symmetry
energy because the contribution esym,4 is needed to correctly
reproduce the PNM EOS. Both the PNM energy per particle in
Ref. [31] and esym,4 obtained in Ref. [74] are ≈1 MeV higher
than the values we obtain in the this work.

D. Logarithmic contribution to the symmetry energy esym,log

The leading-order logarithmic contribution to the symme-
try energy, see Eq. (13), was suggested to be of the form
δ4 log |δ| [36,37]. It therefore vanishes in both SNM and
PNM, and data at finite isospin asymmetry are required to
determine its magnitude. Such a logarithmic term would ap-
pear by a characteristic arch-like structure in the δ-dependent
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TABLE V. Posteriors of nonquadratic and quartic NEPs obtained from the analysis of esym,nq using the δ and η expansions, and esym,4

obtained from the η expansion only. For the extraction of esym,nq via the η expansion, the values inside the square brackets are obtained from
a fit to the data in order to provide a direct comparison to the corresponding analysis of esym,4. Values in parentheses represent the ±1σ

uncertainties. The NEPs for the following three Skyrme-type interactions are given: NRAPR [4], LNS5 [66], and SAMI [67].

Nonquadratic Esym,nq Lsym,nq Ksym,nq Qsym,nq Zsym,nq

contribution (MeV) (MeV) (MeV) (MeV) (MeV)

SNM 1.2(15) 0(6) −24(58) 106(426) 91(1057)
PNM 1.3(15) 1(6) −20(60) 103(441) 101(1058)

[0.84(7)] [0.7(8)] [ − 9(13)] [32(151)] [167(958)]
NRAPR [4] 1.40 5 6 −1 −12
LNS5 [66] 1.70 6 9 −4 1
SAMI [67] 1.08 3 2 2 −24

Quartic Esym,4 Lsym,4 Ksym,4 Qsym,4 Zsym,4

contribution (MeV) (MeV) (MeV) (MeV) (MeV)

PNM 1.00(8) 0.6(6) −7(12) 69(145) 33(956)
NRAPR [4] 0.95 3 4 −1 −6
LNS5 [66] 1.17 5 6 −4 3
SAMI [67] 0.70 2 2 1 −15

residuals between the data and a model without the logarith-
mic term. Figure 7 shows these residuals as a function of δ at
three different densities. For asymmetric matter, we use

ymodel(n, δ) = ySNM(n) + ysym,2(n)δ2 + ysym,nq(n)δ4, (33)

where eSNM, esym,2, and esym,nq are given by Eqs. (18), (24),
and (15). Note that, in the model (33), the fourth-order δ term

also includes possible higher-order contributions (like, for
instance, a δ6 term) contained in the term ysym,nq. The different
panels in Fig. 7 show the residuals at three densities, n = 0.06,
0.12, and 0.16 fm−3 (from the top to the bottom panel), and for
the three choices for the variable y: e, epot, and epot* (from left
to right) as a function of the isospin asymmetry δ. The squares
(shaded bands) represent the mean (68% confidence level) of

FIG. 7. Residuals R of the model, see Eq. (33), with respect to the data as a function of the asymmetry parameter δ for different values
of the density: n = 0.06 fm−3 [panels (a)–(c)], n = 0.12 fm−3 [panels (d)–(f)], and n = 0.16 fm−3 [panels (g)–(i)]. The results are shown for
the two different calculations of ysym,2 and ysym,nq—the expansions around PNM (red) and SNM (blue). The different columns correspond to e,
epot, and epot,∗. The colored lines depict the residuals of the fit for each Hamiltonian. In the last column, the black-dashed lines represent the
upper and lower limits of the uncertainty in the residuals, respectively, by disregarding the uncertainties in the effective masses.
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FIG. 8. Predictions for the spinodal density obtained by solving
Eq. (34), and for beta equilibrium in low-density uniform matter by
solving Eq. (35). The intersection denotes the crust-core transition,
as indicated by a dot in the inset. The quadratic approximation (red
band) is compared with the case where quartic contributions are
included (blue band).

the residuals. The presence of logarithmic terms would appear
as a systematic deviation of the these residuals from zero in
asymmetric matter. However, this is not what we observe at
the three considered densities and for all energy observables.
Instead, we find the residuals to be compatible with zero and
almost flat as a function of the isospin asymmetry. This is also
the case for the results for each Hamiltonian, which we show
as colored lines. The results for the individual Hamiltonians
vanish on average, but the uncertainty bands remain quite siz-
able, about ±1–2 MeV around saturation density. Therefore,
our findings suggest that there is no statistically significant
indication for a net logarithmic contribution to the symmetry
energy for the chiral NN and 3N Hamiltonians used in this
work.

Our conclusion about the strength of the logarithmic
term is not in contradiction with the findings presented in

Refs. [36,37]. The logarithmic term in Ref. [37] was found
to improve the description of the isospin dependence of the
energy per particle by at most ≈0.1 MeV, shown for one
Hamiltonian2 in Fig. 9 of Ref. [37]. Such contributions of
the order of ≈0.1 MeV are small compared with the overall
theoretical uncertainties in this work, which we estimate by
analyzing the six Hamiltonians in Table I.

VI. IMPACT ON THE NEUTRON-STAR CRUST-CORE
TRANSITION

In this section, we study the impact of the nonquadratic
contribution to the symmetry energy on the crust-core transi-
tion in neutron stars, for which the symmetry energy plays an
important role [77–79]. This transition occurs at the core-crust
transition density ncc with an isospin asymmetry δcc that is
determined by the beta-equilibrium. The parameters ncc and
δcc can be obtained from uniform matter by determining the
density at which matter becomes unstable with respect to
density fluctuations (spinodal instability) [77].

In multicomponent matter, e.g., matter that consists of neu-
trons and protons, this spinodal density is determined from the
curvature (Hessian) matrix C, defined as the second derivative
of the energy density with respect to the component densi-
ties [77]. From the eigenvalues of C, one can determine the
stability of matter: if all eigenvalues are positive, i.e., if C
is positive semidefinite, the matter exhibits a local stability
against density fluctuations of all components in any combi-
nation, while a change of sign for any eigenvalue triggers an
instability with respect to density fluctuations indicated by its
associated eigenvector. The change of sign of the eigenvalues
can be extracted from the determinant of C, which reads in
nuclear matter,

det C(n, δ) = ∂μn

∂nn

∂μp

∂np
− ∂μn

∂np

∂μp

∂nn
, (34)

2This is the n3lo450 interaction constructed in Refs. [38,57,76],
which is not considered in this work.

FIG. 9. The neutron single-particle energies εn(k) as a function of the momentum k calculated at nemp
sat , and extracted from the MBPT

calculations of Ref. [27]. The different colors correspond to the six Hamiltonians as labeled in the legend. We show the single-particle energies
obtained from (a) only NN forces and (b) when including 3N contributions. In each panel, we present results for both SNM and PNM.
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TABLE VI. Crust-core transition density and isospin asymmetry,
ncc and δcc, respectively, for the purely quadratic case (δ2 only) and
for the case including the quartic contribution (δ2 + δ4), see Eq. (33).

Model ncc (fm−3) δcc

δ2 only 0.083(5) 0.944(5)
δ2 + δ4 0.087(4) 0.935(6)

where μn and μp are the neutron and proton chemical po-
tentials. For simplicity, we have neglected the finite-size
contribution from the Coulomb interaction as well as the
gradient density terms induced by the finite range of nuclear
interactions. It is expected that these terms reduce the spinodal
density by only ≈0.01 fm−3 [77,79].

In subsaturation asymmetric matter, the equilibrium state is
the state that satisfies the chemical-potential equilibrium μn =
μp + μe, at fixed baryon number n = nn + np and charge
neutrality ne = np. At zero temperature, and considering rela-
tivistic electrons, this system of equations reduces to a single
nonlinear equation,√

m2
e +

(
3π2

2
(1 − δβ )n

)2/3

= 2
∂e(n, δβ )

∂δ
, (35)

whose solution, δβ (n), is obtained by using a combination
of the bisection and the secant methods implemented in the
Python package of Ref. [80]. Then, we define the crust-core
transition as the solution (ncc, δcc) to both, the instability onset
criterion, det C = 0, and the beta equilibrium condition, e.g.,
Eq. (35). Equivalently, ncc is defined as the spinodal density
in beta equilibrium, where δcc = δβ (ncc). Figure 8 shows the
intersection between these two determinations. We investigate
the purely quadratic approximation for the symmetry energy,
with the NEPs given in Table IV, and with the quartic terms
from Table V included. For all cases, the reference MM in
SNM is determined by the best fit given in Table III for the
scaling 3∗.

When we include quartic contributions, the spinodal den-
sity in neutron-rich matter is increased compared with the
case where only the quadratic term is considered. This is
because the quartic term increases the symmetry energy. For
the same reason, the isospin asymmetry is decreased when
nonquadraticities are included. Our results are summarized
in Table VI and depicted in Fig. 8 by the blue and red
points. They are in agreement with the predictions of, e.g.,
Refs. [78,79] with Lsym,2 ≈ 45 MeV. From the comparison of
our results with and without the quartic term, we find that the
transition density changes by ≈5% while δcc changes by only
≈1%.

VII. SUMMARY AND CONCLUSIONS

We have analyzed the properties of asymmetric nuclear
matter based on MBPT calculations [27] for six commonly
used chiral EFT Hamiltonians with NN and 3N interactions.
The global symmetry energy, i.e., the difference between EOS
in the limits of PNM and SNM, as well as its quadratic and
quartic contributions have been determined with theoretical

uncertainty estimates. We have calculated the quadratic con-
tribution to the symmetry energy from the usual expansion
around SNM and have also employed a nonstandard approach
using an expansion for small proton fractions around PNM.
The two approaches are in excellent agreement. Furthermore,
we have investigated the strength of the nonquadraticities as
well as their model dependence. The nonquadratic contribu-
tion to the symmetry energy was found to be 0.74+0.11

−0.08 MeV
(and −1.02+0.11

−0.08 MeV for the effective potential part). We
have then investigated the leading-order logarithmic term to
the symmetry energy, and obtained residuals between our
best fit (including quadratic and quartic contributions) and
the data to be compatible with zero. In particular, we found
that all residuals where flat in the isospin asymmetry δ,
indicating no systematic deviation from zero as expected
for a logarithmic contribution. However, we also saw that
present uncertainties, indicated by the dispersion of the six
Hamiltonians of about 1–2 MeV, are too large to precisely
determine its strength. For a more recent and complementary
approach, see Ref. [81], where the authors have extracted
high-order terms using precise modified finite-difference
methods.

We analyzed the impact of our results on the determi-
nation of the crust-core transition in neutron stars using a
simple model in the thermodynamic limit. We found that
the crust-core transition density is increased by ≈5%, and
the associated isospin-asymmetry δ decreased by ≈1% when
nonquadraticities are included. Hence, these contributions are
only small corrections but need to be included for a precise
calculation of the core-crust transition properties.

To gauge the full theoretical uncertainties of the non-
quadratic contributions to the symmetry energy, future
analyses need to explore a wider range of nuclear interactions
and additional asymmetric-matter calculations using different
many-body approaches and regularization schemes. In partic-
ular, this requires the development of improved chiral NN
and 3N interactions up to N3LO [82–84], which will enable
order-by-order analyses of the neutron-rich matter EOS with
statistically meaningful uncertainty estimates derived from
chiral EFT [62,63].

Finally, at densities beyond those explored in this work,
heavier baryonic degrees of freedom, such as hyperons, could
become relevant. The development and improvement of mod-
els that include such degrees of freedom is a crucial task
for future work, e.g., along the lines of Refs. [85,86]; see
also Refs. [87,88] for recent reviews. Our work provides a
framework, e.g., Python codes [28] and Supplemental Mate-
rial [29] related to our data, for future investigations of the
isospin-dependence of nuclear matter.
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APPENDIX A: ANALYSIS OF THE SINGLE-PARTICLE
SPECTRUM AND THE EFFECTIVE MASS

In Sec. III B we introduced the single-particle energies,
the in-medium effective mass, and the Landau effective mass.
In this Appendix we quantitatively discuss several of their
properties.

First, we consider the single-particle energies calculated
from Eq. (7). Figure 9 shows the single-particle energy εn(k)
in SNM and PNM evaluated at nemp

sat . The left (right) panel
depicts the NN-only (NN + 3N) results, and the vertical lines
mark the position of the neutron Fermi momentum in SNM
(kF,SNM = 1.33 fm−3) and PNM (kF,PNM = 1.68 fm−3) asso-
ciated with the nuclear saturation density, nemp

sat . The different
curves show the results for the six Hamiltonians H1 to H7
specified in Table I. The spread is larger in SNM (about
15 MeV) compared with PNM (about 5 MeV) because the
3N short- and intermediate-range contributions governed by
cD and cE do not contribute to the PNM EOS for nonlocal
regulator functions. As expected, SNM is more attractive than
PNM, as a result of the attractive contributions from the T = 0
channels, which are absent in PNM.

Let us now move on to the in-medium effective masses
calculated using Eq. (9). The effective masses in SNM and
PNM are shown in Fig. 10 as functions of the momentum
k at a fixed density nemp

sat . The effective masses are lower in

SNM compared with PNM, in agreement with BHF calcula-
tions [32,89,90]. We find that the inclusion of 3N forces leads
to several interesting effects on the effective mass: (a) 3N
forces generate a stronger momentum dependence compared
with NN-only calculations, and (b) 3N forces have a larger
impact on PNM than on SNM. Furthermore, the dispersion
among the different Hamiltonians is slightly larger when 3N
forces are included. From Fig. 10, we find for the Landau mass
m∗

n/m(δ=0) = 0.64(2) in SNM and m∗
n/m(δ=1) = 0.88(4)

in PNM when 3N forces are included. The difference between
the Landau mass in PNM and SNM at saturation density,
defined as

Dm∗
n,sat = m∗

n (nsat, δ = 1) − m∗
n (nsat, δ = 0), (A1)

is about Dm∗
n,sat = 0.24(5) at nsat.

In Fig. 11, we show the Landau mass (left) and its inverse
(right) considering NN-only forces (dashed lines) and NN and
3N forces (gray bands) in SNM and PNM as a function of the
density, n. The difference of the Landau masses in PNM and
SNM, Dm∗

n (n), increases with density and is found to be about
0.24 at saturation density, see also Fig. 10. While it is usually
found that the Landau mass decreases with density [32,89,90],
we find that in PNM the Landau mass first decreases at
lower density but increases again for n > 0.1 fm−3 (except
for Hamiltonian H3, which has a higher momentum cutoff
applied to the 3N forces). This effect is due to the inclusion of
3N interactions in the Hamiltonian.

Because many energy density-functional (EDF) ap-
proaches approximate the inverse of the Landau mass by a
linear function in density [30], we show the inverse Landau
mass in the right panel of Figure 11. In contrast to the EDFs
approaches, we find that the density dependence of the inverse
Landau mass is not linear, and that 3N forces enhance the
nonlinear behavior.

Finally, we study the splitting of the neutron and proton
Landau masses in ANM, defined as

�m∗
sat(δ) = m∗

n (nsat, δ) − m∗
p(nsat, δ). (A2)
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FIG. 11. (a) Landau effective mass and (b) its inverse in SNM and PNM as a function of density. The black-dashed lines represent the
upper and lower limits when only NN forces are considered, while the gray-shaded regions show the results with 3N forces included. The
different colors correspond to the six Hamiltonians as labeled in the legend.

In PNM (δ = 1), this splitting can be expressed in terms of the
difference Dm∗

sat, see Eq. (A1), as

�m∗
sat

m
(PNM) ≈ Dm∗

n,sat

m
+ O

((
κsym + κsym,2

1 + κsat + κsat,2

)2)
. (A3)

From our fits estimated in Sec. III B, we can estimate that the
neglected terms account for about 5% of the splitting (more

precisely, 7% for the linear fit of the effective mass, and 3%
for the quadratic fit), which is small considering the present
uncertainty of this quantity. The splitting of the Landau mass
is, thus, approximately given by the difference of the Landau
mass between PNM and SNM. The splitting of the Landau
mass obtained here is compatible with the one obtained in
the literature for BHF [32,91,92] and Dirac-BHF [89,90]
approaches.

APPENDIX B: MAPPING BETWEEN META-MODEL AND EMPIRICAL PARAMETERS

In Sec. IV, the meta-model (MM) was introduced in SNM and PNM. Here, the MM coefficients, vα,1 to vα,N , are related
to the nuclear empirical parameters (NEPs), such as Esat, Ksat, Esym, Lsym, etc. The NEPs for SNM are defined by the density
expansion

eSNM(n) = Esat + 1
2 Ksatx2 + 1

6 Qsatx3 + 1
24 Zsatx4 + · · · , (B1)

whereas the NEPs for PNM are defined by

ePNM(n) = EPNM + LPNMx + 1
2 KPNMx2 + 1

6 QPNMx3 + 1
24 ZPNMx4 + · · · . (B2)

In this Appendix we give the relations between the MM parameters and the NEPs. For the isoscalar parameters controlling the
SNM EOS, we have

vSNM,0 = Esat − tSNM(1 + κsat + κsat,2), vSNM,1 = −tSNM(2 + 5κsat + 8κsat,2),

vSNM,2 = Ksat − 2tSNM(−1 + 5κsat + 20κsat,2), vSNM,3 = Qsat − 2tSNM(4 − 5κsat + 40κsat,2),

vSNM,4 = Zsat − 8tSNM(−7 + 5κsat − 10κsat,2), (B3)

while the isovector parameters describing the PNM EOS are

vPNM,0 = EPNM − 2
2
3 tSNM(1 + κPNM + κPNM,2), vPNM,1 = LPNM − 2

2
3 tSNM(2 + 5κPNM + 8κPNM,2),

vPNM,2 = KPNM − 2
5
3 tSNM(−1 + 5κPNM + 20κPNM,2), vPNM,3 = QPNM − 2

5
3 tSNM(4 − 5κPNM + 40κPNM,2),

vPNM,4 = ZPNM − 2
11
3 tSNM(−7 + 5κPNM − 10κPNM,2). (B4)
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Moreover, In Sec. V B 1, we encountered the quadratic contribution to the symmetry energy as given by the MM, see Eq. (24).
The MM parameters appearing in this expression are related to the quadratic symmetry energy NEPs as follows:

vsym2,0 = Esym2 − 5

9
t sat
SNM[1 + κsat + 3κsym + κsat,2 + 3κsym,2],

vsym2,1 = Lsym2 − 5

9
t sat
SNM[2 + 5(κsat + 3κsym) + 8(κsat,2 + 3κsym,2)],

vsym2,2 = Ksym2 − 10

9
t sat
SNM[−1 + 5(κsat + 3κsym) + 20(κsat,2 + 3κsym,2)],

vsym2,3 = Qsym2 − 10

9
t sat
SNM[4 − 5(κsat + 3κsym) + 40(κsat,2 + 3κsym,2)],

vsym2,4 = Zsym2 − 40

9
t sat
SNM[−7 + 5(κsat + 3κsym) − 10(κsat,2 + 3κsym,2)]. (B5)

These relations generalize those in Ref. [17] for a quadratic density-dependent Landau mass.
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